1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 */ 65 66 #include <linux/config.h> 67 #include <linux/slab.h> 68 #include <linux/spinlock.h> 69 #include <linux/init.h> 70 #include <linux/proc_fs.h> 71 #include <linux/time.h> 72 #include <linux/smp_lock.h> 73 #include <linux/security.h> 74 #include <linux/syscalls.h> 75 #include <linux/audit.h> 76 #include <linux/capability.h> 77 #include <linux/seq_file.h> 78 #include <linux/mutex.h> 79 80 #include <asm/uaccess.h> 81 #include "util.h" 82 83 84 #define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id)) 85 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 86 #define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id)) 87 #define sem_checkid(sma, semid) \ 88 ipc_checkid(&sem_ids,&sma->sem_perm,semid) 89 #define sem_buildid(id, seq) \ 90 ipc_buildid(&sem_ids, id, seq) 91 static struct ipc_ids sem_ids; 92 93 static int newary (key_t, int, int); 94 static void freeary (struct sem_array *sma, int id); 95 #ifdef CONFIG_PROC_FS 96 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 97 #endif 98 99 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 100 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 101 102 /* 103 * linked list protection: 104 * sem_undo.id_next, 105 * sem_array.sem_pending{,last}, 106 * sem_array.sem_undo: sem_lock() for read/write 107 * sem_undo.proc_next: only "current" is allowed to read/write that field. 108 * 109 */ 110 111 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI}; 112 #define sc_semmsl (sem_ctls[0]) 113 #define sc_semmns (sem_ctls[1]) 114 #define sc_semopm (sem_ctls[2]) 115 #define sc_semmni (sem_ctls[3]) 116 117 static int used_sems; 118 119 void __init sem_init (void) 120 { 121 used_sems = 0; 122 ipc_init_ids(&sem_ids,sc_semmni); 123 ipc_init_proc_interface("sysvipc/sem", 124 " key semid perms nsems uid gid cuid cgid otime ctime\n", 125 &sem_ids, 126 sysvipc_sem_proc_show); 127 } 128 129 /* 130 * Lockless wakeup algorithm: 131 * Without the check/retry algorithm a lockless wakeup is possible: 132 * - queue.status is initialized to -EINTR before blocking. 133 * - wakeup is performed by 134 * * unlinking the queue entry from sma->sem_pending 135 * * setting queue.status to IN_WAKEUP 136 * This is the notification for the blocked thread that a 137 * result value is imminent. 138 * * call wake_up_process 139 * * set queue.status to the final value. 140 * - the previously blocked thread checks queue.status: 141 * * if it's IN_WAKEUP, then it must wait until the value changes 142 * * if it's not -EINTR, then the operation was completed by 143 * update_queue. semtimedop can return queue.status without 144 * performing any operation on the sem array. 145 * * otherwise it must acquire the spinlock and check what's up. 146 * 147 * The two-stage algorithm is necessary to protect against the following 148 * races: 149 * - if queue.status is set after wake_up_process, then the woken up idle 150 * thread could race forward and try (and fail) to acquire sma->lock 151 * before update_queue had a chance to set queue.status 152 * - if queue.status is written before wake_up_process and if the 153 * blocked process is woken up by a signal between writing 154 * queue.status and the wake_up_process, then the woken up 155 * process could return from semtimedop and die by calling 156 * sys_exit before wake_up_process is called. Then wake_up_process 157 * will oops, because the task structure is already invalid. 158 * (yes, this happened on s390 with sysv msg). 159 * 160 */ 161 #define IN_WAKEUP 1 162 163 static int newary (key_t key, int nsems, int semflg) 164 { 165 int id; 166 int retval; 167 struct sem_array *sma; 168 int size; 169 170 if (!nsems) 171 return -EINVAL; 172 if (used_sems + nsems > sc_semmns) 173 return -ENOSPC; 174 175 size = sizeof (*sma) + nsems * sizeof (struct sem); 176 sma = ipc_rcu_alloc(size); 177 if (!sma) { 178 return -ENOMEM; 179 } 180 memset (sma, 0, size); 181 182 sma->sem_perm.mode = (semflg & S_IRWXUGO); 183 sma->sem_perm.key = key; 184 185 sma->sem_perm.security = NULL; 186 retval = security_sem_alloc(sma); 187 if (retval) { 188 ipc_rcu_putref(sma); 189 