xref: /linux/ipc/sem.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15  * Further wakeup optimizations, documentation
16  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17  *
18  * support for audit of ipc object properties and permission changes
19  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20  *
21  * namespaces support
22  * OpenVZ, SWsoft Inc.
23  * Pavel Emelianov <xemul@openvz.org>
24  *
25  * Implementation notes: (May 2010)
26  * This file implements System V semaphores.
27  *
28  * User space visible behavior:
29  * - FIFO ordering for semop() operations (just FIFO, not starvation
30  *   protection)
31  * - multiple semaphore operations that alter the same semaphore in
32  *   one semop() are handled.
33  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34  *   SETALL calls.
35  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36  * - undo adjustments at process exit are limited to 0..SEMVMX.
37  * - namespace are supported.
38  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39  *   to /proc/sys/kernel/sem.
40  * - statistics about the usage are reported in /proc/sysvipc/sem.
41  *
42  * Internals:
43  * - scalability:
44  *   - all global variables are read-mostly.
45  *   - semop() calls and semctl(RMID) are synchronized by RCU.
46  *   - most operations do write operations (actually: spin_lock calls) to
47  *     the per-semaphore array structure.
48  *   Thus: Perfect SMP scaling between independent semaphore arrays.
49  *         If multiple semaphores in one array are used, then cache line
50  *         trashing on the semaphore array spinlock will limit the scaling.
51  * - semncnt and semzcnt are calculated on demand in count_semcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - UNDO values are stored in an array (one per process and per
63  *   semaphore array, lazily allocated). For backwards compatibility, multiple
64  *   modes for the UNDO variables are supported (per process, per thread)
65  *   (see copy_semundo, CLONE_SYSVSEM)
66  * - There are two lists of the pending operations: a per-array list
67  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
68  *   ordering without always scanning all pending operations.
69  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
70  */
71 
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
85 #include <linux/sched/wake_q.h>
86 
87 #include <linux/uaccess.h>
88 #include "util.h"
89 
90 /* One semaphore structure for each semaphore in the system. */
91 struct sem {
92 	int	semval;		/* current value */
93 	/*
94 	 * PID of the process that last modified the semaphore. For
95 	 * Linux, specifically these are:
96 	 *  - semop
97 	 *  - semctl, via SETVAL and SETALL.
98 	 *  - at task exit when performing undo adjustments (see exit_sem).
99 	 */
100 	int	sempid;
101 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
102 	struct list_head pending_alter; /* pending single-sop operations */
103 					/* that alter the semaphore */
104 	struct list_head pending_const; /* pending single-sop operations */
105 					/* that do not alter the semaphore*/
106 	time_t	sem_otime;	/* candidate for sem_otime */
107 } ____cacheline_aligned_in_smp;
108 
109 /* One queue for each sleeping process in the system. */
110 struct sem_queue {
111 	struct list_head	list;	 /* queue of pending operations */
112 	struct task_struct	*sleeper; /* this process */
113 	struct sem_undo		*undo;	 /* undo structure */
114 	int			pid;	 /* process id of requesting process */
115 	int			status;	 /* completion status of operation */
116 	struct sembuf		*sops;	 /* array of pending operations */
117 	struct sembuf		*blocking; /* the operation that blocked */
118 	int			nsops;	 /* number of operations */
119 	bool			alter;	 /* does *sops alter the array? */
120 	bool                    dupsop;	 /* sops on more than one sem_num */
121 };
122 
123 /* Each task has a list of undo requests. They are executed automatically
124  * when the process exits.
125  */
126 struct sem_undo {
127 	struct list_head	list_proc;	/* per-process list: *
128 						 * all undos from one process
129 						 * rcu protected */
130 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
131 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
132 	struct list_head	list_id;	/* per semaphore array list:
133 						 * all undos for one array */
134 	int			semid;		/* semaphore set identifier */
135 	short			*semadj;	/* array of adjustments */
136 						/* one per semaphore */
137 };
138 
139 /* sem_undo_list controls shared access to the list of sem_undo structures
140  * that may be shared among all a CLONE_SYSVSEM task group.
141  */
142 struct sem_undo_list {
143 	atomic_t		refcnt;
144 	spinlock_t		lock;
145 	struct list_head	list_proc;
146 };
147 
148 
149 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
150 
151 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
152 
153 static int newary(struct ipc_namespace *, struct ipc_params *);
154 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
155 #ifdef CONFIG_PROC_FS
156 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
157 #endif
158 
159 #define SEMMSL_FAST	256 /* 512 bytes on stack */
160 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
161 
162 /*
163  * Switching from the mode suitable for simple ops
164  * to the mode for complex ops is costly. Therefore:
165  * use some hysteresis
166  */
167 #define USE_GLOBAL_LOCK_HYSTERESIS	10
168 
169 /*
170  * Locking:
171  * a) global sem_lock() for read/write
172  *	sem_undo.id_next,
173  *	sem_array.complex_count,
174  *	sem_array.pending{_alter,_const},
175  *	sem_array.sem_undo
176  *
177  * b) global or semaphore sem_lock() for read/write:
178  *	sem_array.sem_base[i].pending_{const,alter}:
179  *
180  * c) special:
181  *	sem_undo_list.list_proc:
182  *	* undo_list->lock for write
183  *	* rcu for read
184  *	use_global_lock:
185  *	* global sem_lock() for write
186  *	* either local or global sem_lock() for read.
187  *
188  * Memory ordering:
189  * Most ordering is enforced by using spin_lock() and spin_unlock().
190  * The special case is use_global_lock:
191  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
192  * using smp_store_release().
193  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
194  * smp_load_acquire().
195  * Setting it from 0 to non-zero must be ordered with regards to
196  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
197  * is inside a spin_lock() and after a write from 0 to non-zero a
198  * spin_lock()+spin_unlock() is done.
199  */
200 
201 #define sc_semmsl	sem_ctls[0]
202 #define sc_semmns	sem_ctls[1]
203 #define sc_semopm	sem_ctls[2]
204 #define sc_semmni	sem_ctls[3]
205 
206 void sem_init_ns(struct ipc_namespace *ns)
207 {
208 	ns->sc_semmsl = SEMMSL;
209 	ns->sc_semmns = SEMMNS;
210 	ns->sc_semopm = SEMOPM;
211 	ns->sc_semmni = SEMMNI;
212 	ns->used_sems = 0;
213 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
214 }
215 
216 #ifdef CONFIG_IPC_NS
217 void sem_exit_ns(struct ipc_namespace *ns)
218 {
219 	free_ipcs(ns, &sem_ids(ns), freeary);
220 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
221 }
222 #endif
223 
224 void __init sem_init(void)
225 {
226 	sem_init_ns(&init_ipc_ns);
227 	ipc_init_proc_interface("sysvipc/sem",
228 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
229 				IPC_SEM_IDS, sysvipc_sem_proc_show);
230 }
231 
232 /**
233  * unmerge_queues - unmerge queues, if possible.
234  * @sma: semaphore array
235  *
236  * The function unmerges the wait queues if complex_count is 0.
237  * It must be called prior to dropping the global semaphore array lock.
238  */
239 static void unmerge_queues(struct sem_array *sma)
240 {
241 	struct sem_queue *q, *tq;
242 
243 	/* complex operations still around? */
244 	if (sma->complex_count)
245 		return;
246 	/*
247 	 * We will switch back to simple mode.
248 	 * Move all pending operation back into the per-semaphore
249 	 * queues.
250 	 */
251 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
252 		struct sem *curr;
253 		curr = &sma->sem_base[q->sops[0].sem_num];
254 
255 		list_add_tail(&q->list, &curr->pending_alter);
256 	}
257 	INIT_LIST_HEAD(&sma->pending_alter);
258 }
259 
260 /**
261  * merge_queues - merge single semop queues into global queue
262  * @sma: semaphore array
263  *
264  * This function merges all per-semaphore queues into the global queue.
265  * It is necessary to achieve FIFO ordering for the pending single-sop
266  * operations when a multi-semop operation must sleep.
267  * Only the alter operations must be moved, the const operations can stay.
268  */
269 static void merge_queues(struct sem_array *sma)
270 {
271 	int i;
272 	for (i = 0; i < sma->sem_nsems; i++) {
273 		struct sem *sem = sma->sem_base + i;
274 
275 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
276 	}
277 }
278 
279 static void sem_rcu_free(struct rcu_head *head)
280 {
281 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
282 	struct sem_array *sma = ipc_rcu_to_struct(p);
283 
284 	security_sem_free(sma);
285 	ipc_rcu_free(head);
286 }
287 
288 /*
289  * Enter the mode suitable for non-simple operations:
290  * Caller must own sem_perm.lock.
291  */
292 static void complexmode_enter(struct sem_array *sma)
293 {
294 	int i;
295 	struct sem *sem;
296 
297 	if (sma->use_global_lock > 0)  {
298 		/*
299 		 * We are already in global lock mode.
