xref: /linux/ipc/sem.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  */
65 
66 #include <linux/config.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/init.h>
70 #include <linux/proc_fs.h>
71 #include <linux/time.h>
72 #include <linux/smp_lock.h>
73 #include <linux/security.h>
74 #include <linux/syscalls.h>
75 #include <linux/audit.h>
76 #include <linux/capability.h>
77 #include <linux/seq_file.h>
78 #include <asm/uaccess.h>
79 #include "util.h"
80 
81 
82 #define sem_lock(id)	((struct sem_array*)ipc_lock(&sem_ids,id))
83 #define sem_unlock(sma)	ipc_unlock(&(sma)->sem_perm)
84 #define sem_rmid(id)	((struct sem_array*)ipc_rmid(&sem_ids,id))
85 #define sem_checkid(sma, semid)	\
86 	ipc_checkid(&sem_ids,&sma->sem_perm,semid)
87 #define sem_buildid(id, seq) \
88 	ipc_buildid(&sem_ids, id, seq)
89 static struct ipc_ids sem_ids;
90 
91 static int newary (key_t, int, int);
92 static void freeary (struct sem_array *sma, int id);
93 #ifdef CONFIG_PROC_FS
94 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
95 #endif
96 
97 #define SEMMSL_FAST	256 /* 512 bytes on stack */
98 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
99 
100 /*
101  * linked list protection:
102  *	sem_undo.id_next,
103  *	sem_array.sem_pending{,last},
104  *	sem_array.sem_undo: sem_lock() for read/write
105  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
106  *
107  */
108 
109 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
110 #define sc_semmsl	(sem_ctls[0])
111 #define sc_semmns	(sem_ctls[1])
112 #define sc_semopm	(sem_ctls[2])
113 #define sc_semmni	(sem_ctls[3])
114 
115 static int used_sems;
116 
117 void __init sem_init (void)
118 {
119 	used_sems = 0;
120 	ipc_init_ids(&sem_ids,sc_semmni);
121 	ipc_init_proc_interface("sysvipc/sem",
122 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
123 				&sem_ids,
124 				sysvipc_sem_proc_show);
125 }
126 
127 /*
128  * Lockless wakeup algorithm:
129  * Without the check/retry algorithm a lockless wakeup is possible:
130  * - queue.status is initialized to -EINTR before blocking.
131  * - wakeup is performed by
132  *	* unlinking the queue entry from sma->sem_pending
133  *	* setting queue.status to IN_WAKEUP
134  *	  This is the notification for the blocked thread that a
135  *	  result value is imminent.
136  *	* call wake_up_process
137  *	* set queue.status to the final value.
138  * - the previously blocked thread checks queue.status:
139  *   	* if it's IN_WAKEUP, then it must wait until the value changes
140  *   	* if it's not -EINTR, then the operation was completed by
141  *   	  update_queue. semtimedop can return queue.status without
142  *   	  performing any operation on the semaphore array.
143  *   	* otherwise it must acquire the spinlock and check what's up.
144  *
145  * The two-stage algorithm is necessary to protect against the following
146  * races:
147  * - if queue.status is set after wake_up_process, then the woken up idle
148  *   thread could race forward and try (and fail) to acquire sma->lock
149  *   before update_queue had a chance to set queue.status
150  * - if queue.status is written before wake_up_process and if the
151  *   blocked process is woken up by a signal between writing
152  *   queue.status and the wake_up_process, then the woken up
153  *   process could return from semtimedop and die by calling
154  *   sys_exit before wake_up_process is called. Then wake_up_process
155  *   will oops, because the task structure is already invalid.
156  *   (yes, this happened on s390 with sysv msg).
157  *
158  */
159 #define IN_WAKEUP	1
160 
161 static int newary (key_t key, int nsems, int semflg)
162 {
163 	int id;
164 	int retval;
165 	struct sem_array *sma;
166 	int size;
167 
168 	if (!nsems)
169 		return -EINVAL;
170 	if (used_sems + nsems > sc_semmns)
171 		return -ENOSPC;
172 
173 	size = sizeof (*sma) + nsems * sizeof (struct sem);
174 	sma = ipc_rcu_alloc(size);
175 	if (!sma) {
176 		return -ENOMEM;
177 	}
178 	memset (sma, 0, size);
179 
180 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
181 	sma->sem_perm.key = key;
182 
183 	sma->sem_perm.security = NULL;
184 	retval = security_sem_alloc(sma);
185 	if (retval) {
186 		ipc_rcu_putref(sma);
187 		return retval;
188 	}
189 
190 	id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
191 	if(id == -1) {
192 		security_sem_free(sma);
193 		ipc_rcu_putref(sma);
194 		return -ENOSPC;
195 	}
196 	used_sems += nsems;
197 
198 	sma->sem_id = sem_buildid(id, sma->sem_perm.seq);
199 	sma->sem_base = (struct sem *) &sma[1];
200 	/* sma->sem_pending = NULL; */
201 	sma->sem_pending_last = &sma->sem_pending;
202 	/* sma->undo = NULL; */
203 	sma->sem_nsems = nsems;
204 	sma->sem_ctime = get_seconds();
205 	sem_unlock(sma);
206 
207 	return sma->sem_id;
208 }
209 
210 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
211 {
212 	int id, err = -EINVAL;
213 	struct sem_array *sma;
214 
215 	if (nsems < 0 || nsems > sc_semmsl)
216 		return -EINVAL;
217 	down(&sem_ids.sem);
218 
219 	if (key == IPC_PRIVATE) {
220 		err = newary(key, nsems, semflg);
221 	} else if ((id = ipc_findkey(&sem_ids, key)) == -1) {  /* key not used */
222 		if (!(semflg & IPC_CREAT))
223 			err = -ENOENT;
224 		else
225 			err = newary(key, nsems, semflg);
226 	} else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
227 		err = -EEXIST;
228 	} else {
229 		sma = sem_lock(id);
230 		if(sma==NULL)
231 			BUG();
232 		if (nsems > sma->sem_nsems)
233 			err = -EINVAL;
234 		else if (ipcperms(&sma->sem_perm, semflg))
235 			err = -EACCES;
236 		else {
237 			int semid = sem_buildid(id, sma->sem_perm.seq);
238 			err = security_sem_associate(sma, semflg);
239 			if (!err)
240 				err = semid;
241 		}
242 		sem_unlock(sma);
243 	}
244 
245 	up(&sem_ids.sem);
246 	return err;
247 }
248 
249 /* Manage the doubly linked list sma->sem_pending as a FIFO:
250  * insert new queue elements at the tail sma->sem_pending_last.