return retval; 190 } 191 192 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni); 193 if(id == -1) { 194 security_sem_free(sma); 195 ipc_rcu_putref(sma); 196 return -ENOSPC; 197 } 198 used_sems += nsems; 199 200 sma->sem_id = sem_buildid(id, sma->sem_perm.seq); 201 sma->sem_base = (struct sem *) &sma[1]; 202 /* sma->sem_pending = NULL; */ 203 sma->sem_pending_last = &sma->sem_pending; 204 /* sma->undo = NULL; */ 205 sma->sem_nsems = nsems; 206 sma->sem_ctime = get_seconds(); 207 sem_unlock(sma); 208 209 return sma->sem_id; 210 } 211 212 asmlinkage long sys_semget (key_t key, int nsems, int semflg) 213 { 214 int id, err = -EINVAL; 215 struct sem_array *sma; 216 217 if (nsems < 0 || nsems > sc_semmsl) 218 return -EINVAL; 219 mutex_lock(&sem_ids.mutex); 220 221 if (key == IPC_PRIVATE) { 222 err = newary(key, nsems, semflg); 223 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */ 224 if (!(semflg & IPC_CREAT)) 225 err = -ENOENT; 226 else 227 err = newary(key, nsems, semflg); 228 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) { 229 err = -EEXIST; 230 } else { 231 sma = sem_lock(id); 232 BUG_ON(sma==NULL); 233 if (nsems > sma->sem_nsems) 234 err = -EINVAL; 235 else if (ipcperms(&sma->sem_perm, semflg)) 236 err = -EACCES; 237 else { 238 int semid = sem_buildid(id, sma->sem_perm.seq); 239 err = security_sem_associate(sma, semflg); 240 if (!err) 241 err = semid; 242 } 243 sem_unlock(sma); 244 } 245 246 mutex_unlock(&sem_ids.mutex); 247 return err; 248 } 249 250 /* Manage the doubly linked list sma->sem_pending as a FIFO: 251 * insert new queue elements at the tail sma->sem_pending_last. 252 */ 253 static inline void append_to_queue (struct sem_array * sma, 254 struct sem_queue * q) 255 { 256 *(q->prev = sma->sem_pending_last) = q; 257 *(sma->sem_pending_last = &q->next) = NULL; 258 } 259 260 static inline void prepend_to_queue (struct sem_array * sma, 261 struct sem_queue * q) 262 { 263 q->next = sma->sem_pending; 264 *(q->prev = &sma->sem_pending) = q; 265 if (q->next) 266 q->next->prev = &q->next; 267 else /* sma->sem_pending_last == &sma->sem_pending */ 268 sma->sem_pending_last = &q->next; 269 } 270 271 static inline void remove_from_queue (struct sem_array * sma, 272 struct sem_queue * q) 273 { 274 *(q->prev) = q->next; 275 if (q->next) 276 q->next->prev = q->prev; 277 else /* sma->sem_pending_last == &q->next */ 278 sma->sem_pending_last = q->prev; 279 q->prev = NULL; /* mark as removed */ 280 } 281 282 /* 283 * Determine whether a sequence of semaphore operations would succeed 284 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 285 */ 286 287 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 288 int nsops, struct sem_undo *un, int pid) 289 { 290 int result, sem_op; 291 struct sembuf *sop; 292 struct sem * curr; 293 294 for (sop = sops; sop < sops + nsops; sop++) { 295 curr = sma->sem_base + sop->sem_num; 296 sem_op = sop->sem_op; 297 result = curr->semval; 298 299 if (!sem_op && result) 300 goto would_block; 301 302 result += sem_op; 303 if (result < 0) 304 goto would_block; 305 if (result > SEMVMX) 306 goto out_of_range; 307 if (sop->sem_flg & SEM_UNDO) { 308 int undo = un->semadj[sop->sem_num] - sem_op; 309 /* 310 * Exceeding the undo range is an error. 311 */ 312 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 313 goto out_of_range; 314 } 315 curr->semval = result; 316 } 317 318 sop--; 319 while (sop >= sops) { 320 sma->sem_base[sop->sem_num].sempid = pid; 321 if (sop->sem_flg & SEM_UNDO) 322 un->semadj[sop->sem_num] -= sop->sem_op; 323 sop--; 324 } 325 326 sma->sem_otime = get_seconds(); 327 return 0; 328 329 out_of_range: 330 result = -ERANGE; 331 goto undo; 332 333 would_block: 334 if (sop->sem_flg & IPC_NOWAIT) 335 result = -EAGAIN; 336 else 337 result = 1; 338 339 undo: 340 sop--; 341 while (sop >= sops) { 342 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 343 sop--; 344 } 345 346 return result; 347 } 348 349 /* Go through the pending queue for the indicated semaphore 350 * looking for tasks that can be completed. 