300 		 * Nothing to do, just reset the
301 		 * counter until we return to simple mode.
302 		 */
303 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
304 		return;
305 	}
306 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
307 
308 	for (i = 0; i < sma->sem_nsems; i++) {
309 		sem = sma->sem_base + i;
310 		spin_lock(&sem->lock);
311 		spin_unlock(&sem->lock);
312 	}
313 }
314 
315 /*
316  * Try to leave the mode that disallows simple operations:
317  * Caller must own sem_perm.lock.
318  */
319 static void complexmode_tryleave(struct sem_array *sma)
320 {
321 	if (sma->complex_count)  {
322 		/* Complex ops are sleeping.
323 		 * We must stay in complex mode
324 		 */
325 		return;
326 	}
327 	if (sma->use_global_lock == 1) {
328 		/*
329 		 * Immediately after setting use_global_lock to 0,
330 		 * a simple op can start. Thus: all memory writes
331 		 * performed by the current operation must be visible
332 		 * before we set use_global_lock to 0.
333 		 */
334 		smp_store_release(&sma->use_global_lock, 0);
335 	} else {
336 		sma->use_global_lock--;
337 	}
338 }
339 
340 #define SEM_GLOBAL_LOCK	(-1)
341 /*
342  * If the request contains only one semaphore operation, and there are
343  * no complex transactions pending, lock only the semaphore involved.
344  * Otherwise, lock the entire semaphore array, since we either have
345  * multiple semaphores in our own semops, or we need to look at
346  * semaphores from other pending complex operations.
347  */
348 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
349 			      int nsops)
350 {
351 	struct sem *sem;
352 
353 	if (nsops != 1) {
354 		/* Complex operation - acquire a full lock */
355 		ipc_lock_object(&sma->sem_perm);
356 
357 		/* Prevent parallel simple ops */
358 		complexmode_enter(sma);
359 		return SEM_GLOBAL_LOCK;
360 	}
361 
362 	/*
363 	 * Only one semaphore affected - try to optimize locking.
364 	 * Optimized locking is possible if no complex operation
365 	 * is either enqueued or processed right now.
366 	 *
367 	 * Both facts are tracked by use_global_mode.
368 	 */
369 	sem = sma->sem_base + sops->sem_num;
370 
371 	/*
372 	 * Initial check for use_global_lock. Just an optimization,
373 	 * no locking, no memory barrier.
374 	 */
375 	if (!sma->use_global_lock) {
376 		/*
377 		 * It appears that no complex operation is around.
378 		 * Acquire the per-semaphore lock.
379 		 */
380 		spin_lock(&sem->lock);
381 
382 		/* pairs with smp_store_release() */
383 		if (!smp_load_acquire(&sma->use_global_lock)) {
384 			/* fast path successful! */
385 			return sops->sem_num;
386 		}
387 		spin_unlock(&sem->lock);
388 	}
389 
390 	/* slow path: acquire the full lock */
391 	ipc_lock_object(&sma->sem_perm);
392 
393 	if (sma->use_global_lock == 0) {
394 		/*
395 		 * The use_global_lock mode ended while we waited for
396 		 * sma->sem_perm.lock. Thus we must switch to locking
397 		 * with sem->lock.
398 		 * Unlike in the fast path, there is no need to recheck
399 		 * sma->use_global_lock after we have acquired sem->lock:
400 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
401 		 * change.
402 		 */
403 		spin_lock(&sem->lock);
404 
405 		ipc_unlock_object(&sma->sem_perm);
406 		return sops->sem_num;
407 	} else {
408 		/*
409 		 * Not a false alarm, thus continue to use the global lock
410 		 * mode. No need for complexmode_enter(), this was done by
411 		 * the caller that has set use_global_mode to non-zero.
412 		 */
413 		return SEM_GLOBAL_LOCK;
414 	}
415 }
416 
417 static inline void sem_unlock(struct sem_array *sma, int locknum)
418 {
419 	if (locknum == SEM_GLOBAL_LOCK) {
420 		unmerge_queues(sma);
421 		complexmode_tryleave(sma);
422 		ipc_unlock_object(&sma->sem_perm);
423 	} else {
424 		struct sem *sem = sma->sem_base + locknum;
425 		spin_unlock(&sem->lock);
426 	}
427 }
428 
429 /*
430  * sem_lock_(check_) routines are called in the paths where the rwsem
431  * is not held.
432  *
433  * The caller holds the RCU read lock.
434  */
435 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
436 {
437 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
438 
439 	if (IS_ERR(ipcp))
440 		return ERR_CAST(ipcp);
441 
442 	return container_of(ipcp, struct sem_array, sem_perm);
443 }
444 
445 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
446 							int id)
447 {
448 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
449 
450 	if (IS_ERR(ipcp))
451 		return ERR_CAST(ipcp);
452 
453 	return container_of(ipcp, struct sem_array, sem_perm);
454 }
455 
456 static inline void sem_lock_and_putref(struct sem_array *sma)
457 {
458 	sem_lock(sma, NULL, -1);
459 	ipc_rcu_putref(sma, sem_rcu_free);
460 }
461 
462 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
463 {
464 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
465 }
466 
467 /**
468  * newary - Create a new semaphore set
469  * @ns: namespace
470  * @params: ptr to the structure that contains key, semflg and nsems
471  *
472  * Called with sem_ids.rwsem held (as a writer)
473  */
474 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
475 {
476 	int id;
477 	int retval;
478 	struct sem_array *sma;
479 	int size;
480 	key_t key = params->key;
481 	int nsems = params->u.nsems;
482 	int semflg = params->flg;
483 	int i;
484 
485 	if (!nsems)
486 		return -EINVAL;
487 	if (ns->used_sems + nsems > ns->sc_semmns)
488 		return -ENOSPC;
489 
490 	size = sizeof(*sma) + nsems * sizeof(struct sem);
491 	sma = ipc_rcu_alloc(size);
492 	if (!sma)
493 		return -ENOMEM;
494 
495 	memset(sma, 0, size);
496 
497 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
498 	sma->sem_perm.key = key;
499 
500 	sma->sem_perm.security = NULL;
501 	retval = security_sem_alloc(sma);
502 	if (retval) {
503 		ipc_rcu_putref(sma, ipc_rcu_free);
504 		return retval;
505 	}
506 
507 	sma->sem_base = (struct sem *) &sma[1];
508 
509 	for (i = 0; i < nsems; i++) {
510 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
511 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
512 		spin_lock_init(&sma->sem_base[i].lock);
513 	}
514 
515 	sma->complex_count = 0;
516 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
517 	INIT_LIST_HEAD(&sma->pending_alter);
518 	INIT_LIST_HEAD(&sma->pending_const);
519 	INIT_LIST_HEAD(&sma->list_id);
520 	sma->sem_nsems = nsems;
521 	sma->sem_ctime = get_seconds();
522 
523 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
524 	if (id < 0) {
525 		ipc_rcu_putref(sma, sem_rcu_free);
526 		return id;
527 	}
528 	ns->used_sems += nsems;
529 
530 	sem_unlock(sma, -1);
531 	rcu_read_unlock();
532 
533 	return sma->sem_perm.id;
534 }
535 
536 
537 /*
538  * Called with sem_ids.rwsem and ipcp locked.
539  */
540 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
541 {
542 	struct sem_array *sma;
543 
544 	sma = container_of(ipcp, struct sem_array, sem_perm);
545 	return security_sem_associate(sma, semflg);
546 }
547 
548 /*
549  * Called with sem_ids.rwsem and ipcp locked.
550  */
551 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
552 				struct ipc_params *params)
553 {
554 	struct sem_array *sma;
555 
556 	sma = container_of(ipcp, struct sem_array, sem_perm);
557 	if (params->u.nsems > sma->sem_nsems)
558 		return -EINVAL;
559 
560 	return 0;
561 }
562 
563 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
564 {
565 	struct ipc_namespace *ns;
566 	static const struct ipc_ops sem_ops = {
567 		.getnew = newary,
568 		.associate = sem_security,
569 		.more_checks = sem_more_checks,
570 	};
571 	struct ipc_params sem_params;
572 
573 	ns = current->nsproxy->ipc_ns;
574 
575 	if (nsems < 0 || nsems > ns->sc_semmsl)
576 		return -EINVAL;
577 
578 	sem_params.key = key;
579 	sem_params.flg = semflg;
580 	sem_params.u.nsems = nsems;
581 
582 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
583 }
584 
585 /**
586  * perform_atomic_semop[_slow] - Attempt to perform semaphore
587  *                               operations on a given array.
588  * @sma: semaphore array
589  * @q: struct sem_queue that describes the operation
590  *
591  * Caller blocking are as follows, based the value
592  * indicated by the semaphore operation (sem_op):
593  *
594  *  (1) >0 never blocks.