251  */
252 static inline void append_to_queue (struct sem_array * sma,
253 				    struct sem_queue * q)
254 {
255 	*(q->prev = sma->sem_pending_last) = q;
256 	*(sma->sem_pending_last = &q->next) = NULL;
257 }
258 
259 static inline void prepend_to_queue (struct sem_array * sma,
260 				     struct sem_queue * q)
261 {
262 	q->next = sma->sem_pending;
263 	*(q->prev = &sma->sem_pending) = q;
264 	if (q->next)
265 		q->next->prev = &q->next;
266 	else /* sma->sem_pending_last == &sma->sem_pending */
267 		sma->sem_pending_last = &q->next;
268 }
269 
270 static inline void remove_from_queue (struct sem_array * sma,
271 				      struct sem_queue * q)
272 {
273 	*(q->prev) = q->next;
274 	if (q->next)
275 		q->next->prev = q->prev;
276 	else /* sma->sem_pending_last == &q->next */
277 		sma->sem_pending_last = q->prev;
278 	q->prev = NULL; /* mark as removed */
279 }
280 
281 /*
282  * Determine whether a sequence of semaphore operations would succeed
283  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
284  */
285 
286 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
287 			     int nsops, struct sem_undo *un, int pid)
288 {
289 	int result, sem_op;
290 	struct sembuf *sop;
291 	struct sem * curr;
292 
293 	for (sop = sops; sop < sops + nsops; sop++) {
294 		curr = sma->sem_base + sop->sem_num;
295 		sem_op = sop->sem_op;
296 		result = curr->semval;
297 
298 		if (!sem_op && result)
299 			goto would_block;
300 
301 		result += sem_op;
302 		if (result < 0)
303 			goto would_block;
304 		if (result > SEMVMX)
305 			goto out_of_range;
306 		if (sop->sem_flg & SEM_UNDO) {
307 			int undo = un->semadj[sop->sem_num] - sem_op;
308 			/*
309 	 		 *	Exceeding the undo range is an error.
310 			 */
311 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
312 				goto out_of_range;
313 		}
314 		curr->semval = result;
315 	}
316 
317 	sop--;
318 	while (sop >= sops) {
319 		sma->sem_base[sop->sem_num].sempid = pid;
320 		if (sop->sem_flg & SEM_UNDO)
321 			un->semadj[sop->sem_num] -= sop->sem_op;
322 		sop--;
323 	}
324 
325 	sma->sem_otime = get_seconds();
326 	return 0;
327 
328 out_of_range:
329 	result = -ERANGE;
330 	goto undo;
331 
332 would_block:
333 	if (sop->sem_flg & IPC_NOWAIT)
334 		result = -EAGAIN;
335 	else
336 		result = 1;
337 
338 undo:
339 	sop--;
340 	while (sop >= sops) {
341 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
342 		sop--;
343 	}
344 
345 	return result;
346 }
347 
348 /* Go through the pending queue for the indicated semaphore
349  * looking for tasks that can be completed.
350  */
351 static void update_queue (struct sem_array * sma)
352 {
353 	int error;
354 	struct sem_queue * q;
355 
356 	q = sma->sem_pending;
357 	while(q) {
358 		error = try_atomic_semop(sma, q->sops, q->nsops,
359 					 q->undo, q->pid);
360 
361 		/* Does q->sleeper still need to sleep? */
362 		if (error <= 0) {
363 			struct sem_queue *n;
364 			remove_from_queue(sma,q);
365 			q->status = IN_WAKEUP;
366 			/*
367 			 * Continue scanning. The next operation
368 			 * that must be checked depends on the type of the
369 			 * completed operation:
370 			 * - if the operation modified the array, then
371 			 *   restart from the head of the queue and
372 			 *   check for threads that might be waiting
373 			 *   for semaphore values to become 0.
374 			 * - if the operation didn't modify the array,
375 			 *   then just continue.
