1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 * 65 * support for audit of ipc object properties and permission changes 66 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 67 * 68 * namespaces support 69 * OpenVZ, SWsoft Inc. 70 * Pavel Emelianov <xemul@openvz.org> 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/audit.h> 81 #include <linux/capability.h> 82 #include <linux/seq_file.h> 83 #include <linux/rwsem.h> 84 #include <linux/nsproxy.h> 85 #include <linux/ipc_namespace.h> 86 87 #include <asm/uaccess.h> 88 #include "util.h" 89 90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 91 92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 94 95 static int newary(struct ipc_namespace *, struct ipc_params *); 96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 97 #ifdef CONFIG_PROC_FS 98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 99 #endif 100 101 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 103 104 /* 105 * linked list protection: 106 * sem_undo.id_next, 107 * sem_array.sem_pending{,last}, 108 * sem_array.sem_undo: sem_lock() for read/write 109 * sem_undo.proc_next: only "current" is allowed to read/write that field. 110 * 111 */ 112 113 #define sc_semmsl sem_ctls[0] 114 #define sc_semmns sem_ctls[1] 115 #define sc_semopm sem_ctls[2] 116 #define sc_semmni sem_ctls[3] 117 118 void sem_init_ns(struct ipc_namespace *ns) 119 { 120 ns->sc_semmsl = SEMMSL; 121 ns->sc_semmns = SEMMNS; 122 ns->sc_semopm = SEMOPM; 123 ns->sc_semmni = SEMMNI; 124 ns->used_sems = 0; 125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 126 } 127 128 #ifdef CONFIG_IPC_NS 129 void sem_exit_ns(struct ipc_namespace *ns) 130 { 131 free_ipcs(ns, &sem_ids(ns), freeary); 132 } 133 #endif 134 135 void __init sem_init (void) 136 { 137 sem_init_ns(&init_ipc_ns); 138 ipc_init_proc_interface("sysvipc/sem", 139 " key semid perms nsems uid gid cuid cgid otime ctime\n", 140 IPC_SEM_IDS, sysvipc_sem_proc_show); 141 } 142 143 /* 144 * sem_lock_(check_) routines are called in the paths where the rw_mutex 145 * is not held. 146 */ 147 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) 148 { 149 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); 150 151 if (IS_ERR(ipcp)) 152 return (struct sem_array *)ipcp; 153 154 return container_of(ipcp, struct sem_array, sem_perm); 155 } 156 157 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, 158 int id) 159 { 160 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); 161 162 if (IS_ERR(ipcp)) 163 return (struct sem_array *)ipcp; 164 165 return container_of(ipcp, struct sem_array, sem_perm); 166 } 167 168 static inline void sem_lock_and_putref(struct sem_array *sma) 169 { 170 ipc_lock_by_ptr(&sma->sem_perm); 171 ipc_rcu_putref(sma); 172 } 173 174 static inline void sem_getref_and_unlock(struct sem_array *sma) 175 { 176 ipc_rcu_getref(sma); 177 ipc_unlock(&(sma)->sem_perm); 178 } 179 180 static inline void sem_putref(struct sem_array *sma) 181 { 182 ipc_lock_by_ptr(&sma->sem_perm); 183 ipc_rcu_putref(sma); 184 ipc_unlock(&(sma)->sem_perm); 185 } 186 187 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 188 { 189 ipc_rmid(&sem_ids(ns), &s->sem_perm); 190 } 191 192 /* 193 * Lockless wakeup algorithm: 194 * Without the check/retry algorithm a lockless wakeup is possible: 195 * - queue.status is initialized to -EINTR before blocking. 196 * - wakeup is performed by 197 * * unlinking the queue entry from sma->sem_pending 198 * * setting queue.status to IN_WAKEUP 199 * This is the notification for the blocked thread that a 200 * result value is imminent. 201 * * call wake_up_process 202 * * set queue.status to the final value. 203 * - the previously blocked thread checks queue.status: 204 * * if it's IN_WAKEUP, then it must wait until the value changes 205 * * if it's not -EINTR, then the operation was completed by 206 * update_queue. semtimedop can return queue.status without 207 * performing any operation on the sem array. 