595  *  (2)  0 (wait-for-zero operation): semval is non-zero.
596  *  (3) <0 attempting to decrement semval to a value smaller than zero.
597  *
598  * Returns 0 if the operation was possible.
599  * Returns 1 if the operation is impossible, the caller must sleep.
600  * Returns <0 for error codes.
601  */
602 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
603 {
604 	int result, sem_op, nsops, pid;
605 	struct sembuf *sop;
606 	struct sem *curr;
607 	struct sembuf *sops;
608 	struct sem_undo *un;
609 
610 	sops = q->sops;
611 	nsops = q->nsops;
612 	un = q->undo;
613 
614 	for (sop = sops; sop < sops + nsops; sop++) {
615 		curr = sma->sem_base + sop->sem_num;
616 		sem_op = sop->sem_op;
617 		result = curr->semval;
618 
619 		if (!sem_op && result)
620 			goto would_block;
621 
622 		result += sem_op;
623 		if (result < 0)
624 			goto would_block;
625 		if (result > SEMVMX)
626 			goto out_of_range;
627 
628 		if (sop->sem_flg & SEM_UNDO) {
629 			int undo = un->semadj[sop->sem_num] - sem_op;
630 			/* Exceeding the undo range is an error. */
631 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
632 				goto out_of_range;
633 			un->semadj[sop->sem_num] = undo;
634 		}
635 
636 		curr->semval = result;
637 	}
638 
639 	sop--;
640 	pid = q->pid;
641 	while (sop >= sops) {
642 		sma->sem_base[sop->sem_num].sempid = pid;
643 		sop--;
644 	}
645 
646 	return 0;
647 
648 out_of_range:
649 	result = -ERANGE;
650 	goto undo;
651 
652 would_block:
653 	q->blocking = sop;
654 
655 	if (sop->sem_flg & IPC_NOWAIT)
656 		result = -EAGAIN;
657 	else
658 		result = 1;
659 
660 undo:
661 	sop--;
662 	while (sop >= sops) {
663 		sem_op = sop->sem_op;
664 		sma->sem_base[sop->sem_num].semval -= sem_op;
665 		if (sop->sem_flg & SEM_UNDO)
666 			un->semadj[sop->sem_num] += sem_op;
667 		sop--;
668 	}
669 
670 	return result;
671 }
672 
673 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
674 {
675 	int result, sem_op, nsops;
676 	struct sembuf *sop;
677 	struct sem *curr;
678 	struct sembuf *sops;
679 	struct sem_undo *un;
680 
681 	sops = q->sops;
682 	nsops = q->nsops;
683 	un = q->undo;
684 
685 	if (unlikely(q->dupsop))
686 		return perform_atomic_semop_slow(sma, q);
687 
688 	/*
689 	 * We scan the semaphore set twice, first to ensure that the entire
690 	 * operation can succeed, therefore avoiding any pointless writes
691 	 * to shared memory and having to undo such changes in order to block
692 	 * until the operations can go through.
693 	 */
694 	for (sop = sops; sop < sops + nsops; sop++) {
695 		curr = sma->sem_base + sop->sem_num;
696 		sem_op = sop->sem_op;
697 		result = curr->semval;
698 
699 		if (!sem_op && result)
700 			goto would_block; /* wait-for-zero */
701 
702 		result += sem_op;
703 		if (result < 0)
704 			goto would_block;
705 
706 		if (result > SEMVMX)
707 			return -ERANGE;
708 
709 		if (sop->sem_flg & SEM_UNDO) {
710 			int undo = un->semadj[sop->sem_num] - sem_op;
711 
712 			/* Exceeding the undo range is an error. */
713 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
714 				return -ERANGE;
715 		}
716 	}
717 
718 	for (sop = sops; sop < sops + nsops; sop++) {
719 		curr = sma->sem_base + sop->sem_num;
720 		sem_op = sop->sem_op;
721 		result = curr->semval;
722 
723 		if (sop->sem_flg & SEM_UNDO) {
724 			int undo = un->semadj[sop->sem_num] - sem_op;
725 
726 			un->semadj[sop->sem_num] = undo;
727 		}
728 		curr->semval += sem_op;
729 		curr->sempid = q->pid;
730 	}
731 
732 	return 0;
733 
734 would_block:
735 	q->blocking = sop;
736 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
737 }
738 
739 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
740 					     struct wake_q_head *wake_q)
741 {
742 	wake_q_add(wake_q, q->sleeper);
743 	/*
744 	 * Rely on the above implicit barrier, such that we can
745 	 * ensure that we hold reference to the task before setting
746 	 * q->status. Otherwise we could race with do_exit if the
747 	 * task is awoken by an external event before calling
748 	 * wake_up_process().
749 	 */
750 	WRITE_ONCE(q->status, error);
751 }
752 
753 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
754 {
755 	list_del(&q->list);
756 	if (q->nsops > 1)
757 		sma->complex_count--;
758 }
759 
760 /** check_restart(sma, q)
761  * @sma: semaphore array
762  * @q: the operation that just completed
763  *
764  * update_queue is O(N^2) when it restarts scanning the whole queue of
765  * waiting operations. Therefore this function checks if the restart is
766  * really necessary. It is called after a previously waiting operation
767  * modified the array.
768  * Note that wait-for-zero operations are handled without restart.
769  */
770 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
771 {
772 	/* pending complex alter operations are too difficult to analyse */
773 	if (!list_empty(&sma->pending_alter))
774 		return 1;
775 
776 	/* we were a sleeping complex operation. Too difficult */
777 	if (q->nsops > 1)
778 		return 1;
779 
780 	/* It is impossible that someone waits for the new value:
781 	 * - complex operations always restart.
782 	 * - wait-for-zero are handled seperately.
783 	 * - q is a previously sleeping simple operation that
784 	 *   altered the array. It must be a decrement, because
785 	 *   simple increments never sleep.
786 	 * - If there are older (higher priority) decrements
787 	 *   in the queue, then they have observed the original
788 	 *   semval value and couldn't proceed. The operation
789 	 *   decremented to value - thus they won't proceed either.
790 	 */
791 	return 0;
792 }
793 
794 /**
795  * wake_const_ops - wake up non-alter tasks
796  * @sma: semaphore array.
797  * @semnum: semaphore that was modified.
798  * @wake_q: lockless wake-queue head.
799  *
800  * wake_const_ops must be called after a semaphore in a semaphore array
801  * was set to 0. If complex const operations are pending, wake_const_ops must
802  * be called with semnum = -1, as well as with the number of each modified
803  * semaphore.
804  * The tasks that must be woken up are added to @wake_q. The return code
805  * is stored in q->pid.
806  * The function returns 1 if at least one operation was completed successfully.
807  */
808 static int wake_const_ops(struct sem_array *sma, int semnum,
809 			  struct wake_q_head *wake_q)
810 {
811 	struct sem_queue *q, *tmp;
812 	struct list_head *pending_list;
813 	int semop_completed = 0;
814 
815 	if (semnum == -1)
816 		pending_list = &sma->pending_const;
817 	else
818 		pending_list = &sma->sem_base[semnum].pending_const;
819 
820 	list_for_each_entry_safe(q, tmp, pending_list, list) {
821 		int error = perform_atomic_semop(sma, q);
822 
823 		if (error > 0)
824 			continue;
825 		/* operation completed, remove from queue & wakeup */
826 		unlink_queue(sma, q);
827 
828 		wake_up_sem_queue_prepare(q, error, wake_q);
829 		if (error == 0)
830 			semop_completed = 1;
831 	}
832 
833 	return semop_completed;
834 }
835 
836 /**
837  * do_smart_wakeup_zero - wakeup all wait for zero tasks
838  * @sma: semaphore array
839  * @sops: operations that were performed
840  * @nsops: number of operations
841  * @wake_q: lockless wake-queue head
842  *
843  * Checks all required queue for wait-for-zero operations, based
844  * on the actual changes that were performed on the semaphore array.
845  * The function returns 1 if at least one operation was completed successfully.
846  */
847 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
848 				int nsops, struct wake_q_head *wake_q)
849 {
850 	int i;
851 	int semop_completed = 0;
852 	int got_zero = 0;
853 
854 	/* first: the per-semaphore queues, if known */
855 	if (sops) {
856 		for (i = 0; i < nsops; i++) {
857 			int num = sops[i].sem_num;
858 
859 			if (sma->sem_base[num].semval == 0) {
860 				got_zero = 1;
861 				semop_completed |= wake_const_ops(sma, num, wake_q);
862 			}
863 		}
864 	} else {
865 		/*
866 		 * No sops means modified semaphores not known.
867 		 * Assume all were changed.
868 		 */
869 		for (i = 0; i < sma->sem_nsems; i++) {
870 			if (sma->sem_base[i].semval == 0) {
871 				got_zero = 1;
872 				semop_completed |= wake_const_ops(sma, i, wake_q);
873 			}
874 		}
875 	}
876 	/*
877 	 * If one of the modified semaphores got 0,
878 	 * then check the global queue, too.