376 			 */
377 			if (q->alter)
378 				n = sma->sem_pending;
379 			else
380 				n = q->next;
381 			wake_up_process(q->sleeper);
382 			/* hands-off: q will disappear immediately after
383 			 * writing q->status.
384 			 */
385 			smp_wmb();
386 			q->status = error;
387 			q = n;
388 		} else {
389 			q = q->next;
390 		}
391 	}
392 }
393 
394 /* The following counts are associated to each semaphore:
395  *   semncnt        number of tasks waiting on semval being nonzero
396  *   semzcnt        number of tasks waiting on semval being zero
397  * This model assumes that a task waits on exactly one semaphore.
398  * Since semaphore operations are to be performed atomically, tasks actually
399  * wait on a whole sequence of semaphores simultaneously.
400  * The counts we return here are a rough approximation, but still
401  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
402  */
403 static int count_semncnt (struct sem_array * sma, ushort semnum)
404 {
405 	int semncnt;
406 	struct sem_queue * q;
407 
408 	semncnt = 0;
409 	for (q = sma->sem_pending; q; q = q->next) {
410 		struct sembuf * sops = q->sops;
411 		int nsops = q->nsops;
412 		int i;
413 		for (i = 0; i < nsops; i++)
414 			if (sops[i].sem_num == semnum
415 			    && (sops[i].sem_op < 0)
416 			    && !(sops[i].sem_flg & IPC_NOWAIT))
417 				semncnt++;
418 	}
419 	return semncnt;
420 }
421 static int count_semzcnt (struct sem_array * sma, ushort semnum)
422 {
423 	int semzcnt;
424 	struct sem_queue * q;
425 
426 	semzcnt = 0;
427 	for (q = sma->sem_pending; q; q = q->next) {
428 		struct sembuf * sops = q->sops;
429 		int nsops = q->nsops;
430 		int i;
431 		for (i = 0; i < nsops; i++)
432 			if (sops[i].sem_num == semnum
433 			    && (sops[i].sem_op == 0)
434 			    && !(sops[i].sem_flg & IPC_NOWAIT))
435 				semzcnt++;
436 	}
437 	return semzcnt;
438 }
439 
440 /* Free a semaphore set. freeary() is called with sem_ids.sem down and
441  * the spinlock for this semaphore set hold. sem_ids.sem remains locked
442  * on exit.
443  */
444 static void freeary (struct sem_array *sma, int id)
445 {
446 	struct sem_undo *un;
447 	struct sem_queue *q;
448 	int size;
449 
450 	/* Invalidate the existing undo structures for this semaphore set.
451 	 * (They will be freed without any further action in exit_sem()
452 	 * or during the next semop.)
453 	 */
454 	for (un = sma->undo; un; un = un->id_next)
455 		un->semid = -1;
456 
457 	/* Wake up all pending processes and let them fail with EIDRM. */
458 	q = sma->sem_pending;
459 	while(q) {
460 		struct sem_queue *n;
461 		/* lazy remove_from_queue: we are killing the whole queue */
462 		q->prev = NULL;
463 		n = q->next;
464 		q->status = IN_WAKEUP;
465 		wake_up_process(q->sleeper); /* doesn't sleep */
466 		smp_wmb();
467 		q->status = -EIDRM;	/* hands-off q */
468 		q = n;
469 	}
470 
471 	/* Remove the semaphore set from the ID array*/
472 	sma = sem_rmid(id);
473 	sem_unlock(sma);
474 
475 	used_sems -= sma->sem_nsems;
476 	size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
477 	security_sem_free(sma);
478 	ipc_rcu_putref(sma);
479 }
480 
481 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
482 {
483 	switch(version) {
484 	case IPC_64:
485 		return copy_to_user(buf, in, sizeof(*in));
486 	case IPC_OLD:
487 	    {
488 		struct semid_ds out;
489 
490 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
491 
492 		out.sem_otime	= in->sem_otime;
493 		out.sem_ctime	= in->sem_ctime;
494 		out.sem_nsems	= in->sem_nsems;
495 
496 		return copy_to_user(buf, &out, sizeof(out));
497 	    }
498 	default:
499 		return -EINVAL;
500 	}
501 }
502 
503 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
504 {
505 	int err = -EINVAL;
506 	struct sem_array *sma;
507 
508 	switch(cmd) {
509 	case IPC_INFO:
510 	case SEM_INFO:
511 	{
512 		struct seminfo seminfo;
513 		int max_id;
514 
515 		err = security_sem_semctl(NULL, cmd);
516 		if (err)
517 			return err;
518 
519 		memset(&seminfo,0,sizeof(seminfo));
520 		seminfo.semmni = sc_semmni;
521 		seminfo.semmns = sc_semmns;
522 		seminfo.semmsl = sc_semmsl;
523 		seminfo.semopm = sc_semopm;
524 		seminfo.semvmx = SEMVMX;
525 		seminfo.semmnu = SEMMNU;
526 		seminfo.semmap = SEMMAP;
527 		seminfo.semume = SEMUME;
528 		down(&sem_ids.sem);
529 		if (cmd == SEM_INFO) {
530 			seminfo.semusz = sem_ids.in_use;
531 			seminfo.semaem = used_sems;