208 * * otherwise it must acquire the spinlock and check what's up. 209 * 210 * The two-stage algorithm is necessary to protect against the following 211 * races: 212 * - if queue.status is set after wake_up_process, then the woken up idle 213 * thread could race forward and try (and fail) to acquire sma->lock 214 * before update_queue had a chance to set queue.status 215 * - if queue.status is written before wake_up_process and if the 216 * blocked process is woken up by a signal between writing 217 * queue.status and the wake_up_process, then the woken up 218 * process could return from semtimedop and die by calling 219 * sys_exit before wake_up_process is called. Then wake_up_process 220 * will oops, because the task structure is already invalid. 221 * (yes, this happened on s390 with sysv msg). 222 * 223 */ 224 #define IN_WAKEUP 1 225 226 /** 227 * newary - Create a new semaphore set 228 * @ns: namespace 229 * @params: ptr to the structure that contains key, semflg and nsems 230 * 231 * Called with sem_ids.rw_mutex held (as a writer) 232 */ 233 234 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 235 { 236 int id; 237 int retval; 238 struct sem_array *sma; 239 int size; 240 key_t key = params->key; 241 int nsems = params->u.nsems; 242 int semflg = params->flg; 243 244 if (!nsems) 245 return -EINVAL; 246 if (ns->used_sems + nsems > ns->sc_semmns) 247 return -ENOSPC; 248 249 size = sizeof (*sma) + nsems * sizeof (struct sem); 250 sma = ipc_rcu_alloc(size); 251 if (!sma) { 252 return -ENOMEM; 253 } 254 memset (sma, 0, size); 255 256 sma->sem_perm.mode = (semflg & S_IRWXUGO); 257 sma->sem_perm.key = key; 258 259 sma->sem_perm.security = NULL; 260 retval = security_sem_alloc(sma); 261 if (retval) { 262 ipc_rcu_putref(sma); 263 return retval; 264 } 265 266 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 267 if (id < 0) { 268 security_sem_free(sma); 269 ipc_rcu_putref(sma); 270 return id; 271 } 272 ns->used_sems += nsems; 273 274 sma->sem_base = (struct sem *) &sma[1]; 275 INIT_LIST_HEAD(&sma->sem_pending); 276 INIT_LIST_HEAD(&sma->list_id); 277 sma->sem_nsems = nsems; 278 sma->sem_ctime = get_seconds(); 279 sem_unlock(sma); 280 281 return sma->sem_perm.id; 282 } 283 284 285 /* 286 * Called with sem_ids.rw_mutex and ipcp locked. 287 */ 288 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 289 { 290 struct sem_array *sma; 291 292 sma = container_of(ipcp, struct sem_array, sem_perm); 293 return security_sem_associate(sma, semflg); 294 } 295 296 /* 297 * Called with sem_ids.rw_mutex and ipcp locked. 298 */ 299 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 300 struct ipc_params *params) 301 { 302 struct sem_array *sma; 303 304 sma = container_of(ipcp, struct sem_array, sem_perm); 305 if (params->u.nsems > sma->sem_nsems) 306 return -EINVAL; 307 308 return 0; 309 } 310 311 asmlinkage long sys_semget(key_t key, int nsems, int semflg) 312 { 313 struct ipc_namespace *ns; 314 struct ipc_ops sem_ops; 315 struct ipc_params sem_params; 316 317 ns = current->nsproxy->ipc_ns; 318 319 if (nsems < 0 || nsems > ns->sc_semmsl) 320 return -EINVAL; 321 322 sem_ops.getnew = newary; 323 sem_ops.associate = sem_security; 324 sem_ops.more_checks = sem_more_checks; 325 326 sem_params.key = key; 327 sem_params.flg = semflg; 328 sem_params.u.nsems = nsems; 329 330 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 331 } 332 333 /* 334 * Determine whether a sequence of semaphore operations would succeed 335 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 336 */ 337 338 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 339 int nsops, struct sem_undo *un, int pid) 340 { 341 int result, sem_op; 342 struct sembuf *sop; 343 struct sem * curr; 344 345 for (sop = sops; sop < sops + nsops; sop++) { 346 curr = sma->sem_base + sop->sem_num; 347 sem_op = sop->sem_op; 348 result = curr->semval; 349 350 if (!sem_op && result) 351 goto would_block; 352 353 result += sem_op; 354 if (result < 0) 355 goto would_block; 356 if (result > SEMVMX) 357 goto out_of_range; 358 if (sop->sem_flg & SEM_UNDO) { 359 int undo = un->semadj[sop->sem_num] - sem_op; 360 /* 361 * Exceeding the undo range is an error. 