879 	 */
880 	if (got_zero)
881 		semop_completed |= wake_const_ops(sma, -1, wake_q);
882 
883 	return semop_completed;
884 }
885 
886 
887 /**
888  * update_queue - look for tasks that can be completed.
889  * @sma: semaphore array.
890  * @semnum: semaphore that was modified.
891  * @wake_q: lockless wake-queue head.
892  *
893  * update_queue must be called after a semaphore in a semaphore array
894  * was modified. If multiple semaphores were modified, update_queue must
895  * be called with semnum = -1, as well as with the number of each modified
896  * semaphore.
897  * The tasks that must be woken up are added to @wake_q. The return code
898  * is stored in q->pid.
899  * The function internally checks if const operations can now succeed.
900  *
901  * The function return 1 if at least one semop was completed successfully.
902  */
903 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
904 {
905 	struct sem_queue *q, *tmp;
906 	struct list_head *pending_list;
907 	int semop_completed = 0;
908 
909 	if (semnum == -1)
910 		pending_list = &sma->pending_alter;
911 	else
912 		pending_list = &sma->sem_base[semnum].pending_alter;
913 
914 again:
915 	list_for_each_entry_safe(q, tmp, pending_list, list) {
916 		int error, restart;
917 
918 		/* If we are scanning the single sop, per-semaphore list of
919 		 * one semaphore and that semaphore is 0, then it is not
920 		 * necessary to scan further: simple increments
921 		 * that affect only one entry succeed immediately and cannot
922 		 * be in the  per semaphore pending queue, and decrements
923 		 * cannot be successful if the value is already 0.
924 		 */
925 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
926 			break;
927 
928 		error = perform_atomic_semop(sma, q);
929 
930 		/* Does q->sleeper still need to sleep? */
931 		if (error > 0)
932 			continue;
933 
934 		unlink_queue(sma, q);
935 
936 		if (error) {
937 			restart = 0;
938 		} else {
939 			semop_completed = 1;
940 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
941 			restart = check_restart(sma, q);
942 		}
943 
944 		wake_up_sem_queue_prepare(q, error, wake_q);
945 		if (restart)
946 			goto again;
947 	}
948 	return semop_completed;
949 }
950 
951 /**
952  * set_semotime - set sem_otime
953  * @sma: semaphore array
954  * @sops: operations that modified the array, may be NULL
955  *
956  * sem_otime is replicated to avoid cache line trashing.
957  * This function sets one instance to the current time.
958  */
959 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
960 {
961 	if (sops == NULL) {
962 		sma->sem_base[0].sem_otime = get_seconds();
963 	} else {
964 		sma->sem_base[sops[0].sem_num].sem_otime =
965 							get_seconds();
966 	}
967 }
968 
969 /**
970  * do_smart_update - optimized update_queue
971  * @sma: semaphore array
972  * @sops: operations that were performed
973  * @nsops: number of operations
974  * @otime: force setting otime
975  * @wake_q: lockless wake-queue head
976  *
977  * do_smart_update() does the required calls to update_queue and wakeup_zero,
978  * based on the actual changes that were performed on the semaphore array.
979  * Note that the function does not do the actual wake-up: the caller is
980  * responsible for calling wake_up_q().
981  * It is safe to perform this call after dropping all locks.
982  */
983 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
984 			    int otime, struct wake_q_head *wake_q)
985 {
986 	int i;
987 
988 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
989 
990 	if (!list_empty(&sma->pending_alter)) {
991 		/* semaphore array uses the global queue - just process it. */
992 		otime |= update_queue(sma, -1, wake_q);
993 	} else {
994 		if (!sops) {
995 			/*
996 			 * No sops, thus the modified semaphores are not
997 			 * known. Check all.
998 			 */
999 			for (i = 0; i < sma->sem_nsems; i++)
1000 				otime |= update_queue(sma, i, wake_q);
1001 		} else {
1002 			/*
1003 			 * Check the semaphores that were increased:
1004 			 * - No complex ops, thus all sleeping ops are
1005 			 *   decrease.
1006 			 * - if we decreased the value, then any sleeping
1007 			 *   semaphore ops wont be able to run: If the
1008 			 *   previous value was too small, then the new
1009 			 *   value will be too small, too.
1010 			 */
1011 			for (i = 0; i < nsops; i++) {
1012 				if (sops[i].sem_op > 0) {
1013 					otime |= update_queue(sma,
1014 							      sops[i].sem_num, wake_q);
1015 				}
1016 			}
1017 		}
1018 	}
1019 	if (otime)
1020 		set_semotime(sma, sops);
1021 }
1022 
1023 /*
1024  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1025  */
1026 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1027 			bool count_zero)
1028 {
1029 	struct sembuf *sop = q->blocking;
1030 
1031 	/*
1032 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1033 	 * semaphores. This violates SUS, therefore it was changed to the
1034 	 * standard compliant behavior.
1035 	 * Give the administrators a chance to notice that an application
1036 	 * might misbehave because it relies on the Linux behavior.
1037 	 */
1038 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1039 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1040 			current->comm, task_pid_nr(current));
1041 
1042 	if (sop->sem_num != semnum)
1043 		return 0;
1044 
1045 	if (count_zero && sop->sem_op == 0)
1046 		return 1;
1047 	if (!count_zero && sop->sem_op < 0)
1048 		return 1;
1049 
1050 	return 0;
1051 }
1052 
1053 /* The following counts are associated to each semaphore:
1054  *   semncnt        number of tasks waiting on semval being nonzero
1055  *   semzcnt        number of tasks waiting on semval being zero
1056  *
1057  * Per definition, a task waits only on the semaphore of the first semop
1058  * that cannot proceed, even if additional operation would block, too.
1059  */
1060 static int count_semcnt(struct sem_array *sma, ushort semnum,
1061 			bool count_zero)
1062 {
1063 	struct list_head *l;
1064 	struct sem_queue *q;
1065 	int semcnt;
1066 
1067 	semcnt = 0;
1068 	/* First: check the simple operations. They are easy to evaluate */
1069 	if (count_zero)
1070 		l = &sma->sem_base[semnum].pending_const;
1071 	else
1072 		l = &sma->sem_base[semnum].pending_alter;
1073 
1074 	list_for_each_entry(q, l, list) {
1075 		/* all task on a per-semaphore list sleep on exactly
1076 		 * that semaphore
1077 		 */
1078 		semcnt++;
1079 	}
1080 
1081 	/* Then: check the complex operations. */
1082 	list_for_each_entry(q, &sma->pending_alter, list) {
1083 		semcnt += check_qop(sma, semnum, q, count_zero);
1084 	}
1085 	if (count_zero) {
1086 		list_for_each_entry(q, &sma->pending_const, list) {
1087 			semcnt += check_qop(sma, semnum, q, count_zero);
1088 		}
1089 	}
1090 	return semcnt;
1091 }
1092 
1093 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1094  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1095  * remains locked on exit.