532 		} else {
533 			seminfo.semusz = SEMUSZ;
534 			seminfo.semaem = SEMAEM;
535 		}
536 		max_id = sem_ids.max_id;
537 		up(&sem_ids.sem);
538 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
539 			return -EFAULT;
540 		return (max_id < 0) ? 0: max_id;
541 	}
542 	case SEM_STAT:
543 	{
544 		struct semid64_ds tbuf;
545 		int id;
546 
547 		if(semid >= sem_ids.entries->size)
548 			return -EINVAL;
549 
550 		memset(&tbuf,0,sizeof(tbuf));
551 
552 		sma = sem_lock(semid);
553 		if(sma == NULL)
554 			return -EINVAL;
555 
556 		err = -EACCES;
557 		if (ipcperms (&sma->sem_perm, S_IRUGO))
558 			goto out_unlock;
559 
560 		err = security_sem_semctl(sma, cmd);
561 		if (err)
562 			goto out_unlock;
563 
564 		id = sem_buildid(semid, sma->sem_perm.seq);
565 
566 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
567 		tbuf.sem_otime  = sma->sem_otime;
568 		tbuf.sem_ctime  = sma->sem_ctime;
569 		tbuf.sem_nsems  = sma->sem_nsems;
570 		sem_unlock(sma);
571 		if (copy_semid_to_user (arg.buf, &tbuf, version))
572 			return -EFAULT;
573 		return id;
574 	}
575 	default:
576 		return -EINVAL;
577 	}
578 	return err;
579 out_unlock:
580 	sem_unlock(sma);
581 	return err;
582 }
583 
584 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
585 {
586 	struct sem_array *sma;
587 	struct sem* curr;
588 	int err;
589 	ushort fast_sem_io[SEMMSL_FAST];
590 	ushort* sem_io = fast_sem_io;
591 	int nsems;
592 
593 	sma = sem_lock(semid);
594 	if(sma==NULL)
595 		return -EINVAL;
596 
597 	nsems = sma->sem_nsems;
598 
599 	err=-EIDRM;
600 	if (sem_checkid(sma,semid))
601 		goto out_unlock;
602 
603 	err = -EACCES;
604 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
605 		goto out_unlock;
606 
607 	err = security_sem_semctl(sma, cmd);
608 	if (err)
609 		goto out_unlock;
610 
611 	err = -EACCES;
612 	switch (cmd) {
613 	case GETALL:
614 	{
615 		ushort __user *array = arg.array;
616 		int i;
617 
618 		if(nsems > SEMMSL_FAST) {
619 			ipc_rcu_getref(sma);
620 			sem_unlock(sma);
621 
622 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
623 			if(sem_io == NULL) {
624 				ipc_lock_by_ptr(&sma->sem_perm);
625 				ipc_rcu_putref(sma);
626 				sem_unlock(sma);
627 				return -ENOMEM;
628 			}
629 
630 			ipc_lock_by_ptr(&sma->sem_perm);
631 			ipc_rcu_putref(sma);
632 			if (sma->sem_perm.deleted) {
633 				sem_unlock(sma);
634 				err = -EIDRM;
635 				goto out_free;
636 			}
637 		}
638 
639 		for (i = 0; i < sma->sem_nsems; i++)
640 			sem_io[i] = sma->sem_base[i].semval;
641 		sem_unlock(sma);
642 		err = 0;
643 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
644 			err = -EFAULT;
645 		goto out_free;
646 	}
647 	case SETALL:
648 	{
649 		int i;
650 		struct sem_undo *un;
651 
652 		ipc_rcu_getref(sma);
653 		sem_unlock(sma);
654 
655 		if(nsems > SEMMSL_FAST) {
656 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
657 			if(sem_io == NULL) {
658 				ipc_lock_by_ptr(&sma->sem_perm);
659 				ipc_rcu_putref(sma);
660 				sem_unlock(sma);
661 				return -ENOMEM;
662 			}
663 		}
664 
665 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
666 			ipc_lock_by_ptr(&sma->sem_perm);
667 			ipc_rcu_putref(sma);
668 			sem_unlock(sma);
669 			err = -EFAULT;
670 			goto out_free;
671 		}
672 
673 		for (i = 0; i < nsems; i++) {
674 			if (sem_io[i] > SEMVMX) {
675 				ipc_lock_by_ptr(&sma->sem_perm);
676 				ipc_rcu_putref(sma);
677 				sem_unlock(sma);
678 				err = -ERANGE;
679 				goto out_free;
680 			}
681 		}
682 		ipc_lock_by_ptr(&sma->sem_perm);
683 		ipc_rcu_putref(sma);
684 		if (sma->sem_perm.deleted) {
685 			sem_unlock(sma);
686 			err = -EIDRM;
687 			goto out_free;
688 		}
689 
690 		for (i = 0; i < nsems; i++)
691 			sma->sem_base[i].semval = sem_io[i];
692 		for (un = sma->undo; un; un = un->id_next)
693 			for (i = 0; i < nsems; i++)
694 				un->semadj[i] = 0;
695 		sma->sem_ctime = get_seconds();
696 		/* maybe some queued-up processes were waiting for this */
697 		update_queue(sma);
698 		err = 0;
699 		goto out_unlock;
700 	}
701 	case IPC_STAT:
702 	{
703 		struct semid64_ds tbuf;
704 		memset(&tbuf,0,sizeof(tbuf));
705 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
706 		tbuf.sem_otime  = sma->sem_otime;
707 		tbuf.sem_ctime  = sma->sem_ctime;
708 		tbuf.sem_nsems  = sma->sem_nsems;
709 		sem_unlock(sma);
710 		if (copy_semid_to_user (arg.buf, &tbuf, version))
711 			return -EFAULT;