351 */ 352 static void update_queue (struct sem_array * sma) 353 { 354 int error; 355 struct sem_queue * q; 356 357 q = sma->sem_pending; 358 while(q) { 359 error = try_atomic_semop(sma, q->sops, q->nsops, 360 q->undo, q->pid); 361 362 /* Does q->sleeper still need to sleep? */ 363 if (error <= 0) { 364 struct sem_queue *n; 365 remove_from_queue(sma,q); 366 q->status = IN_WAKEUP; 367 /* 368 * Continue scanning. The next operation 369 * that must be checked depends on the type of the 370 * completed operation: 371 * - if the operation modified the array, then 372 * restart from the head of the queue and 373 * check for threads that might be waiting 374 * for semaphore values to become 0. 375 * - if the operation didn't modify the array, 376 * then just continue. 377 */ 378 if (q->alter) 379 n = sma->sem_pending; 380 else 381 n = q->next; 382 wake_up_process(q->sleeper); 383 /* hands-off: q will disappear immediately after 384 * writing q->status. 385 */ 386 smp_wmb(); 387 q->status = error; 388 q = n; 389 } else { 390 q = q->next; 391 } 392 } 393 } 394 395 /* The following counts are associated to each semaphore: 396 * semncnt number of tasks waiting on semval being nonzero 397 * semzcnt number of tasks waiting on semval being zero 398 * This model assumes that a task waits on exactly one semaphore. 399 * Since semaphore operations are to be performed atomically, tasks actually 400 * wait on a whole sequence of semaphores simultaneously. 401 * The counts we return here are a rough approximation, but still 402 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 403 */ 404 static int count_semncnt (struct sem_array * sma, ushort semnum) 405 { 406 int semncnt; 407 struct sem_queue * q; 408 409 semncnt = 0; 410 for (q = sma->sem_pending; q; q = q->next) { 411 struct sembuf * sops = q->sops; 412 int nsops = q->nsops; 413 int i; 414 for (i = 0; i < nsops; i++) 415 if (sops[i].sem_num == semnum 416 && (sops[i].sem_op < 0) 417 && !(sops[i].sem_flg & IPC_NOWAIT)) 418 semncnt++; 419 } 420 return semncnt; 421 } 422 static int count_semzcnt (struct sem_array * sma, ushort semnum) 423 { 424 int semzcnt; 425 struct sem_queue * q; 426 427 semzcnt = 0; 428 for (q = sma->sem_pending; q; q = q->next) { 429 struct sembuf * sops = q->sops; 430 int nsops = q->nsops; 431 int i; 432 for (i = 0; i < nsops; i++) 433 if (sops[i].sem_num == semnum 434 && (sops[i].sem_op == 0) 435 && !(sops[i].sem_flg & IPC_NOWAIT)) 436 semzcnt++; 437 } 438 return semzcnt; 439 } 440 441 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and 442 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked 443 * on exit. 444 */ 445 static void freeary (struct sem_array *sma, int id) 446 { 447 struct sem_undo *un; 448 struct sem_queue *q; 449 int size; 450 451 /* Invalidate the existing undo structures for this semaphore set. 452 * (They will be freed without any further action in exit_sem() 453 * or during the next semop.) 454 */ 455 for (un = sma->undo; un; un = un->id_next) 456 un->semid = -1; 457 458 /* Wake up all pending processes and let them fail with EIDRM. */ 459 q = sma->sem_pending; 460 while(q) { 461 struct sem_queue *n; 462 /* lazy remove_from_queue: we are killing the whole queue */ 463 q->prev = NULL; 464 n = q->next; 465 q->status = IN_WAKEUP; 466 wake_up_process(q->sleeper); /* doesn't sleep */ 467 smp_wmb(); 468 q->status = -EIDRM; /* hands-off q */ 469 q = n; 470 } 471 472 /* Remove the semaphore set from the ID array*/ 473 sma = sem_rmid(id); 474 sem_unlock(sma); 475 476 used_sems -= sma->sem_nsems; 477 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem); 478 security_sem_free(sma); 479 ipc_rcu_putref(sma); 480 } 481 482 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 483 { 484 switch(version) { 485 case IPC_64: 486 return copy_to_user(buf, in, sizeof(*in)); 487 case IPC_OLD: 488 { 489 struct semid_ds out; 490 491 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 492 493 out.sem_otime = in->sem_otime; 494 out.sem_ctime = in->sem_ctime; 495 out.sem_nsems = in->sem_nsems; 496 497 return copy_to_user(buf, &out, sizeof(out)); 498 } 499 default: 500 return -EINVAL; 501 } 502 } 503 504 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg) 505 { 506 int err = -EINVAL; 507 struct sem_array *sma; 508 509 