1096  */
1097 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1098 {
1099 	struct sem_undo *un, *tu;
1100 	struct sem_queue *q, *tq;
1101 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1102 	int i;
1103 	DEFINE_WAKE_Q(wake_q);
1104 
1105 	/* Free the existing undo structures for this semaphore set.  */
1106 	ipc_assert_locked_object(&sma->sem_perm);
1107 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1108 		list_del(&un->list_id);
1109 		spin_lock(&un->ulp->lock);
1110 		un->semid = -1;
1111 		list_del_rcu(&un->list_proc);
1112 		spin_unlock(&un->ulp->lock);
1113 		kfree_rcu(un, rcu);
1114 	}
1115 
1116 	/* Wake up all pending processes and let them fail with EIDRM. */
1117 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1118 		unlink_queue(sma, q);
1119 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1120 	}
1121 
1122 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1123 		unlink_queue(sma, q);
1124 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1125 	}
1126 	for (i = 0; i < sma->sem_nsems; i++) {
1127 		struct sem *sem = sma->sem_base + i;
1128 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1129 			unlink_queue(sma, q);
1130 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1131 		}
1132 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1133 			unlink_queue(sma, q);
1134 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1135 		}
1136 	}
1137 
1138 	/* Remove the semaphore set from the IDR */
1139 	sem_rmid(ns, sma);
1140 	sem_unlock(sma, -1);
1141 	rcu_read_unlock();
1142 
1143 	wake_up_q(&wake_q);
1144 	ns->used_sems -= sma->sem_nsems;
1145 	ipc_rcu_putref(sma, sem_rcu_free);
1146 }
1147 
1148 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1149 {
1150 	switch (version) {
1151 	case IPC_64:
1152 		return copy_to_user(buf, in, sizeof(*in));
1153 	case IPC_OLD:
1154 	    {
1155 		struct semid_ds out;
1156 
1157 		memset(&out, 0, sizeof(out));
1158 
1159 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1160 
1161 		out.sem_otime	= in->sem_otime;
1162 		out.sem_ctime	= in->sem_ctime;
1163 		out.sem_nsems	= in->sem_nsems;
1164 
1165 		return copy_to_user(buf, &out, sizeof(out));
1166 	    }
1167 	default:
1168 		return -EINVAL;
1169 	}
1170 }
1171 
1172 static time_t get_semotime(struct sem_array *sma)
1173 {
1174 	int i;
1175 	time_t res;
1176 
1177 	res = sma->sem_base[0].sem_otime;
1178 	for (i = 1; i < sma->sem_nsems; i++) {
1179 		time_t to = sma->sem_base[i].sem_otime;
1180 
1181 		if (to > res)
1182 			res = to;
1183 	}
1184 	return res;
1185 }
1186 
1187 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1188 			 int cmd, int version, void __user *p)
1189 {
1190 	int err;
1191 	struct sem_array *sma;
1192 
1193 	switch (cmd) {
1194 	case IPC_INFO:
1195 	case SEM_INFO:
1196 	{
1197 		struct seminfo seminfo;
1198 		int max_id;
1199 
1200 		err = security_sem_semctl(NULL, cmd);
1201 		if (err)
1202 			return err;
1203 
1204 		memset(&seminfo, 0, sizeof(seminfo));
1205 		seminfo.semmni = ns->sc_semmni;
1206 		seminfo.semmns = ns->sc_semmns;
1207 		seminfo.semmsl = ns->sc_semmsl;
1208 		seminfo.semopm = ns->sc_semopm;
1209 		seminfo.semvmx = SEMVMX;
1210 		seminfo.semmnu = SEMMNU;
1211 		seminfo.semmap = SEMMAP;
1212 		seminfo.semume = SEMUME;
1213 		down_read(&sem_ids(ns).rwsem);
1214 		if (cmd == SEM_INFO) {
1215 			seminfo.semusz = sem_ids(ns).in_use;
1216 			seminfo.semaem = ns->used_sems;
1217 		} else {
1218 			seminfo.semusz = SEMUSZ;
1219 			seminfo.semaem = SEMAEM;
1220 		}
1221 		max_id = ipc_get_maxid(&sem_ids(ns));
1222 		up_read(&sem_ids(ns).rwsem);
1223 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1224 			return -EFAULT;
1225 		return (max_id < 0) ? 0 : max_id;
1226 	}
1227 	case IPC_STAT:
1228 	case SEM_STAT:
1229 	{
1230 		struct semid64_ds tbuf;
1231 		int id = 0;
1232 
1233 		memset(&tbuf, 0, sizeof(tbuf));
1234 
1235 		rcu_read_lock();
1236 		if (cmd == SEM_STAT) {
1237 			sma = sem_obtain_object(ns, semid);
1238 			if (IS_ERR(sma)) {
1239 				err = PTR_ERR(sma);
1240 				goto out_unlock;
1241 			}
1242 			id = sma->sem_perm.id;
1243 		} else {
1244 			sma = sem_obtain_object_check(ns, semid);
1245 			if (IS_ERR(sma)) {
1246 				err = PTR_ERR(sma);
1247 				goto out_unlock;
1248 			}
1249 		}
1250 
1251 		err = -EACCES;
1252 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1253 			goto out_unlock;
1254 
1255 		err = security_sem_semctl(sma, cmd);
1256 		if (err)
1257 			goto out_unlock;
1258 
1259 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1260 		tbuf.sem_otime = get_semotime(sma);
1261 		tbuf.sem_ctime = sma->sem_ctime;
1262 		tbuf.sem_nsems = sma->sem_nsems;
1263 		rcu_read_unlock();
1264 		if (copy_semid_to_user(p, &tbuf, version))
1265 			return -EFAULT;
1266 		return id;
1267 	}
1268 	default:
1269 		return -EINVAL;
1270 	}
1271 out_unlock:
1272 	rcu_read_unlock();
1273 	return err;
1274 }
1275 
1276 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1277 		unsigned long arg)
1278 {
1279 	struct sem_undo *un;
1280 	struct sem_array *sma;
1281 	struct sem *curr;
1282 	int err, val;
1283 	DEFINE_WAKE_Q(wake_q);
1284 
1285 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1286 	/* big-endian 64bit */
1287 	val = arg >> 32;
1288 #else
1289 	/* 32bit or little-endian 64bit */
1290 	val = arg;
1291 #endif
1292 
1293 	if (val > SEMVMX || val < 0)
1294 		return -ERANGE;
1295 
1296 	rcu_read_lock();
1297 	sma = sem_obtain_object_check(ns, semid);
1298 	if (IS_ERR(sma)) {
1299 		rcu_read_unlock();
1300 		return PTR_ERR(sma);
1301 	}
1302 
1303 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1304 		rcu_read_unlock();
1305 		return -EINVAL;
1306 	}
1307 
1308 
1309 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1310 		rcu_read_unlock();
1311 		return -EACCES;
1312 	}
1313 
1314 	err = security_sem_semctl(sma, SETVAL);
1315 	if (err) {
1316 		rcu_read_unlock();
1317 		return -EACCES;
1318 	}
1319 
1320 	sem_lock(sma, NULL, -1);
1321 
1322 	if (!ipc_valid_object(&sma->sem_perm)) {
1323 		sem_unlock(sma, -1);
1324 		rcu_read_unlock();
1325 		return -EIDRM;
1326 	}
1327 
1328 	curr = &sma->sem_base[semnum];
1329 
1330 	ipc_assert_locked_object(&sma->sem_perm);
1331 	list_for_each_entry(un, &sma->list_id, list_id)
1332 		un->semadj[semnum] = 0;
1333 
1334 	curr->semval = val;
1335 	curr->sempid = task_tgid_vnr(current);
1336 	sma->sem_ctime = get_seconds();
1337 	/* maybe some queued-up processes were waiting for this */
1338 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1339 	sem_unlock(sma, -1);
1340 	rcu_read_unlock();
1341 	wake_up_q(&wake_q);
1342 	return 0;
1343 }
1344 
1345 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1346 		int cmd, void __user *p)
1347 {
1348 	struct sem_array *sma;
1349 	struct sem *curr;
1350 	int err, nsems;
1351 	ushort fast_sem_io[SEMMSL_FAST];
1352 	ushort *sem_io = fast_sem_io;
1353 	DEFINE_WAKE_Q(wake_q);
1354 
1355 	rcu_read_lock();
1356 	sma = sem_obtain_object_check(ns, semid);
1357 	if (IS_ERR(sma)) {
1358 		rcu_read_unlock();
1359 		return PTR_ERR(sma);
1360 	}
1361 
1362 	nsems = sma->sem_nsems;
1363 
1364 	err = -EACCES;
1365 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1366 		goto out_rcu_wakeup;
1367 
1368 	err = security_sem_semctl(sma, cmd);
1369 	if (err)
1370 		goto out_rcu_wakeup;
1371 
1372 	err = -EACCES;
1373 	switch (cmd) {
1374 	case GETALL:
1375 	{
1376 		ushort __user *array = p;
1377 		int i;
1378 
1379 		sem_lock(sma, NULL, -1);
1380 		if (!ipc_valid_object(&sma->sem_perm)) {
1381 			err = -EIDRM;
1382 			goto out_unlock;
1383 		}
1384 		if (nsems > SEMMSL_FAST) {
1385 			if (!ipc_rcu_getref(sma)) {
1386 				err = -EIDRM;
1387 				goto out_unlock;
1388 			}
1389 			sem_unlock(sma, -1);
1390 			rcu_read_unlock();
1391 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1392 			if (sem_io == NULL) {
1393 				ipc_rcu_putref(sma, sem_rcu_free);
1394 				return -ENOMEM;
1395 			}
1396 
1397 			rcu_read_lock();
1398 			sem_lock_and_putref(sma);