712 		return 0;
713 	}
714 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
715 	}
716 	err = -EINVAL;
717 	if(semnum < 0 || semnum >= nsems)
718 		goto out_unlock;
719 
720 	curr = &sma->sem_base[semnum];
721 
722 	switch (cmd) {
723 	case GETVAL:
724 		err = curr->semval;
725 		goto out_unlock;
726 	case GETPID:
727 		err = curr->sempid;
728 		goto out_unlock;
729 	case GETNCNT:
730 		err = count_semncnt(sma,semnum);
731 		goto out_unlock;
732 	case GETZCNT:
733 		err = count_semzcnt(sma,semnum);
734 		goto out_unlock;
735 	case SETVAL:
736 	{
737 		int val = arg.val;
738 		struct sem_undo *un;
739 		err = -ERANGE;
740 		if (val > SEMVMX || val < 0)
741 			goto out_unlock;
742 
743 		for (un = sma->undo; un; un = un->id_next)
744 			un->semadj[semnum] = 0;
745 		curr->semval = val;
746 		curr->sempid = current->tgid;
747 		sma->sem_ctime = get_seconds();
748 		/* maybe some queued-up processes were waiting for this */
749 		update_queue(sma);
750 		err = 0;
751 		goto out_unlock;
752 	}
753 	}
754 out_unlock:
755 	sem_unlock(sma);
756 out_free:
757 	if(sem_io != fast_sem_io)
758 		ipc_free(sem_io, sizeof(ushort)*nsems);
759 	return err;
760 }
761 
762 struct sem_setbuf {
763 	uid_t	uid;
764 	gid_t	gid;
765 	mode_t	mode;
766 };
767 
768 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
769 {
770 	switch(version) {
771 	case IPC_64:
772 	    {
773 		struct semid64_ds tbuf;
774 
775 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
776 			return -EFAULT;
777 
778 		out->uid	= tbuf.sem_perm.uid;
779 		out->gid	= tbuf.sem_perm.gid;
780 		out->mode	= tbuf.sem_perm.mode;
781 
782 		return 0;
783 	    }
784 	case IPC_OLD:
785 	    {
786 		struct semid_ds tbuf_old;
787 
788 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
789 			return -EFAULT;
790 
791 		out->uid	= tbuf_old.sem_perm.uid;
792 		out->gid	= tbuf_old.sem_perm.gid;
793 		out->mode	= tbuf_old.sem_perm.mode;
794 
795 		return 0;
796 	    }
797 	default:
798 		return -EINVAL;
799 	}
800 }
801 
802 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
803 {
804 	struct sem_array *sma;
805 	int err;
806 	struct sem_setbuf setbuf;
807 	struct kern_ipc_perm *ipcp;
808 
809 	if(cmd == IPC_SET) {
810 		if(copy_semid_from_user (&setbuf, arg.buf, version))
811 			return -EFAULT;
812 		if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode)))
813 			return err;
814 	}
815 	sma = sem_lock(semid);
816 	if(sma==NULL)
817 		return -EINVAL;
818 
819 	if (sem_checkid(sma,semid)) {
820 		err=-EIDRM;
821 		goto out_unlock;
822 	}
823 	ipcp = &sma->sem_perm;
824 
825 	if (current->euid != ipcp->cuid &&
826 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
827 	    	err=-EPERM;
828 		goto out_unlock;
829 	}
830 
831 	err = security_sem_semctl(sma, cmd);
832 	if (err)
833 		goto out_unlock;
834 
835 	switch(cmd){
836 	case IPC_RMID:
837 		freeary(sma, semid);
838 		err = 0;
839 		break;
840 	case IPC_SET:
841 		ipcp->uid = setbuf.uid;
842 		ipcp->gid = setbuf.gid;
843 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
844 				| (setbuf.mode & S_IRWXUGO);
845 		sma->sem_ctime = get_seconds();
846 		sem_unlock(sma);
847 		err = 0;
848 		break;
849 	default:
850 		sem_unlock(sma);
851 		err = -EINVAL;
852 		break;
853 	}
854 	return err;
855 
856 out_unlock:
857 	sem_unlock(sma);
858 	return err;
859 }
860 
861 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
862 {
863 	int err = -EINVAL;
864 	int version;
865 
866 	if (semid < 0)
867 		return -EINVAL;
868 
869 	version = ipc_parse_version(&cmd);
870 
871 	switch(cmd) {
872 	case IPC_INFO:
873 	case SEM_INFO:
874 	case SEM_STAT:
875 		err = semctl_nolock(semid,semnum,cmd,version,arg);
876 		return err;
877 	case GETALL:
878 	case GETVAL:
879 	case GETPID:
880 	case GETNCNT:
881 	case GETZCNT:
882 	case IPC_STAT:
883 	case SETVAL:
884 	case SETALL:
885 		err = semctl_main(semid,semnum,cmd,version,arg);
886 		return err;
887 	case IPC_RMID:
888 	case IPC_SET:
889 		down(&sem_ids.sem);
890 		err = semctl_down(semid,semnum,cmd,version,arg);
891 		up(&sem_ids.sem);
892 		return err;
893 	default:
894 		return -EINVAL;
895 	}
896 }
897 
898 static inline void lock_semundo(void)
899 {
900 	struct sem_undo_list *undo_list;
901 
902 	undo_list = current->sysvsem.undo_list;
903 	if (undo_list)
904 		spin_lock(&undo_list->lock);
905 }
906 
907 /* This code has an interaction with copy_semundo().