switch(cmd) { 510 case IPC_INFO: 511 case SEM_INFO: 512 { 513 struct seminfo seminfo; 514 int max_id; 515 516 err = security_sem_semctl(NULL, cmd); 517 if (err) 518 return err; 519 520 memset(&seminfo,0,sizeof(seminfo)); 521 seminfo.semmni = sc_semmni; 522 seminfo.semmns = sc_semmns; 523 seminfo.semmsl = sc_semmsl; 524 seminfo.semopm = sc_semopm; 525 seminfo.semvmx = SEMVMX; 526 seminfo.semmnu = SEMMNU; 527 seminfo.semmap = SEMMAP; 528 seminfo.semume = SEMUME; 529 mutex_lock(&sem_ids.mutex); 530 if (cmd == SEM_INFO) { 531 seminfo.semusz = sem_ids.in_use; 532 seminfo.semaem = used_sems; 533 } else { 534 seminfo.semusz = SEMUSZ; 535 seminfo.semaem = SEMAEM; 536 } 537 max_id = sem_ids.max_id; 538 mutex_unlock(&sem_ids.mutex); 539 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 540 return -EFAULT; 541 return (max_id < 0) ? 0: max_id; 542 } 543 case SEM_STAT: 544 { 545 struct semid64_ds tbuf; 546 int id; 547 548 if(semid >= sem_ids.entries->size) 549 return -EINVAL; 550 551 memset(&tbuf,0,sizeof(tbuf)); 552 553 sma = sem_lock(semid); 554 if(sma == NULL) 555 return -EINVAL; 556 557 err = -EACCES; 558 if (ipcperms (&sma->sem_perm, S_IRUGO)) 559 goto out_unlock; 560 561 err = security_sem_semctl(sma, cmd); 562 if (err) 563 goto out_unlock; 564 565 id = sem_buildid(semid, sma->sem_perm.seq); 566 567 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 568 tbuf.sem_otime = sma->sem_otime; 569 tbuf.sem_ctime = sma->sem_ctime; 570 tbuf.sem_nsems = sma->sem_nsems; 571 sem_unlock(sma); 572 if (copy_semid_to_user (arg.buf, &tbuf, version)) 573 return -EFAULT; 574 return id; 575 } 576 default: 577 return -EINVAL; 578 } 579 return err; 580 out_unlock: 581 sem_unlock(sma); 582 return err; 583 } 584 585 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg) 586 { 587 struct sem_array *sma; 588 struct sem* curr; 589 int err; 590 ushort fast_sem_io[SEMMSL_FAST]; 591 ushort* sem_io = fast_sem_io; 592 int nsems; 593 594 sma = sem_lock(semid); 595 if(sma==NULL) 596 return -EINVAL; 597 598 nsems = sma->sem_nsems; 599 600 err=-EIDRM; 601 if (sem_checkid(sma,semid)) 602 goto out_unlock; 603 604 err = -EACCES; 605 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 606 goto out_unlock; 607 608 err = security_sem_semctl(sma, cmd); 609 if (err) 610 goto out_unlock; 611 612 err = -EACCES; 613 switch (cmd) { 614 case GETALL: 615 { 616 ushort __user *array = arg.array; 617 int i; 618 619 if(nsems > SEMMSL_FAST) { 620 ipc_rcu_getref(sma); 621 sem_unlock(sma); 622 623 sem_io = ipc_alloc(sizeof(ushort)*nsems); 624 if(sem_io == NULL) { 625 ipc_lock_by_ptr(&sma->sem_perm); 626 ipc_rcu_putref(sma); 627 sem_unlock(sma); 628 return -ENOMEM; 629 } 630 631 ipc_lock_by_ptr(&sma->sem_perm); 632 ipc_rcu_putref(sma); 633 if (sma->sem_perm.deleted) { 634 sem_unlock(sma); 635 err = -EIDRM; 636 goto out_free; 637 } 638 } 639 640 for (i = 0; i < sma->sem_nsems; i++) 641 sem_io[i] = sma->sem_base[i].semval; 642 sem_unlock(sma); 643 err = 0; 644 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 645 err = -EFAULT; 646 goto out_free; 647 } 648 case SETALL: 649 { 650 int i; 651 struct sem_undo *un; 652 653 ipc_rcu_getref(sma); 654 sem_unlock(sma); 655 656 if(nsems > SEMMSL_FAST) { 657 sem_io = ipc_alloc(sizeof(ushort)*nsems); 658 if(sem_io == NULL) { 659 ipc_lock_by_ptr(&sma->sem_perm); 660 ipc_rcu_putref(sma); 661 sem_unlock(sma); 662 return -ENOMEM; 663 } 664 } 665 666 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 667 ipc_lock_by_ptr(&sma->sem_perm); 668 ipc_rcu_putref(sma); 669 sem_unlock(sma); 670 err = -EFAULT; 671 goto out_free; 672 } 673 674 for (i = 0; i < nsems; i++) { 675 if (sem_io[i] > SEMVMX) { 676 ipc_lock_by_ptr(&sma->sem_perm); 677 ipc_rcu_putref(sma); 678 sem_unlock(sma); 679 err = -ERANGE; 680 goto out_free; 681 } 682 } 683 ipc_lock_by_ptr(&sma->sem_perm); 684 ipc_rcu_putref(sma); 685 if (sma->sem_perm.deleted) { 686 sem_unlock(sma); 687 err = -EIDRM; 688 goto out_free; 689 } 690 691 for (i = 0; i < nsems; i++) 692 sma->sem_base[i].semval = sem_io[i]; 693 for (un = sma->undo; un; un = un->id_next) 694 for (i = 0; i < nsems; i++) 695 un->semadj[i] = 0; 696 sma->sem_ctime = get_seconds(); 