1399 			if (!ipc_valid_object(&sma->sem_perm)) {
1400 				err = -EIDRM;
1401 				goto out_unlock;
1402 			}
1403 		}
1404 		for (i = 0; i < sma->sem_nsems; i++)
1405 			sem_io[i] = sma->sem_base[i].semval;
1406 		sem_unlock(sma, -1);
1407 		rcu_read_unlock();
1408 		err = 0;
1409 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1410 			err = -EFAULT;
1411 		goto out_free;
1412 	}
1413 	case SETALL:
1414 	{
1415 		int i;
1416 		struct sem_undo *un;
1417 
1418 		if (!ipc_rcu_getref(sma)) {
1419 			err = -EIDRM;
1420 			goto out_rcu_wakeup;
1421 		}
1422 		rcu_read_unlock();
1423 
1424 		if (nsems > SEMMSL_FAST) {
1425 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1426 			if (sem_io == NULL) {
1427 				ipc_rcu_putref(sma, sem_rcu_free);
1428 				return -ENOMEM;
1429 			}
1430 		}
1431 
1432 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1433 			ipc_rcu_putref(sma, sem_rcu_free);
1434 			err = -EFAULT;
1435 			goto out_free;
1436 		}
1437 
1438 		for (i = 0; i < nsems; i++) {
1439 			if (sem_io[i] > SEMVMX) {
1440 				ipc_rcu_putref(sma, sem_rcu_free);
1441 				err = -ERANGE;
1442 				goto out_free;
1443 			}
1444 		}
1445 		rcu_read_lock();
1446 		sem_lock_and_putref(sma);
1447 		if (!ipc_valid_object(&sma->sem_perm)) {
1448 			err = -EIDRM;
1449 			goto out_unlock;
1450 		}
1451 
1452 		for (i = 0; i < nsems; i++) {
1453 			sma->sem_base[i].semval = sem_io[i];
1454 			sma->sem_base[i].sempid = task_tgid_vnr(current);
1455 		}
1456 
1457 		ipc_assert_locked_object(&sma->sem_perm);
1458 		list_for_each_entry(un, &sma->list_id, list_id) {
1459 			for (i = 0; i < nsems; i++)
1460 				un->semadj[i] = 0;
1461 		}
1462 		sma->sem_ctime = get_seconds();
1463 		/* maybe some queued-up processes were waiting for this */
1464 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1465 		err = 0;
1466 		goto out_unlock;
1467 	}
1468 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1469 	}
1470 	err = -EINVAL;
1471 	if (semnum < 0 || semnum >= nsems)
1472 		goto out_rcu_wakeup;
1473 
1474 	sem_lock(sma, NULL, -1);
1475 	if (!ipc_valid_object(&sma->sem_perm)) {
1476 		err = -EIDRM;
1477 		goto out_unlock;
1478 	}
1479 	curr = &sma->sem_base[semnum];
1480 
1481 	switch (cmd) {
1482 	case GETVAL:
1483 		err = curr->semval;
1484 		goto out_unlock;
1485 	case GETPID:
1486 		err = curr->sempid;
1487 		goto out_unlock;
1488 	case GETNCNT:
1489 		err = count_semcnt(sma, semnum, 0);
1490 		goto out_unlock;
1491 	case GETZCNT:
1492 		err = count_semcnt(sma, semnum, 1);
1493 		goto out_unlock;
1494 	}
1495 
1496 out_unlock:
1497 	sem_unlock(sma, -1);
1498 out_rcu_wakeup:
1499 	rcu_read_unlock();
1500 	wake_up_q(&wake_q);
1501 out_free:
1502 	if (sem_io != fast_sem_io)
1503 		ipc_free(sem_io);
1504 	return err;
1505 }
1506 
1507 static inline unsigned long
1508 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1509 {
1510 	switch (version) {
1511 	case IPC_64:
1512 		if (copy_from_user(out, buf, sizeof(*out)))
1513 			return -EFAULT;
1514 		return 0;
1515 	case IPC_OLD:
1516 	    {
1517 		struct semid_ds tbuf_old;
1518 
1519 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1520 			return -EFAULT;
1521 
1522 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1523 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1524 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1525 
1526 		return 0;
1527 	    }
1528 	default:
1529 		return -EINVAL;
1530 	}
1531 }
1532 
1533 /*
1534  * This function handles some semctl commands which require the rwsem
1535  * to be held in write mode.
1536  * NOTE: no locks must be held, the rwsem is taken inside this function.
1537  */
1538 static int semctl_down(struct ipc_namespace *ns, int semid,
1539 		       int cmd, int version, void __user *p)
1540 {
1541 	struct sem_array *sma;
1542 	int err;
1543 	struct semid64_ds semid64;
1544 	struct kern_ipc_perm *ipcp;
1545 
1546 	if (cmd == IPC_SET) {
1547 		if (copy_semid_from_user(&semid64, p, version))
1548 			return -EFAULT;
1549 	}
1550 
1551 	down_write(&sem_ids(ns).rwsem);
1552 	rcu_read_lock();
1553 
1554 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1555 				      &semid64.sem_perm, 0);
1556 	if (IS_ERR(ipcp)) {
1557 		err = PTR_ERR(ipcp);
1558 		goto out_unlock1;
1559 	}
1560 
1561 	sma = container_of(ipcp, struct sem_array, sem_perm);
1562 
1563 	err = security_sem_semctl(sma, cmd);
1564 	if (err)
1565 		goto out_unlock1;
1566 
1567 	switch (cmd) {
1568 	case IPC_RMID:
1569 		sem_lock(sma, NULL, -1);
1570 		/* freeary unlocks the ipc object and rcu */
1571 		freeary(ns, ipcp);
1572 		goto out_up;
1573 	case IPC_SET:
1574 		sem_lock(sma, NULL, -1);
1575 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1576 		if (err)
1577 			goto out_unlock0;
1578 		sma->sem_ctime = get_seconds();
1579 		break;
1580 	default:
1581 		err = -EINVAL;
1582 		goto out_unlock1;
1583 	}
1584 
1585 out_unlock0:
1586 	sem_unlock(sma, -1);
1587 out_unlock1:
1588 	rcu_read_unlock();
1589 out_up:
1590 	up_write(&sem_ids(ns).rwsem);
1591 	return err;
1592 }
1593 
1594 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1595 {
1596 	int version;
1597 	struct ipc_namespace *ns;
1598 	void __user *p = (void __user *)arg;
1599 
1600 	if (semid < 0)
1601 		return -EINVAL;
1602 
1603 	version = ipc_parse_version(&cmd);
1604 	ns = current->nsproxy->ipc_ns;
1605 
1606 	switch (cmd) {
1607 	case IPC_INFO:
1608 	case SEM_INFO:
1609 	case IPC_STAT:
1610 	case SEM_STAT:
1611 		return semctl_nolock(ns, semid, cmd, version, p);
1612 	case GETALL:
1613 	case GETVAL:
1614 	case GETPID:
1615 	case GETNCNT:
1616 	case GETZCNT:
1617 	case SETALL:
1618 		return semctl_main(ns, semid, semnum, cmd, p);
1619 	case SETVAL:
1620 		return semctl_setval(ns, semid, semnum, arg);
1621 	case IPC_RMID:
1622 	case IPC_SET:
1623 		return semctl_down(ns, semid, cmd, version, p);
1624 	default:
1625 		return -EINVAL;
1626 	}
1627 }
1628 
1629 /* If the task doesn't already have a undo_list, then allocate one
1630  * here.  We guarantee there is only one thread using this undo list,
1631  * and current is THE ONE
1632  *
1633  * If this allocation and assignment succeeds, but later
1634  * portions of this code fail, there is no need to free the sem_undo_list.
1635  * Just let it stay associated with the task, and it'll be freed later
1636  * at exit time.
1637  *
1638  * This can block, so callers must hold no locks.
1639  */
1640 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1641 {
1642 	struct sem_undo_list *undo_list;
1643 
1644 	undo_list = current->sysvsem.undo_list;
1645 	if (!undo_list) {
1646 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1647 		if (undo_list == NULL)
1648 			return -ENOMEM;
1649 		spin_lock_init(&undo_list->lock);
1650 		atomic_set(&undo_list->refcnt, 1);
1651 		INIT_LIST_HEAD(&undo_list->list_proc);
1652 
1653 		current->sysvsem.undo_list = undo_list;
1654 	}
1655 	*undo_listp = undo_list;
1656 	return 0;
1657 }
1658 
1659 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1660 {
1661 	struct sem_undo *un;
1662 
1663 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1664 		if (un->semid == semid)
1665 			return un;
1666 	}
1667 	return NULL;
1668 }
1669 
1670 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1671 {
1672 	struct sem_undo *un;
1673 
1674 	assert_spin_locked(&ulp->lock);
1675 
1676 	un = __lookup_undo(ulp, semid);
1677 	if (un) {
1678 		list_del_rcu(&un->list_proc);
1679 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1680 	}
1681 	return un;
1682 }
1683 
1684 /**
1685  * find_alloc_undo - lookup (and if not present create) undo array
1686  * @ns: namespace
1687  * @semid: semaphore array id
1688  *
1689  * The function looks up (and if not present creates) the undo structure.
1690  * The size of the undo structure depends on the size of the semaphore
1691  * array, thus the alloc path is not that straightforward.
1692  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1693  * performs a rcu_read_lock().