908  * Consider; two tasks are sharing the undo_list. task1
909  * acquires the undo_list lock in lock_semundo().  If task2 now
910  * exits before task1 releases the lock (by calling
911  * unlock_semundo()), then task1 will never call spin_unlock().
912  * This leave the sem_undo_list in a locked state.  If task1 now creats task3
913  * and once again shares the sem_undo_list, the sem_undo_list will still be
914  * locked, and future SEM_UNDO operations will deadlock.  This case is
915  * dealt with in copy_semundo() by having it reinitialize the spin lock when
916  * the refcnt goes from 1 to 2.
917  */
918 static inline void unlock_semundo(void)
919 {
920 	struct sem_undo_list *undo_list;
921 
922 	undo_list = current->sysvsem.undo_list;
923 	if (undo_list)
924 		spin_unlock(&undo_list->lock);
925 }
926 
927 
928 /* If the task doesn't already have a undo_list, then allocate one
929  * here.  We guarantee there is only one thread using this undo list,
930  * and current is THE ONE
931  *
932  * If this allocation and assignment succeeds, but later
933  * portions of this code fail, there is no need to free the sem_undo_list.
934  * Just let it stay associated with the task, and it'll be freed later
935  * at exit time.
936  *
937  * This can block, so callers must hold no locks.
938  */
939 static inline int get_undo_list(struct sem_undo_list **undo_listp)
940 {
941 	struct sem_undo_list *undo_list;
942 	int size;
943 
944 	undo_list = current->sysvsem.undo_list;
945 	if (!undo_list) {
946 		size = sizeof(struct sem_undo_list);
947 		undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
948 		if (undo_list == NULL)
949 			return -ENOMEM;
950 		memset(undo_list, 0, size);
951 		spin_lock_init(&undo_list->lock);
952 		atomic_set(&undo_list->refcnt, 1);
953 		current->sysvsem.undo_list = undo_list;
954 	}
955 	*undo_listp = undo_list;
956 	return 0;
957 }
958 
959 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
960 {
961 	struct sem_undo **last, *un;
962 
963 	last = &ulp->proc_list;
964 	un = *last;
965 	while(un != NULL) {
966 		if(un->semid==semid)
967 			break;
968 		if(un->semid==-1) {
969 			*last=un->proc_next;
970 			kfree(un);
971 		} else {
972 			last=&un->proc_next;
973 		}
974 		un=*last;
975 	}
976 	return un;
977 }
978 
979 static struct sem_undo *find_undo(int semid)
980 {
981 	struct sem_array *sma;
982 	struct sem_undo_list *ulp;
983 	struct sem_undo *un, *new;
984 	int nsems;
985 	int error;
986 
987 	error = get_undo_list(&ulp);
988 	if (error)
989 		return ERR_PTR(error);
990 
991 	lock_semundo();
992 	un = lookup_undo(ulp, semid);
993 	unlock_semundo();
994 	if (likely(un!=NULL))
995 		goto out;
996 
997 	/* no undo structure around - allocate one. */
998 	sma = sem_lock(semid);
999 	un = ERR_PTR(-EINVAL);
1000 	if(sma==NULL)
1001 		goto out;
1002 	un = ERR_PTR(-EIDRM);
1003 	if (sem_checkid(sma,semid)) {
1004 		sem_unlock(sma);
1005 		goto out;
1006 	}
1007 	nsems = sma->sem_nsems;
1008 	ipc_rcu_getref(sma);
1009 	sem_unlock(sma);
1010 
1011 	new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1012 	if (!new) {
1013 		ipc_lock_by_ptr(&sma->sem_perm);
1014 		ipc_rcu_putref(sma);
1015 		sem_unlock(sma);
1016 		return ERR_PTR(-ENOMEM);
1017 	}
1018 	memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1019 	new->semadj = (short *) &new[1];
1020 	new->semid = semid;
1021 
1022 	lock_semundo();
1023 	un = lookup_undo(ulp, semid);
1024 	if (un) {
1025 		unlock_semundo();
1026 		kfree(new);
1027 		ipc_lock_by_ptr(&sma->sem_perm);
1028 		ipc_rcu_putref(sma);
1029 		sem_unlock(sma);
1030 		goto out;
1031 	}
1032 	ipc_lock_by_ptr(&sma->sem_perm);
1033 	ipc_rcu_putref(sma);
1034 	if (sma->sem_perm.deleted) {
1035 		sem_unlock(sma);
1036 		unlock_semundo();
1037 		kfree(new);
1038 		un = ERR_PTR(-EIDRM);
1039 		goto out;
1040 	}
1041 	new->proc_next = ulp->proc_list;
1042 	ulp->proc_list = new;
1043 	new->id_next = sma->undo;
1044 	sma->undo = new;
1045 	sem_unlock(sma);
1046 	un = new;
1047 	unlock_semundo();
1048 out:
1049 	return un;
1050 }
1051 
1052 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1053 			unsigned nsops, const struct timespec __user *timeout)
1054 {
1055 	int error = -EINVAL;
1056 	struct sem_array *sma;
1057 	struct sembuf fast_sops[SEMOPM_FAST];