697 /* maybe some queued-up processes were waiting for this */ 698 update_queue(sma); 699 err = 0; 700 goto out_unlock; 701 } 702 case IPC_STAT: 703 { 704 struct semid64_ds tbuf; 705 memset(&tbuf,0,sizeof(tbuf)); 706 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 707 tbuf.sem_otime = sma->sem_otime; 708 tbuf.sem_ctime = sma->sem_ctime; 709 tbuf.sem_nsems = sma->sem_nsems; 710 sem_unlock(sma); 711 if (copy_semid_to_user (arg.buf, &tbuf, version)) 712 return -EFAULT; 713 return 0; 714 } 715 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 716 } 717 err = -EINVAL; 718 if(semnum < 0 || semnum >= nsems) 719 goto out_unlock; 720 721 curr = &sma->sem_base[semnum]; 722 723 switch (cmd) { 724 case GETVAL: 725 err = curr->semval; 726 goto out_unlock; 727 case GETPID: 728 err = curr->sempid; 729 goto out_unlock; 730 case GETNCNT: 731 err = count_semncnt(sma,semnum); 732 goto out_unlock; 733 case GETZCNT: 734 err = count_semzcnt(sma,semnum); 735 goto out_unlock; 736 case SETVAL: 737 { 738 int val = arg.val; 739 struct sem_undo *un; 740 err = -ERANGE; 741 if (val > SEMVMX || val < 0) 742 goto out_unlock; 743 744 for (un = sma->undo; un; un = un->id_next) 745 un->semadj[semnum] = 0; 746 curr->semval = val; 747 curr->sempid = current->tgid; 748 sma->sem_ctime = get_seconds(); 749 /* maybe some queued-up processes were waiting for this */ 750 update_queue(sma); 751 err = 0; 752 goto out_unlock; 753 } 754 } 755 out_unlock: 756 sem_unlock(sma); 757 out_free: 758 if(sem_io != fast_sem_io) 759 ipc_free(sem_io, sizeof(ushort)*nsems); 760 return err; 761 } 762 763 struct sem_setbuf { 764 uid_t uid; 765 gid_t gid; 766 mode_t mode; 767 }; 768 769 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) 770 { 771 switch(version) { 772 case IPC_64: 773 { 774 struct semid64_ds tbuf; 775 776 if(copy_from_user(&tbuf, buf, sizeof(tbuf))) 777 return -EFAULT; 778 779 out->uid = tbuf.sem_perm.uid; 780 out->gid = tbuf.sem_perm.gid; 781 out->mode = tbuf.sem_perm.mode; 782 783 return 0; 784 } 785 case IPC_OLD: 786 { 787 struct semid_ds tbuf_old; 788 789 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 790 return -EFAULT; 791 792 out->uid = tbuf_old.sem_perm.uid; 793 out->gid = tbuf_old.sem_perm.gid; 794 out->mode = tbuf_old.sem_perm.mode; 795 796 return 0; 797 } 798 default: 799 return -EINVAL; 800 } 801 } 802 803 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg) 804 { 805 struct sem_array *sma; 806 int err; 807 struct sem_setbuf setbuf; 808 struct kern_ipc_perm *ipcp; 809 810 if(cmd == IPC_SET) { 811 if(copy_semid_from_user (&setbuf, arg.buf, version)) 812 return -EFAULT; 813 } 814 sma = sem_lock(semid); 815 if(sma==NULL) 816 return -EINVAL; 817 818 if (sem_checkid(sma,semid)) { 819 err=-EIDRM; 820 goto out_unlock; 821 } 822 ipcp = &sma->sem_perm; 823 if (current->euid != ipcp->cuid && 824 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { 825 err=-EPERM; 826 goto out_unlock; 827 } 828 829 err = security_sem_semctl(sma, cmd); 830 if (err) 831 goto out_unlock; 832 833 switch(cmd){ 834 case IPC_RMID: 835 freeary(sma, semid); 836 err = 0; 837 break; 838 case IPC_SET: 839 if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode, ipcp))) 840 goto out_unlock; 841 ipcp->uid = setbuf.uid; 842 ipcp->gid = setbuf.gid; 843 ipcp->mode = (ipcp->mode & ~S_IRWXUGO) 844 | (setbuf.mode & S_IRWXUGO); 845 sma->sem_ctime = get_seconds(); 846 sem_unlock(sma); 847 err = 0; 848 break; 849 default: 850 sem_unlock(sma); 851 err = -EINVAL; 852 break; 853 } 854 return err; 855 856 out_unlock: 857 sem_unlock(sma); 858 return err; 859 } 860 861 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 862 { 863 int err = -EINVAL; 864 int version; 865 866 if (semid < 0) 867 return -EINVAL; 868 869 version = ipc_parse_version(&cmd); 870 871 switch(cmd) { 872 case IPC_INFO: 873 case SEM_INFO: 874 case SEM_STAT: 875 err = semctl_nolock(semid,semnum,cmd,version,arg); 876 return err; 877 case GETALL: 878 case GETVAL: 879 case GETPID: 880 case GETNCNT: 881 case GETZCNT: 882 case IPC_STAT: 883 case SETVAL: 884 case SETALL: 885 err = semctl_main(semid,semnum,cmd,version,arg); 886 return err; 887 case IPC_RMID: 888 case IPC_SET: 889 mutex_lock(&sem_ids.mutex); 890 err = semctl_down(semid,semnum,cmd,version,arg); 891 mutex_unlock(&sem_ids.mutex); 892 return err; 893 default: 894 return -EINVAL; 895 } 896 } 897 898 static inline void lock_semundo(void) 899 { 900 struct sem_undo_list *undo_list; 901 902 undo_list = current->sysvsem.undo_list; 903 if (undo_list) 904 spin_lock(&undo_list->lock); 905 } 906 907 /* This code has an interaction with copy_semundo(). 