1694  */
1695 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1696 {
1697 	struct sem_array *sma;
1698 	struct sem_undo_list *ulp;
1699 	struct sem_undo *un, *new;
1700 	int nsems, error;
1701 
1702 	error = get_undo_list(&ulp);
1703 	if (error)
1704 		return ERR_PTR(error);
1705 
1706 	rcu_read_lock();
1707 	spin_lock(&ulp->lock);
1708 	un = lookup_undo(ulp, semid);
1709 	spin_unlock(&ulp->lock);
1710 	if (likely(un != NULL))
1711 		goto out;
1712 
1713 	/* no undo structure around - allocate one. */
1714 	/* step 1: figure out the size of the semaphore array */
1715 	sma = sem_obtain_object_check(ns, semid);
1716 	if (IS_ERR(sma)) {
1717 		rcu_read_unlock();
1718 		return ERR_CAST(sma);
1719 	}
1720 
1721 	nsems = sma->sem_nsems;
1722 	if (!ipc_rcu_getref(sma)) {
1723 		rcu_read_unlock();
1724 		un = ERR_PTR(-EIDRM);
1725 		goto out;
1726 	}
1727 	rcu_read_unlock();
1728 
1729 	/* step 2: allocate new undo structure */
1730 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1731 	if (!new) {
1732 		ipc_rcu_putref(sma, sem_rcu_free);
1733 		return ERR_PTR(-ENOMEM);
1734 	}
1735 
1736 	/* step 3: Acquire the lock on semaphore array */
1737 	rcu_read_lock();
1738 	sem_lock_and_putref(sma);
1739 	if (!ipc_valid_object(&sma->sem_perm)) {
1740 		sem_unlock(sma, -1);
1741 		rcu_read_unlock();
1742 		kfree(new);
1743 		un = ERR_PTR(-EIDRM);
1744 		goto out;
1745 	}
1746 	spin_lock(&ulp->lock);
1747 
1748 	/*
1749 	 * step 4: check for races: did someone else allocate the undo struct?
1750 	 */
1751 	un = lookup_undo(ulp, semid);
1752 	if (un) {
1753 		kfree(new);
1754 		goto success;
1755 	}
1756 	/* step 5: initialize & link new undo structure */
1757 	new->semadj = (short *) &new[1];
1758 	new->ulp = ulp;
1759 	new->semid = semid;
1760 	assert_spin_locked(&ulp->lock);
1761 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1762 	ipc_assert_locked_object(&sma->sem_perm);
1763 	list_add(&new->list_id, &sma->list_id);
1764 	un = new;
1765 
1766 success:
1767 	spin_unlock(&ulp->lock);
1768 	sem_unlock(sma, -1);
1769 out:
1770 	return un;
1771 }
1772 
1773 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1774 		unsigned, nsops, const struct timespec __user *, timeout)
1775 {
1776 	int error = -EINVAL;
1777 	struct sem_array *sma;
1778 	struct sembuf fast_sops[SEMOPM_FAST];
1779 	struct sembuf *sops = fast_sops, *sop;
1780 	struct sem_undo *un;
1781 	int max, locknum;
1782 	bool undos = false, alter = false, dupsop = false;
1783 	struct sem_queue queue;
1784 	unsigned long dup = 0, jiffies_left = 0;
1785 	struct ipc_namespace *ns;
1786 
1787 	ns = current->nsproxy->ipc_ns;
1788 
1789 	if (nsops < 1 || semid < 0)
1790 		return -EINVAL;
1791 	if (nsops > ns->sc_semopm)
1792 		return -E2BIG;
1793 	if (nsops > SEMOPM_FAST) {
1794 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1795 		if (sops == NULL)
1796 			return -ENOMEM;
1797 	}
1798 
1799 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1800 		error =  -EFAULT;
1801 		goto out_free;
1802 	}
1803 
1804 	if (timeout) {
1805 		struct timespec _timeout;
1806 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1807 			error = -EFAULT;
1808 			goto out_free;
1809 		}
1810 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1811 			_timeout.tv_nsec >= 1000000000L) {
1812 			error = -EINVAL;
1813 			goto out_free;
1814 		}
1815 		jiffies_left = timespec_to_jiffies(&_timeout);
1816 	}
1817 
1818 	max = 0;
1819 	for (sop = sops; sop < sops + nsops; sop++) {
1820 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1821 
1822 		if (sop->sem_num >= max)
1823 			max = sop->sem_num;
1824 		if (sop->sem_flg & SEM_UNDO)
1825 			undos = true;
1826 		if (dup & mask) {
1827 			/*
1828 			 * There was a previous alter access that appears
1829 			 * to have accessed the same semaphore, thus use
1830 			 * the dupsop logic. "appears", because the detection
1831 			 * can only check % BITS_PER_LONG.
1832 			 */
1833 			dupsop = true;
1834 		}
1835 		if (sop->sem_op != 0) {
1836 			alter = true;
1837 			dup |= mask;
1838 		}
1839 	}
1840 
1841 	if (undos) {
1842 		/* On success, find_alloc_undo takes the rcu_read_lock */
1843 		un = find_alloc_undo(ns, semid);
1844 		if (IS_ERR(un)) {
1845 			error = PTR_ERR(un);
1846 			goto out_free;
1847 		}
1848 	} else {
1849 		un = NULL;
1850 		rcu_read_lock();
1851 	}
1852 
1853 	sma = sem_obtain_object_check(ns, semid);
1854 	if (IS_ERR(sma)) {
1855 		rcu_read_unlock();
1856 		error = PTR_ERR(sma);
1857 		goto out_free;
1858 	}
1859 
1860 	error = -EFBIG;
1861 	if (max >= sma->sem_nsems) {
1862 		rcu_read_unlock();
1863 		goto out_free;
1864 	}
1865 
1866 	error = -EACCES;
1867 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1868 		rcu_read_unlock();
1869 		goto out_free;
1870 	}
1871 
1872 	error = security_sem_semop(sma, sops, nsops, alter);
1873 	if (error) {
1874 		rcu_read_unlock();
1875 		goto out_free;
1876 	}
1877 
1878 	error = -EIDRM;
1879 	locknum = sem_lock(sma, sops, nsops);
1880 	/*
1881 	 * We eventually might perform the following check in a lockless
1882 	 * fashion, considering ipc_valid_object() locking constraints.
1883 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1884 	 * only a per-semaphore lock is held and it's OK to proceed with the
1885 	 * check below. More details on the fine grained locking scheme
1886 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1887 	 */
1888 	if (!ipc_valid_object(&sma->sem_perm))
1889 		goto out_unlock_free;
1890 	/*
1891 	 * semid identifiers are not unique - find_alloc_undo may have
1892 	 * allocated an undo structure, it was invalidated by an RMID
1893 	 * and now a new array with received the same id. Check and fail.
1894 	 * This case can be detected checking un->semid. The existence of
1895 	 * "un" itself is guaranteed by rcu.
1896 	 */
1897 	if (un && un->semid == -1)
1898 		goto out_unlock_free;
1899 
1900 	queue.sops = sops;
1901 	queue.nsops = nsops;
1902 	queue.undo = un;
1903 	queue.pid = task_tgid_vnr(current);
1904 	queue.alter = alter;
1905 	queue.dupsop = dupsop;
1906 
1907 	error = perform_atomic_semop(sma, &queue);
1908 	if (error == 0) { /* non-blocking succesfull path */
1909 		DEFINE_WAKE_Q(wake_q);
1910 
1911 		/*
1912 		 * If the operation was successful, then do
1913 		 * the required updates.
1914 		 */
1915 		if (alter)
1916 			do_smart_update(sma, sops, nsops, 1, &wake_q);
1917 		else
1918 			set_semotime(sma, sops);
1919 
1920 		sem_unlock(sma, locknum);
1921 		rcu_read_unlock();
1922 		wake_up_q(&wake_q);
1923 
1924 		goto out_free;
1925 	}
1926 	if (error < 0) /* non-blocking error path */
1927 		goto out_unlock_free;
1928 
1929 	/*
1930 	 * We need to sleep on this operation, so we put the current
1931 	 * task into the pending queue and go to sleep.
1932 	 */
1933 	if (nsops == 1) {
1934 		struct sem *curr;
1935 		curr = &sma->sem_base[sops->sem_num];
1936 
1937 		if (alter) {
1938 			if (sma->complex_count) {
1939 				list_add_tail(&queue.list,
1940 						&sma->pending_alter);
1941 			} else {
1942 
1943 				list_add_tail(&queue.list,
1944 						&curr->pending_alter);
1945 			}
1946 		} else {
1947 			list_add_tail(&queue.list, &curr->pending_const);
1948 		}
1949 	} else {
1950 		if (!sma->complex_count)
1951 			merge_queues(sma);
1952 
1953 		if (alter)
1954 			list_add_tail(&queue.list, &sma->pending_alter);
1955 		else
1956 			list_add_tail(&queue.list, &sma->pending_const);
1957 
1958 		sma->complex_count++;
1959 	}
1960 
1961 	do {
1962 		queue.status = -EINTR;
1963 		queue.sleeper = current;
1964 
1965 		__set_current_state(TASK_INTERRUPTIBLE);
1966 		sem_unlock(sma, locknum);
1967 		rcu_read_unlock();
1968 
1969 		if (timeout)
1970 			jiffies_left = schedule_timeout(jiffies_left);
1971 		else
1972 			schedule();
1973 
1974 		/*
1975 		 * fastpath: the semop has completed, either successfully or
1976 		 * not, from the syscall pov, is quite irrelevant to us at this
1977 		 * point; we're done.