1058 	struct sembuf* sops = fast_sops, *sop;
1059 	struct sem_undo *un;
1060 	int undos = 0, alter = 0, max;
1061 	struct sem_queue queue;
1062 	unsigned long jiffies_left = 0;
1063 
1064 	if (nsops < 1 || semid < 0)
1065 		return -EINVAL;
1066 	if (nsops > sc_semopm)
1067 		return -E2BIG;
1068 	if(nsops > SEMOPM_FAST) {
1069 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1070 		if(sops==NULL)
1071 			return -ENOMEM;
1072 	}
1073 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1074 		error=-EFAULT;
1075 		goto out_free;
1076 	}
1077 	if (timeout) {
1078 		struct timespec _timeout;
1079 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1080 			error = -EFAULT;
1081 			goto out_free;
1082 		}
1083 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1084 			_timeout.tv_nsec >= 1000000000L) {
1085 			error = -EINVAL;
1086 			goto out_free;
1087 		}
1088 		jiffies_left = timespec_to_jiffies(&_timeout);
1089 	}
1090 	max = 0;
1091 	for (sop = sops; sop < sops + nsops; sop++) {
1092 		if (sop->sem_num >= max)
1093 			max = sop->sem_num;
1094 		if (sop->sem_flg & SEM_UNDO)
1095 			undos = 1;
1096 		if (sop->sem_op != 0)
1097 			alter = 1;
1098 	}
1099 
1100 retry_undos:
1101 	if (undos) {
1102 		un = find_undo(semid);
1103 		if (IS_ERR(un)) {
1104 			error = PTR_ERR(un);
1105 			goto out_free;
1106 		}
1107 	} else
1108 		un = NULL;
1109 
1110 	sma = sem_lock(semid);
1111 	error=-EINVAL;
1112 	if(sma==NULL)
1113 		goto out_free;
1114 	error = -EIDRM;
1115 	if (sem_checkid(sma,semid))
1116 		goto out_unlock_free;
1117 	/*
1118 	 * semid identifies are not unique - find_undo may have
1119 	 * allocated an undo structure, it was invalidated by an RMID
1120 	 * and now a new array with received the same id. Check and retry.
1121 	 */
1122 	if (un && un->semid == -1) {
1123 		sem_unlock(sma);
1124 		goto retry_undos;
1125 	}
1126 	error = -EFBIG;
1127 	if (max >= sma->sem_nsems)
1128 		goto out_unlock_free;
1129 
1130 	error = -EACCES;
1131 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1132 		goto out_unlock_free;
1133 
1134 	error = security_sem_semop(sma, sops, nsops, alter);
1135 	if (error)
1136 		goto out_unlock_free;
1137 
1138 	error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1139 	if (error <= 0) {
1140 		if (alter && error == 0)
1141 			update_queue (sma);
1142 		goto out_unlock_free;
1143 	}
1144 
1145 	/* We need to sleep on this operation, so we put the current
1146 	 * task into the pending queue and go to sleep.
1147 	 */
1148 
1149 	queue.sma = sma;
1150 	queue.sops = sops;
1151 	queue.nsops = nsops;
1152 	queue.undo = un;
1153 	queue.pid = current->tgid;
1154 	queue.id = semid;
1155 	queue.alter = alter;
1156 	if (alter)
1157 		append_to_queue(sma ,&queue);
1158 	else
1159 		prepend_to_queue(sma ,&queue);
1160 
1161 	queue.status = -EINTR;
1162 	queue.sleeper = current;
1163 	current->state = TASK_INTERRUPTIBLE;
1164 	sem_unlock(sma);
1165 
1166 	if (timeout)
1167 		jiffies_left = schedule_timeout(jiffies_left);
1168 	else
1169 		schedule();
1170 
1171 	error = queue.status;
1172 	while(unlikely(error == IN_WAKEUP)) {
1173 		cpu_relax();
1174 		error = queue.status;
1175 	}
1176 
1177 	if (error != -EINTR) {
1178 		/* fast path: update_queue already obtained all requested
1179 		 * resources */
1180 		goto out_free;
1181 	}
1182 
1183 	sma = sem_lock(semid);
1184 	if(sma==NULL) {
1185 		if(queue.prev != NULL)
1186 			BUG();
1187 		error = -EIDRM;
1188 		goto out_free;
1189 	}
1190 
1191 	/*
1192 	 * If queue.status != -EINTR we are woken up by another process
1193 	 */
1194 	error = queue.status;
1195 	if (error != -EINTR) {
1196 		goto out_unlock_free;
1197 	}
1198 
1199 	/*
1200 	 * If an interrupt occurred we have to clean up the queue
1201 	 */
1202 	if (timeout && jiffies_left == 0)
1203 		error = -EAGAIN;
1204 	remove_from_queue(sma,&queue);
1205 	goto out_unlock_free;
1206 
1207 out_unlock_free:
1208 	sem_unlock(sma);
1209 out_free:
1210 	if(sops != fast_sops)
1211 		kfree(sops);
1212 	return error;
1213 }
1214 
1215 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1216 {
1217 	return sys_semtimedop(semid, tsops, nsops, NULL);
1218 }
1219 
1220 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1221  * parent and child tasks.