908 * Consider; two tasks are sharing the undo_list. task1 909 * acquires the undo_list lock in lock_semundo(). If task2 now 910 * exits before task1 releases the lock (by calling 911 * unlock_semundo()), then task1 will never call spin_unlock(). 912 * This leave the sem_undo_list in a locked state. If task1 now creats task3 913 * and once again shares the sem_undo_list, the sem_undo_list will still be 914 * locked, and future SEM_UNDO operations will deadlock. This case is 915 * dealt with in copy_semundo() by having it reinitialize the spin lock when 916 * the refcnt goes from 1 to 2. 917 */ 918 static inline void unlock_semundo(void) 919 { 920 struct sem_undo_list *undo_list; 921 922 undo_list = current->sysvsem.undo_list; 923 if (undo_list) 924 spin_unlock(&undo_list->lock); 925 } 926 927 928 /* If the task doesn't already have a undo_list, then allocate one 929 * here. We guarantee there is only one thread using this undo list, 930 * and current is THE ONE 931 * 932 * If this allocation and assignment succeeds, but later 933 * portions of this code fail, there is no need to free the sem_undo_list. 934 * Just let it stay associated with the task, and it'll be freed later 935 * at exit time. 936 * 937 * This can block, so callers must hold no locks. 938 */ 939 static inline int get_undo_list(struct sem_undo_list **undo_listp) 940 { 941 struct sem_undo_list *undo_list; 942 int size; 943 944 undo_list = current->sysvsem.undo_list; 945 if (!undo_list) { 946 size = sizeof(struct sem_undo_list); 947 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL); 948 if (undo_list == NULL) 949 return -ENOMEM; 950 memset(undo_list, 0, size); 951 spin_lock_init(&undo_list->lock); 952 atomic_set(&undo_list->refcnt, 1); 953 current->sysvsem.undo_list = undo_list; 954 } 955 *undo_listp = undo_list; 956 return 0; 957 } 958 959 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 960 { 961 struct sem_undo **last, *un; 962 963 last = &ulp->proc_list; 964 un = *last; 965 while(un != NULL) { 966 if(un->semid==semid) 967 break; 968 if(un->semid==-1) { 969 *last=un->proc_next; 970 kfree(un); 971 } else { 972 last=&un->proc_next; 973 } 974 un=*last; 975 } 976 return un; 977 } 978 979 static struct sem_undo *find_undo(int semid) 980 { 981 struct sem_array *sma; 982 struct sem_undo_list *ulp; 983 struct sem_undo *un, *new; 984 int nsems; 985 int error; 986 987 error = get_undo_list(&ulp); 988 if (error) 989 return ERR_PTR(error); 990 991 lock_semundo(); 992 un = lookup_undo(ulp, semid); 993 unlock_semundo(); 994 if (likely(un!=NULL)) 995 goto out; 996 997 /* no undo structure around - allocate one. */ 998 sma = sem_lock(semid); 999 un = ERR_PTR(-EINVAL); 1000 if(sma==NULL) 1001 goto out; 1002 un = ERR_PTR(-EIDRM); 1003 if (sem_checkid(sma,semid)) { 1004 sem_unlock(sma); 1005 goto out; 1006 } 1007 nsems = sma->sem_nsems; 1008 ipc_rcu_getref(sma); 1009 sem_unlock(sma); 1010 1011 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1012 if (!new) { 1013 ipc_lock_by_ptr(&sma->sem_perm); 1014 ipc_rcu_putref(sma); 1015 sem_unlock(sma); 1016 return ERR_PTR(-ENOMEM); 1017 } 1018 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems); 1019 new->semadj = (short *) &new[1]; 1020 new->semid = semid; 1021 1022 lock_semundo(); 1023 un = lookup_undo(ulp, semid); 1024 if (un) { 1025 unlock_semundo(); 1026 kfree(new); 1027 ipc_lock_by_ptr(&sma->sem_perm); 1028 ipc_rcu_putref(sma); 1029 sem_unlock(sma); 1030 goto out; 1031 } 1032 ipc_lock_by_ptr(&sma->sem_perm); 1033 ipc_rcu_putref(sma); 1034 if (sma->sem_perm.deleted) { 1035 sem_unlock(sma); 1036 unlock_semundo(); 1037 kfree(new); 1038 un = ERR_PTR(-EIDRM); 1039 goto out; 1040 } 1041 new->proc_next = ulp->proc_list; 1042 