1978 		 *
1979 		 * We _do_ care, nonetheless, about being awoken by a signal or
1980 		 * spuriously.  The queue.status is checked again in the
1981 		 * slowpath (aka after taking sem_lock), such that we can detect
1982 		 * scenarios where we were awakened externally, during the
1983 		 * window between wake_q_add() and wake_up_q().
1984 		 */
1985 		error = READ_ONCE(queue.status);
1986 		if (error != -EINTR) {
1987 			/*
1988 			 * User space could assume that semop() is a memory
1989 			 * barrier: Without the mb(), the cpu could
1990 			 * speculatively read in userspace stale data that was
1991 			 * overwritten by the previous owner of the semaphore.
1992 			 */
1993 			smp_mb();
1994 			goto out_free;
1995 		}
1996 
1997 		rcu_read_lock();
1998 		locknum = sem_lock(sma, sops, nsops);
1999 
2000 		if (!ipc_valid_object(&sma->sem_perm))
2001 			goto out_unlock_free;
2002 
2003 		error = READ_ONCE(queue.status);
2004 
2005 		/*
2006 		 * If queue.status != -EINTR we are woken up by another process.
2007 		 * Leave without unlink_queue(), but with sem_unlock().
2008 		 */
2009 		if (error != -EINTR)
2010 			goto out_unlock_free;
2011 
2012 		/*
2013 		 * If an interrupt occurred we have to clean up the queue.
2014 		 */
2015 		if (timeout && jiffies_left == 0)
2016 			error = -EAGAIN;
2017 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2018 
2019 	unlink_queue(sma, &queue);
2020 
2021 out_unlock_free:
2022 	sem_unlock(sma, locknum);
2023 	rcu_read_unlock();
2024 out_free:
2025 	if (sops != fast_sops)
2026 		kfree(sops);
2027 	return error;
2028 }
2029 
2030 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2031 		unsigned, nsops)
2032 {
2033 	return sys_semtimedop(semid, tsops, nsops, NULL);
2034 }
2035 
2036 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2037  * parent and child tasks.
2038  */
2039 
2040 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2041 {
2042 	struct sem_undo_list *undo_list;
2043 	int error;
2044 
2045 	if (clone_flags & CLONE_SYSVSEM) {
2046 		error = get_undo_list(&undo_list);
2047 		if (error)
2048 			return error;
2049 		atomic_inc(&undo_list->refcnt);
2050 		tsk->sysvsem.undo_list = undo_list;
2051 	} else
2052 		tsk->sysvsem.undo_list = NULL;
2053 
2054 	return 0;
2055 }
2056 
2057 /*
2058  * add semadj values to semaphores, free undo structures.
2059  * undo structures are not freed when semaphore arrays are destroyed
2060  * so some of them may be out of date.
2061  * IMPLEMENTATION NOTE: There is some confusion over whether the
2062  * set of adjustments that needs to be done should be done in an atomic
2063  * manner or not. That is, if we are attempting to decrement the semval
2064  * should we queue up and wait until we can do so legally?
2065  * The original implementation attempted to do this (queue and wait).
2066  * The current implementation does not do so. The POSIX standard
2067  * and SVID should be consulted to determine what behavior is mandated.
2068  */
2069 void exit_sem(struct task_struct *tsk)
2070 {
2071 	struct sem_undo_list *ulp;
2072 
2073 	ulp = tsk->sysvsem.undo_list;
2074 	if (!ulp)
2075 		return;
2076 	tsk->sysvsem.undo_list = NULL;
2077 
2078 	if (!atomic_dec_and_test(&ulp->refcnt))
2079 		return;
2080 
2081 	for (;;) {
2082 		struct sem_array *sma;
2083 		struct sem_undo *un;
2084 		int semid, i;
2085 		DEFINE_WAKE_Q(wake_q);
2086 
2087 		cond_resched();
2088 
2089 		rcu_read_lock();
2090 		un = list_entry_rcu(ulp->list_proc.next,
2091 				    struct sem_undo, list_proc);
2092 		if (&un->list_proc == &ulp->list_proc) {
2093 			/*
2094 			 * We must wait for freeary() before freeing this ulp,
2095 			 * in case we raced with last sem_undo. There is a small
2096 			 * possibility where we exit while freeary() didn't
2097 			 * finish unlocking sem_undo_list.
2098 			 */
2099 			spin_unlock_wait(&ulp->lock);
2100 			rcu_read_unlock();
2101 			break;
2102 		}
2103 		spin_lock(&ulp->lock);
2104 		semid = un->semid;
2105 		spin_unlock(&ulp->lock);
2106 
2107 		/* exit_sem raced with IPC_RMID, nothing to do */
2108 		if (semid == -1) {
2109 			rcu_read_unlock();
2110 			continue;
2111 		}
2112 
2113 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2114 		/* exit_sem raced with IPC_RMID, nothing to do */
2115 		if (IS_ERR(sma)) {
2116 			rcu_read_unlock();
2117 			continue;
2118 		}
2119 
2120 		sem_lock(sma, NULL, -1);
2121 		/* exit_sem raced with IPC_RMID, nothing to do */
2122 		if (!ipc_valid_object(&sma->sem_perm)) {
2123 			sem_unlock(sma, -1);
2124 			rcu_read_unlock();
2125 			continue;
2126 		}
2127 		un = __lookup_undo(ulp, semid);
2128 		if (un == NULL) {
2129 			/* exit_sem raced with IPC_RMID+semget() that created
2130 			 * exactly the same semid. Nothing to do.
2131 			 */
2132 			sem_unlock(sma, -1);
2133 			rcu_read_unlock();
2134 			continue;
2135 		}
2136 
2137 		/* remove un from the linked lists */
2138 		ipc_assert_locked_object(&sma->sem_perm);
2139 		list_del(&un->list_id);
2140 
2141 		/* we are the last process using this ulp, acquiring ulp->lock
2142 		 * isn't required. Besides that, we are also protected against
2143 		 * IPC_RMID as we hold sma->sem_perm lock now
2144 		 */
2145 		list_del_rcu(&un->list_proc);
2146 
2147 		/* perform adjustments registered in un */
2148 		for (i = 0; i < sma->sem_nsems; i++) {
2149 			struct sem *semaphore = &sma->sem_base[i];
2150 			if (un->semadj[i]) {
2151 				semaphore->semval += un->semadj[i];
2152 				/*
2153 				 * Range checks of the new semaphore value,
2154 				 * not defined by sus:
2155 				 * - Some unices ignore the undo entirely
2156 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2157 				 * - some cap the value (e.g. FreeBSD caps
2158 				 *   at 0, but doesn't enforce SEMVMX)
2159 				 *
2160 				 * Linux caps the semaphore value, both at 0
2161 				 * and at SEMVMX.
2162 				 *
2163 				 *	Manfred <manfred@colorfullife.com>
2164 				 */
2165 				if (semaphore->semval < 0)
2166 					semaphore->semval = 0;
2167 				if (semaphore->semval > SEMVMX)
2168 					semaphore->semval = SEMVMX;
2169 				semaphore->sempid = task_tgid_vnr(current);
2170 			}
2171 		}
2172 		/* maybe some queued-up processes were waiting for this */
2173 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2174 		sem_unlock(sma, -1);
2175 		rcu_read_unlock();
2176 		wake_up_q(&wake_q);
2177 
2178 		kfree_rcu(un, rcu);
2179 	}
2180 	kfree(ulp);
2181 }
2182 
2183 #ifdef CONFIG_PROC_FS
2184 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2185 {
2186 	struct user_namespace *user_ns = seq_user_ns(s);
2187 	struct sem_array *sma = it;
2188 	time_t sem_otime;
2189 
2190 	/*
2191 	 * The proc interface isn't aware of sem_lock(), it calls
2192 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2193 	 * In order to stay compatible with sem_lock(), we must
2194 	 * enter / leave complex_mode.
2195 	 */
2196 	complexmode_enter(sma);
2197 
2198 	sem_otime = get_semotime(sma);
2199 
2200 	seq_printf(s,
2201 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2202 		   sma->sem_perm.key,
2203 		   sma->sem_perm.id,
2204 		   sma->sem_perm.mode,
2205 		   sma->sem_nsems,
2206 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2207 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2208 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2209 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2210 		   sem_otime,
2211 		   sma->sem_ctime);
2212 
2213 	complexmode_tryleave(sma);
2214 
2215 	return 0;
2216 }
2217 #endif
2218