362 */ 363 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 364 goto out_of_range; 365 } 366 curr->semval = result; 367 } 368 369 sop--; 370 while (sop >= sops) { 371 sma->sem_base[sop->sem_num].sempid = pid; 372 if (sop->sem_flg & SEM_UNDO) 373 un->semadj[sop->sem_num] -= sop->sem_op; 374 sop--; 375 } 376 377 sma->sem_otime = get_seconds(); 378 return 0; 379 380 out_of_range: 381 result = -ERANGE; 382 goto undo; 383 384 would_block: 385 if (sop->sem_flg & IPC_NOWAIT) 386 result = -EAGAIN; 387 else 388 result = 1; 389 390 undo: 391 sop--; 392 while (sop >= sops) { 393 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 394 sop--; 395 } 396 397 return result; 398 } 399 400 /* Go through the pending queue for the indicated semaphore 401 * looking for tasks that can be completed. 402 */ 403 static void update_queue (struct sem_array * sma) 404 { 405 int error; 406 struct sem_queue * q; 407 408 q = list_entry(sma->sem_pending.next, struct sem_queue, list); 409 while (&q->list != &sma->sem_pending) { 410 error = try_atomic_semop(sma, q->sops, q->nsops, 411 q->undo, q->pid); 412 413 /* Does q->sleeper still need to sleep? */ 414 if (error <= 0) { 415 struct sem_queue *n; 416 417 /* 418 * Continue scanning. The next operation 419 * that must be checked depends on the type of the 420 * completed operation: 421 * - if the operation modified the array, then 422 * restart from the head of the queue and 423 * check for threads that might be waiting 424 * for semaphore values to become 0. 425 * - if the operation didn't modify the array, 426 * then just continue. 427 * The order of list_del() and reading ->next 428 * is crucial: In the former case, the list_del() 429 * must be done first [because we might be the 430 * first entry in ->sem_pending], in the latter 431 * case the list_del() must be done last 432 * [because the list is invalid after the list_del()] 433 */ 434 if (q->alter) { 435 list_del(&q->list); 436 n = list_entry(sma->sem_pending.next, 437 struct sem_queue, list); 438 } else { 439 n = list_entry(q->list.next, struct sem_queue, 440 list); 441 list_del(&q->list); 442 } 443 444 /* wake up the waiting thread */ 445 q->status = IN_WAKEUP; 446 447 wake_up_process(q->sleeper); 448 /* hands-off: q will disappear immediately after 449 * writing q->status. 450 */ 451 smp_wmb(); 452 q->status = error; 453 q = n; 454 } else { 455 q = list_entry(q->list.next, struct sem_queue, list); 456 } 457 } 458 } 459 460 /* The following counts are associated to each semaphore: 461 * semncnt number of tasks waiting on semval being nonzero 462 * semzcnt number of tasks waiting on semval being zero 463 * This model assumes that a task waits on exactly one semaphore. 464 * Since semaphore operations are to be performed atomically, tasks actually 465 * wait on a whole sequence of semaphores simultaneously. 466 * The counts we return here are a rough approximation, but still 467 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 468 */ 469 static int count_semncnt (struct sem_array * sma, ushort semnum) 470 { 471 int semncnt; 472 struct sem_queue * q; 473 474 semncnt = 0; 475 list_for_each_entry(q, &sma->sem_pending, list) { 476 struct sembuf * sops = q->sops; 477 int nsops = q->nsops; 478 int i; 479 for (i = 0; i < nsops; i++) 480 if (sops[i].sem_num == semnum 481 && (sops[i].sem_op < 0) 482 && !(sops[i].sem_flg & IPC_NOWAIT)) 483 semncnt++; 484 } 485 return semncnt; 486 } 487 488 static int count_semzcnt (struct sem_array * sma, ushort semnum) 489 { 490 int semzcnt; 491 struct sem_queue * q; 492 493 semzcnt = 0; 494 list_for_each_entry(q, &sma->sem_pending, list) { 495 struct sembuf * sops = q->sops; 496 int nsops = q->nsops; 497 int i; 498 for (i = 0; i < nsops; i++) 499 if (sops[i].sem_num == semnum 500 && (sops[i].sem_op == 0) 501 && !(sops[i].sem_flg & IPC_NOWAIT)) 502 semzcnt++; 503 } 504 return semzcnt; 505 } 506 507 static void free_un(struct rcu_head *head) 508 { 509 struct sem_undo *un = container_of(head, struct sem_undo, rcu); 510 kfree(un); 511 } 512 513 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked 514 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex 515 * remains locked on exit. 516 */ 517 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 518 { 519 struct sem_undo *un, *tu; 520 struct sem_queue *q, *tq; 521 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 522 523 /* Free the existing undo structures for this semaphore set. */ 524 assert_spin_locked(&sma->sem_perm.lock); 525 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 526 