1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and 51 * count_semzcnt() 52 * - the task that performs a successful semop() scans the list of all 53 * sleeping tasks and completes any pending operations that can be fulfilled. 54 * Semaphores are actively given to waiting tasks (necessary for FIFO). 55 * (see update_queue()) 56 * - To improve the scalability, the actual wake-up calls are performed after 57 * dropping all locks. (see wake_up_sem_queue_prepare(), 58 * wake_up_sem_queue_do()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - The synchronizations between wake-ups due to a timeout/signal and a 64 * wake-up due to a completed semaphore operation is achieved by using an 65 * intermediate state (IN_WAKEUP). 66 * - UNDO values are stored in an array (one per process and per 67 * semaphore array, lazily allocated). For backwards compatibility, multiple 68 * modes for the UNDO variables are supported (per process, per thread) 69 * (see copy_semundo, CLONE_SYSVSEM) 70 * - There are two lists of the pending operations: a per-array list 71 * and per-semaphore list (stored in the array). This allows to achieve FIFO 72 * ordering without always scanning all pending operations. 73 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 74 */ 75 76 #include <linux/slab.h> 77 #include <linux/spinlock.h> 78 #include <linux/init.h> 79 #include <linux/proc_fs.h> 80 #include <linux/time.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/audit.h> 84 #include <linux/capability.h> 85 #include <linux/seq_file.h> 86 #include <linux/rwsem.h> 87 #include <linux/nsproxy.h> 88 #include <linux/ipc_namespace.h> 89 90 #include <asm/uaccess.h> 91 #include "util.h" 92 93 /* One semaphore structure for each semaphore in the system. */ 94 struct sem { 95 int semval; /* current value */ 96 int sempid; /* pid of last operation */ 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 98 struct list_head sem_pending; /* pending single-sop operations */ 99 }; 100 101 /* One queue for each sleeping process in the system. */ 102 struct sem_queue { 103 struct list_head list; /* queue of pending operations */ 104 struct task_struct *sleeper; /* this process */ 105 struct sem_undo *undo; /* undo structure */ 106 int pid; /* process id of requesting process */ 107 int status; /* completion status of operation */ 108 struct sembuf *sops; /* array of pending operations */ 109 int nsops; /* number of operations */ 110 int alter; /* does *sops alter the array? */ 111 }; 112 113 /* Each task has a list of undo requests. They are executed automatically 114 * when the process exits. 115 */ 116 struct sem_undo { 117 struct list_head list_proc; /* per-process list: * 118 * all undos from one process 119 * rcu protected */ 120 struct rcu_head rcu; /* rcu struct for sem_undo */ 121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 122 struct list_head list_id; /* per semaphore array list: 123 * all undos for one array */ 124 int semid; /* semaphore set identifier */ 125 short *semadj; /* array of adjustments */ 126 /* one per semaphore */ 127 }; 128 129 /* sem_undo_list controls shared access to the list of sem_undo structures 130 * that may be shared among all a CLONE_SYSVSEM task group. 131 */ 132 struct sem_undo_list { 133 atomic_t refcnt; 134 spinlock_t lock; 135 struct list_head list_proc; 136 }; 137 138 139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 140 141 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 142 143 static int newary(struct ipc_namespace *, struct ipc_params *); 144 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 145 #ifdef CONFIG_PROC_FS 146 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 147 #endif 148 149 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 150 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 151 152 /* 153 * linked list protection: 154 * sem_undo.id_next, 155 * sem_array.sem_pending{,last}, 156 * sem_array.sem_undo: sem_lock() for read/write 157 * sem_undo.proc_next: only "current" is allowed to read/write that field. 158 * 159 */ 160 161 #define sc_semmsl sem_ctls[0] 162 #define sc_semmns sem_ctls[1] 163 #define sc_semopm sem_ctls[2] 164 #define sc_semmni sem_ctls[3] 165 166 void sem_init_ns(struct ipc_namespace *ns) 167 { 168 ns->sc_semmsl = SEMMSL; 169 ns->sc_semmns = SEMMNS; 170 ns->sc_semopm = SEMOPM; 171 ns->sc_semmni = SEMMNI; 172 ns->used_sems = 0; 173 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 174 } 175 176 #ifdef CONFIG_IPC_NS 177 void sem_exit_ns(struct ipc_namespace *ns) 178 { 179 free_ipcs(ns, &sem_ids(ns), freeary); 180 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 181 } 182 #endif 183 184 void __init sem_init (void) 185 { 186 sem_init_ns(&init_ipc_ns); 187 ipc_init_proc_interface("sysvipc/sem", 188 " key semid perms nsems uid gid cuid cgid otime ctime\n", 189 IPC_SEM_IDS, sysvipc_sem_proc_show); 190 } 191 192 /* 193 * If the request contains only one semaphore operation, and there are 194 * no complex transactions pending, lock only the semaphore involved. 195 * Otherwise, lock the entire semaphore array, since we either have 196 * multiple semaphores in our own semops, or we need to look at 197 * semaphores from other pending complex operations. 