1222  *
1223  * See the notes above unlock_semundo() regarding the spin_lock_init()
1224  * in this code.  Initialize the undo_list->lock here instead of get_undo_list()
1225  * because of the reasoning in the comment above unlock_semundo.
1226  */
1227 
1228 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1229 {
1230 	struct sem_undo_list *undo_list;
1231 	int error;
1232 
1233 	if (clone_flags & CLONE_SYSVSEM) {
1234 		error = get_undo_list(&undo_list);
1235 		if (error)
1236 			return error;
1237 		atomic_inc(&undo_list->refcnt);
1238 		tsk->sysvsem.undo_list = undo_list;
1239 	} else
1240 		tsk->sysvsem.undo_list = NULL;
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * add semadj values to semaphores, free undo structures.
1247  * undo structures are not freed when semaphore arrays are destroyed
1248  * so some of them may be out of date.
1249  * IMPLEMENTATION NOTE: There is some confusion over whether the
1250  * set of adjustments that needs to be done should be done in an atomic
1251  * manner or not. That is, if we are attempting to decrement the semval
1252  * should we queue up and wait until we can do so legally?
1253  * The original implementation attempted to do this (queue and wait).
1254  * The current implementation does not do so. The POSIX standard
1255  * and SVID should be consulted to determine what behavior is mandated.
1256  */
1257 void exit_sem(struct task_struct *tsk)
1258 {
1259 	struct sem_undo_list *undo_list;
1260 	struct sem_undo *u, **up;
1261 
1262 	undo_list = tsk->sysvsem.undo_list;
1263 	if (!undo_list)
1264 		return;
1265 
1266 	if (!atomic_dec_and_test(&undo_list->refcnt))
1267 		return;
1268 
1269 	/* There's no need to hold the semundo list lock, as current
1270          * is the last task exiting for this undo list.
1271 	 */
1272 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1273 		struct sem_array *sma;
1274 		int nsems, i;
1275 		struct sem_undo *un, **unp;
1276 		int semid;
1277 
1278 		semid = u->semid;
1279 
1280 		if(semid == -1)
1281 			continue;
1282 		sma = sem_lock(semid);
1283 		if (sma == NULL)
1284 			continue;
1285 
1286 		if (u->semid == -1)
1287 			goto next_entry;
1288 
1289 		BUG_ON(sem_checkid(sma,u->semid));
1290 
1291 		/* remove u from the sma->undo list */
1292 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1293 			if (u == un)
1294 				goto found;
1295 		}
1296 		printk ("exit_sem undo list error id=%d\n", u->semid);
1297 		goto next_entry;
1298 found:
1299 		*unp = un->id_next;
1300 		/* perform adjustments registered in u */
1301 		nsems = sma->sem_nsems;
1302 		for (i = 0; i < nsems; i++) {
1303 			struct sem * sem = &sma->sem_base[i];
1304 			if (u->semadj[i]) {
1305 				sem->semval += u->semadj[i];
1306 				/*
1307 				 * Range checks of the new semaphore value,
1308 				 * not defined by sus:
1309 				 * - Some unices ignore the undo entirely
1310 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1311 				 * - some cap the value (e.g. FreeBSD caps
1312 				 *   at 0, but doesn't enforce SEMVMX)
1313 				 *
1314 				 * Linux caps the semaphore value, both at 0
1315 				 * and at SEMVMX.
1316 				 *
1317 				 * 	Manfred <manfred@colorfullife.com>
1318 				 */
1319 				if (sem->semval < 0)
1320 					sem->semval = 0;
1321 				if (sem->semval > SEMVMX)
1322 					sem->semval = SEMVMX;
1323 				sem->sempid = current->tgid;
1324 			}
1325 		}
1326 		sma->sem_otime = get_seconds();
1327 		/* maybe some queued-up processes were waiting for this */
1328 		update_queue(sma);
1329 next_entry:
1330 		sem_unlock(sma);
1331 	}
1332 	kfree(undo_list);
1333 }
1334 
1335 #ifdef CONFIG_PROC_FS
1336 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1337 {
1338 	struct sem_array *sma = it;
1339 
1340 	return seq_printf(s,
1341 			  "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1342 			  sma->sem_perm.key,
1343 			  sma->sem_id,
1344 			  sma->sem_perm.mode,
1345 			  sma->sem_nsems,
1346 			  sma->sem_perm.uid,
1347 			  sma->sem_perm.gid,
1348 			  sma->sem_perm.cuid,
1349 			  sma->sem_perm.cgid,
1350 			  sma->sem_otime,
1351 			  sma->sem_ctime);
1352 }
1353 #endif
1354