list_del(&un->list_id); 527 spin_lock(&un->ulp->lock); 528 un->semid = -1; 529 list_del_rcu(&un->list_proc); 530 spin_unlock(&un->ulp->lock); 531 call_rcu(&un->rcu, free_un); 532 } 533 534 /* Wake up all pending processes and let them fail with EIDRM. */ 535 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) { 536 list_del(&q->list); 537 538 q->status = IN_WAKEUP; 539 wake_up_process(q->sleeper); /* doesn't sleep */ 540 smp_wmb(); 541 q->status = -EIDRM; /* hands-off q */ 542 } 543 544 /* Remove the semaphore set from the IDR */ 545 sem_rmid(ns, sma); 546 sem_unlock(sma); 547 548 ns->used_sems -= sma->sem_nsems; 549 security_sem_free(sma); 550 ipc_rcu_putref(sma); 551 } 552 553 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 554 { 555 switch(version) { 556 case IPC_64: 557 return copy_to_user(buf, in, sizeof(*in)); 558 case IPC_OLD: 559 { 560 struct semid_ds out; 561 562 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 563 564 out.sem_otime = in->sem_otime; 565 out.sem_ctime = in->sem_ctime; 566 out.sem_nsems = in->sem_nsems; 567 568 return copy_to_user(buf, &out, sizeof(out)); 569 } 570 default: 571 return -EINVAL; 572 } 573 } 574 575 static int semctl_nolock(struct ipc_namespace *ns, int semid, 576 int cmd, int version, union semun arg) 577 { 578 int err = -EINVAL; 579 struct sem_array *sma; 580 581 switch(cmd) { 582 case IPC_INFO: 583 case SEM_INFO: 584 { 585 struct seminfo seminfo; 586 int max_id; 587 588 err = security_sem_semctl(NULL, cmd); 589 if (err) 590 return err; 591 592 memset(&seminfo,0,sizeof(seminfo)); 593 seminfo.semmni = ns->sc_semmni; 594 seminfo.semmns = ns->sc_semmns; 595 seminfo.semmsl = ns->sc_semmsl; 596 seminfo.semopm = ns->sc_semopm; 597 seminfo.semvmx = SEMVMX; 598 seminfo.semmnu = SEMMNU; 599 seminfo.semmap = SEMMAP; 600 seminfo.semume = SEMUME; 601 down_read(&sem_ids(ns).rw_mutex); 602 if (cmd == SEM_INFO) { 603 seminfo.semusz = sem_ids(ns).in_use; 604 seminfo.semaem = ns->used_sems; 605 } else { 606 seminfo.semusz = SEMUSZ; 607 seminfo.semaem = SEMAEM; 608 } 609 max_id = ipc_get_maxid(&sem_ids(ns)); 610 up_read(&sem_ids(ns).rw_mutex); 611 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 612 return -EFAULT; 613 return (max_id < 0) ? 0: max_id; 614 } 615 case IPC_STAT: 616 case SEM_STAT: 617 { 618 struct semid64_ds tbuf; 619 int id; 620 621 if (cmd == SEM_STAT) { 622 sma = sem_lock(ns, semid); 623 if (IS_ERR(sma)) 624 return PTR_ERR(sma); 625 id = sma->sem_perm.id; 626 } else { 627 sma = sem_lock_check(ns, semid); 628 if (IS_ERR(sma)) 629 return PTR_ERR(sma); 630 id = 0; 631 } 632 633 err = -EACCES; 634 if (ipcperms (&sma->sem_perm, S_IRUGO)) 635 goto out_unlock; 636 637 err = security_sem_semctl(sma, cmd); 638 if (err) 639 goto out_unlock; 640 641 memset(&tbuf, 0, sizeof(tbuf)); 642 643 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 644 tbuf.sem_otime = sma->sem_otime; 645 tbuf.sem_ctime = sma->sem_ctime; 646 tbuf.sem_nsems = sma->sem_nsems; 647 sem_unlock(sma); 648 if (copy_semid_to_user (arg.buf, &tbuf, version)) 649 return -EFAULT; 650 return id; 651 } 652 default: 653 return -EINVAL; 654 } 655 return err; 656 out_unlock: 657 sem_unlock(sma); 658 return err; 659 } 660 661 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 662 int cmd, int version, union semun arg) 663 { 664 struct sem_array *sma; 665 struct sem* curr; 666 int err; 667 ushort fast_sem_io[SEMMSL_FAST]; 668 ushort* sem_io = fast_sem_io; 669 int nsems; 670 671 sma = sem_lock_check(ns, semid); 672 if (IS_ERR(sma)) 673 return PTR_ERR(sma); 674 675 nsems = sma->sem_nsems; 676 677 err = -EACCES; 678 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 679 goto out_unlock; 680 681 err = security_sem_semctl(sma, cmd); 682 if (err) 683 goto out_unlock; 684 685 err = -EACCES; 686 switch (cmd) { 687 case GETALL: 688 { 689 ushort __user *array = arg.array; 690 int i; 691 692 if(nsems > SEMMSL_FAST) { 693 sem_getref_and_unlock(sma); 694 695 sem_io = ipc_alloc(sizeof(ushort)*nsems); 696 if(sem_io == NULL) { 697 sem_putref(sma); 698 return -ENOMEM; 699 } 700 701 sem_lock_and_putref(sma); 702 if (sma->sem_perm.deleted) { 703 sem_unlock(sma); 704 err = -EIDRM; 705 goto out_free; 706 } 707 } 708 709 for (i = 0; i < sma->sem_nsems; i++) 