ulp->proc_list = new; 1043 new->id_next = sma->undo; 1044 sma->undo = new; 1045 sem_unlock(sma); 1046 un = new; 1047 unlock_semundo(); 1048 out: 1049 return un; 1050 } 1051 1052 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1053 unsigned nsops, const struct timespec __user *timeout) 1054 { 1055 int error = -EINVAL; 1056 struct sem_array *sma; 1057 struct sembuf fast_sops[SEMOPM_FAST]; 1058 struct sembuf* sops = fast_sops, *sop; 1059 struct sem_undo *un; 1060 int undos = 0, alter = 0, max; 1061 struct sem_queue queue; 1062 unsigned long jiffies_left = 0; 1063 1064 if (nsops < 1 || semid < 0) 1065 return -EINVAL; 1066 if (nsops > sc_semopm) 1067 return -E2BIG; 1068 if(nsops > SEMOPM_FAST) { 1069 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1070 if(sops==NULL) 1071 return -ENOMEM; 1072 } 1073 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1074 error=-EFAULT; 1075 goto out_free; 1076 } 1077 if (timeout) { 1078 struct timespec _timeout; 1079 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1080 error = -EFAULT; 1081 goto out_free; 1082 } 1083 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1084 _timeout.tv_nsec >= 1000000000L) { 1085 error = -EINVAL; 1086 goto out_free; 1087 } 1088 jiffies_left = timespec_to_jiffies(&_timeout); 1089 } 1090 max = 0; 1091 for (sop = sops; sop < sops + nsops; sop++) { 1092 if (sop->sem_num >= max) 1093 max = sop->sem_num; 1094 if (sop->sem_flg & SEM_UNDO) 1095 undos = 1; 1096 if (sop->sem_op != 0) 1097 alter = 1; 1098 } 1099 1100 retry_undos: 1101 if (undos) { 1102 un = find_undo(semid); 1103 if (IS_ERR(un)) { 1104 error = PTR_ERR(un); 1105 goto out_free; 1106 } 1107 } else 1108 un = NULL; 1109 1110 sma = sem_lock(semid); 1111 error=-EINVAL; 1112 if(sma==NULL) 1113 goto out_free; 1114 error = -EIDRM; 1115 if (sem_checkid(sma,semid)) 1116 goto out_unlock_free; 1117 /* 1118 * semid identifies are not unique - find_undo may have 1119 * allocated an undo structure, it was invalidated by an RMID 1120 * and now a new array with received the same id. Check and retry. 1121 */ 1122 if (un && un->semid == -1) { 1123 sem_unlock(sma); 1124 goto retry_undos; 1125 } 1126 error = -EFBIG; 1127 if (max >= sma->sem_nsems) 1128 goto out_unlock_free; 1129 1130 error = -EACCES; 1131 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1132 goto out_unlock_free; 1133 1134 error = security_sem_semop(sma, sops, nsops, alter); 1135 if (error) 1136 goto out_unlock_free; 1137 1138 error = try_atomic_semop (sma, sops, nsops, un, current->tgid); 1139 if (error <= 0) { 1140 if (alter && error == 0) 1141 update_queue (sma); 1142 goto out_unlock_free; 1143 } 1144 1145 /* We need to sleep on this operation, so we put the current 1146 * task into the pending queue and go to sleep. 1147 */ 1148 1149 queue.sma = sma; 1150 queue.sops = sops; 1151 queue.nsops = nsops; 1152 queue.undo = un; 1153 queue.pid = current->tgid; 1154 queue.id = semid; 1155 queue.alter = alter; 1156 if (alter) 1157 append_to_queue(sma ,&queue); 1158 else 1159 prepend_to_queue(sma ,&queue); 1160 1161 queue.status = -EINTR; 1162 queue.sleeper = current; 1163 current->state = TASK_INTERRUPTIBLE; 1164 sem_unlock(sma); 1165 1166 if (timeout) 1167 jiffies_left = schedule_timeout(jiffies_left); 1168 else 1169 schedule(); 1170 1171 error = queue.status; 1172 while(unlikely(error == IN_WAKEUP)) { 1173 cpu_relax(); 1174 error = queue.status; 1175 } 1176 1177 if (error != -EINTR) { 1178 /* fast path: update_queue already obtained all requested 1179 * resources */ 1180 goto out_free; 1181 } 1182 1183 sma = sem_lock(semid); 1184 if(sma==NULL) { 1185 BUG_ON(queue.prev != NULL); 1186 error = -EIDRM; 1187 goto out_free; 1188 } 1189 1190 /* 1191 * If queue.status != -EINTR we are woken up by another process 1192 */ 1193 error = queue.status; 1194 if (error != -EINTR) { 1195 goto out_unlock_free; 1196 } 1197 1198 /* 1199 * If an interrupt occurred we have to clean up the queue 1200 */ 1201 if (timeout && jiffies_left == 0) 1202 error = -EAGAIN; 1203 remove_from_queue(sma,&queue); 1204 goto out_unlock_free; 1205 1206 out_unlock_free: 1207 sem_unlock(sma); 1208 out_free: 1209 if(sops != fast_sops) 1210 kfree(sops); 1211 return error; 1212 } 1213 1214 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1215 { 1216 return sys_semtimedop(semid, tsops, nsops, NULL); 1217 } 1218 1219 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1220 * parent and child tasks. 