710 sem_io[i] = sma->sem_base[i].semval; 711 sem_unlock(sma); 712 err = 0; 713 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 714 err = -EFAULT; 715 goto out_free; 716 } 717 case SETALL: 718 { 719 int i; 720 struct sem_undo *un; 721 722 sem_getref_and_unlock(sma); 723 724 if(nsems > SEMMSL_FAST) { 725 sem_io = ipc_alloc(sizeof(ushort)*nsems); 726 if(sem_io == NULL) { 727 sem_putref(sma); 728 return -ENOMEM; 729 } 730 } 731 732 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 733 sem_putref(sma); 734 err = -EFAULT; 735 goto out_free; 736 } 737 738 for (i = 0; i < nsems; i++) { 739 if (sem_io[i] > SEMVMX) { 740 sem_putref(sma); 741 err = -ERANGE; 742 goto out_free; 743 } 744 } 745 sem_lock_and_putref(sma); 746 if (sma->sem_perm.deleted) { 747 sem_unlock(sma); 748 err = -EIDRM; 749 goto out_free; 750 } 751 752 for (i = 0; i < nsems; i++) 753 sma->sem_base[i].semval = sem_io[i]; 754 755 assert_spin_locked(&sma->sem_perm.lock); 756 list_for_each_entry(un, &sma->list_id, list_id) { 757 for (i = 0; i < nsems; i++) 758 un->semadj[i] = 0; 759 } 760 sma->sem_ctime = get_seconds(); 761 /* maybe some queued-up processes were waiting for this */ 762 update_queue(sma); 763 err = 0; 764 goto out_unlock; 765 } 766 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 767 } 768 err = -EINVAL; 769 if(semnum < 0 || semnum >= nsems) 770 goto out_unlock; 771 772 curr = &sma->sem_base[semnum]; 773 774 switch (cmd) { 775 case GETVAL: 776 err = curr->semval; 777 goto out_unlock; 778 case GETPID: 779 err = curr->sempid; 780 goto out_unlock; 781 case GETNCNT: 782 err = count_semncnt(sma,semnum); 783 goto out_unlock; 784 case GETZCNT: 785 err = count_semzcnt(sma,semnum); 786 goto out_unlock; 787 case SETVAL: 788 { 789 int val = arg.val; 790 struct sem_undo *un; 791 792 err = -ERANGE; 793 if (val > SEMVMX || val < 0) 794 goto out_unlock; 795 796 assert_spin_locked(&sma->sem_perm.lock); 797 list_for_each_entry(un, &sma->list_id, list_id) 798 un->semadj[semnum] = 0; 799 800 curr->semval = val; 801 curr->sempid = task_tgid_vnr(current); 802 sma->sem_ctime = get_seconds(); 803 /* maybe some queued-up processes were waiting for this */ 804 update_queue(sma); 805 err = 0; 806 goto out_unlock; 807 } 808 } 809 out_unlock: 810 sem_unlock(sma); 811 out_free: 812 if(sem_io != fast_sem_io) 813 ipc_free(sem_io, sizeof(ushort)*nsems); 814 return err; 815 } 816 817 static inline unsigned long 818 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 819 { 820 switch(version) { 821 case IPC_64: 822 if (copy_from_user(out, buf, sizeof(*out))) 823 return -EFAULT; 824 return 0; 825 case IPC_OLD: 826 { 827 struct semid_ds tbuf_old; 828 829 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 830 return -EFAULT; 831 832 out->sem_perm.uid = tbuf_old.sem_perm.uid; 833 out->sem_perm.gid = tbuf_old.sem_perm.gid; 834 out->sem_perm.mode = tbuf_old.sem_perm.mode; 835 836 return 0; 837 } 838 default: 839 return -EINVAL; 840 } 841 } 842 843 /* 844 * This function handles some semctl commands which require the rw_mutex 845 * to be held in write mode. 846 * NOTE: no locks must be held, the rw_mutex is taken inside this function. 847 */ 848 static int semctl_down(struct ipc_namespace *ns, int semid, 849 int cmd, int version, union semun arg) 850 { 851 struct sem_array *sma; 852 int err; 853 struct semid64_ds semid64; 854 struct kern_ipc_perm *ipcp; 855 856 if(cmd == IPC_SET) { 857 if (copy_semid_from_user(&semid64, arg.buf, version)) 858 return -EFAULT; 859 } 860 861 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0); 862 if (IS_ERR(ipcp)) 863 return PTR_ERR(ipcp); 864 865 sma = container_of(ipcp, struct sem_array, sem_perm); 866 867 err = security_sem_semctl(sma, cmd); 868 if (err) 869 goto out_unlock; 870 871 switch(cmd){ 872 case IPC_RMID: 873 freeary(ns, ipcp); 874 goto out_up; 875 case IPC_SET: 876 ipc_update_perm(&semid64.sem_perm, ipcp); 877 sma->sem_ctime = get_seconds(); 878 break; 879 default: 880 err = -EINVAL; 881 } 882 883 out_unlock: 884 sem_unlock(sma); 885 out_up: 886 up_write(&sem_ids(ns).rw_mutex); 887 return err; 888 } 889 890 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 891 { 892 int err = -EINVAL; 893 int version; 894 struct ipc_namespace *ns; 895 896 if (semid < 0) 897 return -EINVAL; 898 899 version = ipc_parse_version(&cmd); 900 ns = current->nsproxy->ipc_ns; 901 902 switch(cmd) { 903 case IPC_INFO: 904 case SEM_INFO: 905 case IPC_STAT: 906 case SEM_STAT: 907 err = semctl_nolock(ns, semid, cmd, version, arg); 908 return err; 909 case GETALL: 910 case GETVAL: 911 case GETPID: 912 case GETNCNT: 913 case GETZCNT: 914 case SETVAL: 915 case SETALL: 916 err = semctl_main(ns,semid,semnum,cmd,version,arg); 917 return err; 918 case IPC_RMID: 919 case IPC_SET: 920 err = semctl_down(ns, semid, cmd, version, arg); 921 return err; 922 default: 923 return -EINVAL; 924 } 925 } 926 927 /* If the task doesn't already have a undo_list, then allocate one 928 * here. We guarantee there is only one thread using this undo list, 929 * and current is THE ONE 930 * 931 * If this allocation and assignment succeeds, but later 932 * portions of this code fail, there is no need to free the sem_undo_list. 933 * Just let it stay associated with the task, and it'll be freed later 934 * at exit time. 935 * 936 * This can block, so callers must hold no locks. 937 */ 938 static inline int get_undo_list(struct sem_undo_list **undo_listp) 939 { 940 struct sem_undo_list *undo_list; 941 942 undo_list = current->sysvsem.undo_list; 943 if (!undo_list) { 944 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 945 if (undo_list == NULL) 946 return -ENOMEM; 947 spin_lock_init(&undo_list->lock); 948 atomic_set(&undo_list->refcnt, 1); 949 INIT_LIST_HEAD(&undo_list->list_proc); 950 951 current->sysvsem.undo_list = undo_list; 952 } 953 *undo_listp = undo_list; 954 return 0; 955 } 956 957 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 958 { 959 struct sem_undo *walk; 960 961 list_for_each_entry_rcu(walk, &ulp->list_proc, list_proc) { 962 if (walk->semid == semid) 963 return walk; 964 } 965 return NULL; 966 } 967 968 /** 969 * find_alloc_undo - Lookup (and if not present create) undo array 970 * @ns: namespace 971 * @semid: semaphore array id 972 * 973 * The function looks up (and if not present creates) the undo structure. 974 * The size of the undo structure depends on the size of the semaphore 975 * array, thus the alloc path is not that straightforward. 976 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 977 * performs a rcu_read_lock(). 978 */ 979 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 980 { 981 struct sem_array *sma; 982 struct sem_undo_list *ulp; 983 struct sem_undo *un, *new; 984 int nsems; 985 int error; 986 987 error = get_undo_list(&ulp); 988 if (error) 989 return ERR_PTR(error); 990 991 rcu_read_lock(); 992 spin_lock(&ulp->lock); 993 un = lookup_undo(ulp, semid); 994 spin_unlock(&ulp->lock); 995 if (likely(un!=NULL)) 996 goto out; 997 rcu_read_unlock(); 998 999 /* no undo structure around - allocate one. */ 1000 /* step 1: figure out the size of the semaphore array */ 1001 sma = sem_lock_check(ns, semid); 1002 if (IS_ERR(sma)) 1003 return ERR_PTR(PTR_ERR(sma)); 1004 1005 nsems = sma->sem_nsems; 1006 sem_getref_and_unlock(sma); 1007 1008 /* step 2: allocate new undo structure */ 1009 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1010 if (!new) { 1011 sem_putref(sma); 1012 return ERR_PTR(-ENOMEM); 1013 } 1014 1015 /* step 3: Acquire the lock on semaphore array */ 1016 sem_lock_and_putref(sma); 1017 if (sma->sem_perm.deleted) { 1018 sem_unlock(sma); 1019 kfree(new); 1020 un = ERR_PTR(-EIDRM); 1021 goto out; 1022 } 1023 spin_lock(&ulp->lock); 1024 1025 /* 1026 * step 4: check for races: did someone else allocate the undo struct? 1027 */ 1028 un = lookup_undo(ulp, semid); 1029 if (un) { 1030 kfree(new); 1031 goto success; 1032 } 1033 /* step 5: initialize & link new undo structure */ 1034 new->semadj = (short *) &new[1]; 1035 new->ulp = ulp; 1036 new->semid = semid; 1037 assert_spin_locked(&ulp->lock); 1038 list_add_rcu(&new->list_proc, &ulp->list_proc); 1039 assert_spin_locked(&sma->sem_perm.lock); 1040 list_add(&new->list_id, &sma->list_id); 1041 un = new; 1042 1043 success: 1044 spin_unlock(&ulp->lock); 1045 rcu_read_lock(); 1046 sem_unlock(sma); 1047 out: 1048 return un; 1049 } 1050 1051 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1052 unsigned nsops, const struct timespec __user *timeout) 1053 { 1054 int error = -EINVAL; 1055 struct sem_array *sma; 1056 struct sembuf fast_sops[SEMOPM_FAST]; 1057 struct sembuf* sops = fast_sops, *sop; 1058 struct sem_undo *un; 1059 int undos = 0, alter = 0, max; 1060 struct sem_queue queue; 1061 unsigned long jiffies_left = 0; 1062 struct ipc_namespace *ns; 1063 1064 ns = current->nsproxy->ipc_ns; 1065 1066 if (nsops < 1 || semid < 0) 1067 return -EINVAL; 1068 if (nsops > ns->sc_semopm) 1069 return -E2BIG; 1070 if(nsops > SEMOPM_FAST) { 1071 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1072 if(sops==NULL) 1073 return -ENOMEM; 1074 } 1075 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1076 error=-EFAULT; 1077 goto out_free; 1078 } 1079 if (timeout) { 1080 struct timespec _timeout; 1081 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1082 error = -EFAULT; 1083 goto out_free; 1084 } 1085 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1086 _timeout.tv_nsec >= 1000000000L) { 1087 error = -EINVAL; 1088 goto out_free; 1089 } 1090 jiffies_left = timespec_to_jiffies(&_timeout); 1091 } 1092 max = 0; 1093 for (sop = sops; sop < sops + nsops; sop++) { 1094 if (sop->sem_num >= max) 1095 max = sop->sem_num; 1096 if (sop->sem_flg & SEM_UNDO) 1097 undos = 1; 1098 if (sop->sem_op != 0) 1099 alter = 1; 1100 } 1101 1102 if (undos) { 1103 un = find_alloc_undo(ns, semid); 1104 if (IS_ERR(un)) { 1105 error = PTR_ERR(un); 1106 goto out_free; 1107 } 1108 } else 1109 un = NULL; 1110 1111 sma = sem_lock_check(ns, semid); 1112 if (IS_ERR(sma)) { 1113 if (un) 1114 rcu_read_unlock(); 1115 error = PTR_ERR(sma); 1116 goto out_free; 1117 } 1118 1119 /* 1120 * semid identifiers are not unique - find_alloc_undo may have 1121 * allocated an undo structure, it was invalidated by an RMID 1122 * and now a new array with received the same id. Check and fail. 1123 * This case can be detected checking un->semid. The existance of 1124 * "un" itself is guaranteed by rcu. 1125 */ 1126 error = -EIDRM; 1127 if (un) { 1128 if (un->semid == -1) { 1129 rcu_read_unlock(); 1130 goto out_unlock_free; 1131 } else { 1132 /* 1133 * rcu lock can be released, "un" cannot disappear: 1134 * - sem_lock is acquired, thus IPC_RMID is 1135 * impossible. 1136 * - exit_sem is impossible, it always operates on 1137 * current (or a dead task). 1138 */ 1139 1140 rcu_read_unlock(); 1141 } 1142 } 1143 1144 error = -EFBIG; 1145 if (max >= sma->sem_nsems) 1146 goto out_unlock_free; 1147 1148 error = -EACCES; 1149 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1150 goto out_unlock_free; 1151 1152 error = security_sem_semop(sma, sops, nsops, alter); 1153 if (error) 1154 goto out_unlock_free; 1155 1156 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); 1157 if (error <= 0) { 1158 if (alter && error == 0) 1159 update_queue (sma); 1160 goto out_unlock_free; 1161 } 1162 1163 /* We need to sleep on this operation, so we put the current 1164 * task into the pending queue and go to sleep. 1165 */ 1166 1167 queue.sops = sops; 1168 queue.nsops = nsops; 1169 queue.undo = un; 1170 queue.pid = task_tgid_vnr(current); 1171 queue.alter = alter; 1172 if (alter) 1173 list_add_tail(&queue.list, &sma->sem_pending); 1174 else 1175 list_add(&queue.list, &sma->sem_pending); 1176 1177 queue.status = -EINTR; 1178 queue.sleeper = current; 1179 current->state = TASK_INTERRUPTIBLE; 1180 sem_unlock(sma); 1181 1182 if (timeout) 1183 jiffies_left = schedule_timeout(jiffies_left); 1184 else 1185 schedule(); 1186 1187 error = queue.status; 1188 while(unlikely(error == IN_WAKEUP)) { 1189 cpu_relax(); 1190 error = queue.status; 1191 } 1192 1193 if (error != -EINTR) { 1194 /* fast path: update_queue already obtained all requested 1195 * resources */ 1196 goto out_free; 1197 } 1198 1199 sma = sem_lock(ns, semid); 1200 if (IS_ERR(sma)) { 1201 error = -EIDRM; 1202 goto out_free; 1203 } 1204 1205 /* 1206 * If queue.status != -EINTR we are woken up by another process 1207 */ 1208 error = queue.status; 1209 if (error != -EINTR) { 1210 goto out_unlock_free; 1211 } 1212 1213 /* 1214 * If an interrupt occurred we have to clean up the queue 1215 */ 1216 if (timeout && jiffies_left == 0) 1217 error = -EAGAIN; 1218 list_del(&queue.list); 1219 goto out_unlock_free; 1220 1221 out_unlock_free: 1222 sem_unlock(sma); 1223 out_free: 1224 if(sops != fast_sops) 1225 kfree(sops); 1226 return error; 1227 } 1228 1229 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1230 { 1231 return sys_semtimedop(semid, tsops, nsops, NULL); 1232 } 1233 1234 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1235 * parent and child tasks. 