1221 * 1222 * See the notes above unlock_semundo() regarding the spin_lock_init() 1223 * in this code. Initialize the undo_list->lock here instead of get_undo_list() 1224 * because of the reasoning in the comment above unlock_semundo. 1225 */ 1226 1227 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1228 { 1229 struct sem_undo_list *undo_list; 1230 int error; 1231 1232 if (clone_flags & CLONE_SYSVSEM) { 1233 error = get_undo_list(&undo_list); 1234 if (error) 1235 return error; 1236 atomic_inc(&undo_list->refcnt); 1237 tsk->sysvsem.undo_list = undo_list; 1238 } else 1239 tsk->sysvsem.undo_list = NULL; 1240 1241 return 0; 1242 } 1243 1244 /* 1245 * add semadj values to semaphores, free undo structures. 1246 * undo structures are not freed when semaphore arrays are destroyed 1247 * so some of them may be out of date. 1248 * IMPLEMENTATION NOTE: There is some confusion over whether the 1249 * set of adjustments that needs to be done should be done in an atomic 1250 * manner or not. That is, if we are attempting to decrement the semval 1251 * should we queue up and wait until we can do so legally? 1252 * The original implementation attempted to do this (queue and wait). 1253 * The current implementation does not do so. The POSIX standard 1254 * and SVID should be consulted to determine what behavior is mandated. 1255 */ 1256 void exit_sem(struct task_struct *tsk) 1257 { 1258 struct sem_undo_list *undo_list; 1259 struct sem_undo *u, **up; 1260 1261 undo_list = tsk->sysvsem.undo_list; 1262 if (!undo_list) 1263 return; 1264 1265 if (!atomic_dec_and_test(&undo_list->refcnt)) 1266 return; 1267 1268 /* There's no need to hold the semundo list lock, as current 1269 * is the last task exiting for this undo list. 1270 */ 1271 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1272 struct sem_array *sma; 1273 int nsems, i; 1274 struct sem_undo *un, **unp; 1275 int semid; 1276 1277 semid = u->semid; 1278 1279 if(semid == -1) 1280 continue; 1281 sma = sem_lock(semid); 1282 if (sma == NULL) 1283 continue; 1284 1285 if (u->semid == -1) 1286 goto next_entry; 1287 1288 BUG_ON(sem_checkid(sma,u->semid)); 1289 1290 /* remove u from the sma->undo list */ 1291 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1292 if (u == un) 1293 goto found; 1294 } 1295 printk ("exit_sem undo list error id=%d\n", u->semid); 1296 goto next_entry; 1297 found: 1298 *unp = un->id_next; 1299 /* perform adjustments registered in u */ 1300 nsems = sma->sem_nsems; 1301 for (i = 0; i < nsems; i++) { 1302 struct sem * semaphore = &sma->sem_base[i]; 1303 if (u->semadj[i]) { 1304 semaphore->semval += u->semadj[i]; 1305 /* 1306 * Range checks of the new semaphore value, 1307 * not defined by sus: 1308 * - Some unices ignore the undo entirely 1309 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1310 * - some cap the value (e.g. FreeBSD caps 1311 * at 0, but doesn't enforce SEMVMX) 1312 * 1313 * Linux caps the semaphore value, both at 0 1314 * and at SEMVMX. 1315 * 1316 * Manfred <manfred@colorfullife.com> 1317 */ 1318 if (semaphore->semval < 0) 1319 semaphore->semval = 0; 1320 if (semaphore->semval > SEMVMX) 1321 semaphore->semval = SEMVMX; 1322 semaphore->sempid = current->tgid; 1323 } 1324 } 1325 sma->sem_otime = get_seconds(); 1326 /* maybe some queued-up processes were waiting for this */ 1327 update_queue(sma); 1328 next_entry: 1329 sem_unlock(sma); 1330 } 1331 kfree(undo_list); 1332 } 1333 1334 #ifdef CONFIG_PROC_FS 1335 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1336 { 1337 struct sem_array *sma = it; 1338 1339 return seq_printf(s, 1340 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1341 sma->sem_perm.key, 1342 sma->sem_id, 1343 sma->sem_perm.mode, 1344 sma->sem_nsems, 1345 sma->sem_perm.uid, 1346 sma->sem_perm.gid, 1347 sma->sem_perm.cuid, 1348 sma->sem_perm.cgid, 1349 sma->sem_otime, 1350 sma->sem_ctime); 1351 } 1352 #endif 1353