1236 */ 1237 1238 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1239 { 1240 struct sem_undo_list *undo_list; 1241 int error; 1242 1243 if (clone_flags & CLONE_SYSVSEM) { 1244 error = get_undo_list(&undo_list); 1245 if (error) 1246 return error; 1247 atomic_inc(&undo_list->refcnt); 1248 tsk->sysvsem.undo_list = undo_list; 1249 } else 1250 tsk->sysvsem.undo_list = NULL; 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * add semadj values to semaphores, free undo structures. 1257 * undo structures are not freed when semaphore arrays are destroyed 1258 * so some of them may be out of date. 1259 * IMPLEMENTATION NOTE: There is some confusion over whether the 1260 * set of adjustments that needs to be done should be done in an atomic 1261 * manner or not. That is, if we are attempting to decrement the semval 1262 * should we queue up and wait until we can do so legally? 1263 * The original implementation attempted to do this (queue and wait). 1264 * The current implementation does not do so. The POSIX standard 1265 * and SVID should be consulted to determine what behavior is mandated. 1266 */ 1267 void exit_sem(struct task_struct *tsk) 1268 { 1269 struct sem_undo_list *ulp; 1270 1271 ulp = tsk->sysvsem.undo_list; 1272 if (!ulp) 1273 return; 1274 tsk->sysvsem.undo_list = NULL; 1275 1276 if (!atomic_dec_and_test(&ulp->refcnt)) 1277 return; 1278 1279 for (;;) { 1280 struct sem_array *sma; 1281 struct sem_undo *un; 1282 int semid; 1283 int i; 1284 1285 rcu_read_lock(); 1286 un = list_entry(rcu_dereference(ulp->list_proc.next), 1287 struct sem_undo, list_proc); 1288 if (&un->list_proc == &ulp->list_proc) 1289 semid = -1; 1290 else 1291 semid = un->semid; 1292 rcu_read_unlock(); 1293 1294 if (semid == -1) 1295 break; 1296 1297 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid); 1298 1299 /* exit_sem raced with IPC_RMID, nothing to do */ 1300 if (IS_ERR(sma)) 1301 continue; 1302 1303 un = lookup_undo(ulp, semid); 1304 if (un == NULL) { 1305 /* exit_sem raced with IPC_RMID+semget() that created 1306 * exactly the same semid. Nothing to do. 1307 */ 1308 sem_unlock(sma); 1309 continue; 1310 } 1311 1312 /* remove un from the linked lists */ 1313 assert_spin_locked(&sma->sem_perm.lock); 1314 list_del(&un->list_id); 1315 1316 spin_lock(&ulp->lock); 1317 list_del_rcu(&un->list_proc); 1318 spin_unlock(&ulp->lock); 1319 1320 /* perform adjustments registered in un */ 1321 for (i = 0; i < sma->sem_nsems; i++) { 1322 struct sem * semaphore = &sma->sem_base[i]; 1323 if (un->semadj[i]) { 1324 semaphore->semval += un->semadj[i]; 1325 /* 1326 * Range checks of the new semaphore value, 1327 * not defined by sus: 1328 * - Some unices ignore the undo entirely 1329 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1330 * - some cap the value (e.g. FreeBSD caps 1331 * at 0, but doesn't enforce SEMVMX) 1332 * 1333 * Linux caps the semaphore value, both at 0 1334 * and at SEMVMX. 1335 * 1336 * Manfred <manfred@colorfullife.com> 1337 */ 1338 if (semaphore->semval < 0) 1339 semaphore->semval = 0; 1340 if (semaphore->semval > SEMVMX) 1341 semaphore->semval = SEMVMX; 1342 semaphore->sempid = task_tgid_vnr(current); 1343 } 1344 } 1345 sma->sem_otime = get_seconds(); 1346 /* maybe some queued-up processes were waiting for this */ 1347 update_queue(sma); 1348 sem_unlock(sma); 1349 1350 call_rcu(&un->rcu, free_un); 1351 } 1352 kfree(ulp); 1353 } 1354 1355 #ifdef CONFIG_PROC_FS 1356 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1357 { 1358 struct sem_array *sma = it; 1359 1360 return seq_printf(s, 1361 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1362 sma->sem_perm.key, 1363 sma->sem_perm.id, 1364 sma->sem_perm.mode, 1365 sma->sem_nsems, 1366 sma->sem_perm.uid, 1367 sma->sem_perm.gid, 1368 sma->sem_perm.cuid, 1369 sma->sem_perm.cgid, 1370 sma->sem_otime, 1371 sma->sem_ctime); 1372 } 1373 #endif 1374