198 * 199 * Carefully guard against sma->complex_count changing between zero 200 * and non-zero while we are spinning for the lock. The value of 201 * sma->complex_count cannot change while we are holding the lock, 202 * so sem_unlock should be fine. 203 * 204 * The global lock path checks that all the local locks have been released, 205 * checking each local lock once. This means that the local lock paths 206 * cannot start their critical sections while the global lock is held. 207 */ 208 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 209 int nsops) 210 { 211 int locknum; 212 again: 213 if (nsops == 1 && !sma->complex_count) { 214 struct sem *sem = sma->sem_base + sops->sem_num; 215 216 /* Lock just the semaphore we are interested in. */ 217 spin_lock(&sem->lock); 218 219 /* 220 * If sma->complex_count was set while we were spinning, 221 * we may need to look at things we did not lock here. 222 */ 223 if (unlikely(sma->complex_count)) { 224 spin_unlock(&sem->lock); 225 goto lock_array; 226 } 227 228 /* 229 * Another process is holding the global lock on the 230 * sem_array; we cannot enter our critical section, 231 * but have to wait for the global lock to be released. 232 */ 233 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) { 234 spin_unlock(&sem->lock); 235 spin_unlock_wait(&sma->sem_perm.lock); 236 goto again; 237 } 238 239 locknum = sops->sem_num; 240 } else { 241 int i; 242 /* 243 * Lock the semaphore array, and wait for all of the 244 * individual semaphore locks to go away. The code 245 * above ensures no new single-lock holders will enter 246 * their critical section while the array lock is held. 247 */ 248 lock_array: 249 spin_lock(&sma->sem_perm.lock); 250 for (i = 0; i < sma->sem_nsems; i++) { 251 struct sem *sem = sma->sem_base + i; 252 spin_unlock_wait(&sem->lock); 253 } 254 locknum = -1; 255 } 256 return locknum; 257 } 258 259 static inline void sem_unlock(struct sem_array *sma, int locknum) 260 { 261 if (locknum == -1) { 262 spin_unlock(&sma->sem_perm.lock); 263 } else { 264 struct sem *sem = sma->sem_base + locknum; 265 spin_unlock(&sem->lock); 266 } 267 rcu_read_unlock(); 268 } 269 270 /* 271 * sem_lock_(check_) routines are called in the paths where the rw_mutex 272 * is not held. 273 */ 274 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 275 int id, struct sembuf *sops, int nsops, int *locknum) 276 { 277 struct kern_ipc_perm *ipcp; 278 struct sem_array *sma; 279 280 rcu_read_lock(); 281 ipcp = ipc_obtain_object(&sem_ids(ns), id); 282 if (IS_ERR(ipcp)) { 283 sma = ERR_CAST(ipcp); 284 goto err; 285 } 286 287 sma = container_of(ipcp, struct sem_array, sem_perm); 288 *locknum = sem_lock(sma, sops, nsops); 289 290 /* ipc_rmid() may have already freed the ID while sem_lock 291 * was spinning: verify that the structure is still valid 292 */ 293 if (!ipcp->deleted) 294 return container_of(ipcp, struct sem_array, sem_perm); 295 296 sem_unlock(sma, *locknum); 297 sma = ERR_PTR(-EINVAL); 298 err: 299 rcu_read_unlock(); 300 return sma; 301 } 302 303 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 304 { 305 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); 306 307 if (IS_ERR(ipcp)) 308 return ERR_CAST(ipcp); 309 310 return container_of(ipcp, struct sem_array, sem_perm); 311 } 312 313 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 314 int id) 315 { 316 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 317 318 if (IS_ERR(ipcp)) 319 return ERR_CAST(ipcp); 320 321 return container_of(ipcp, struct sem_array, sem_perm); 322 } 323 324 static inline void sem_lock_and_putref(struct sem_array *sma) 325 { 326 rcu_read_lock(); 327 sem_lock(sma, NULL, -1); 328 ipc_rcu_putref(sma); 329 } 330 331 static inline void sem_putref(struct sem_array *sma) 332 { 333 sem_lock_and_putref(sma); 334 sem_unlock(sma, -1); 335 } 336 337 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 338 { 339 ipc_rmid(&sem_ids(ns), &s->sem_perm); 340 } 341 342 /* 343 * Lockless wakeup algorithm: 344 * Without the check/retry algorithm a lockless wakeup is possible: 345 * - queue.status is initialized to -EINTR before blocking. 346 * - wakeup is performed by 347 * * unlinking the queue entry from sma->sem_pending 348 * * setting queue.status to IN_WAKEUP 349 * This is the notification for the blocked thread that a 350 * result value is imminent. 351 * * call wake_up_process 352 * * set queue.status to the final value. 353 * - the previously blocked thread checks queue.status: 354 * * if it's IN_WAKEUP, then it must wait until the value changes 355 * * if it's not -EINTR, then the operation was completed by 356 * update_queue. semtimedop can return queue.status without 357 * performing any operation on the sem array. 358 * * otherwise it must acquire the spinlock and check what's up. 359 * 360 * The two-stage algorithm is necessary to protect against the following 361 * races: 362 * - if queue.status is set after wake_up_process, then the woken up idle 363 * thread could race forward and try (and fail) to acquire sma->lock 364 * before update_queue had a chance to set queue.status 365 * - if queue.status is written before wake_up_process and if the 366 * blocked process is woken up by a signal between writing 367 * queue.status and the wake_up_process, then the woken up 368 * process could return from semtimedop and die by calling 369 * sys_exit before wake_up_process is called. Then wake_up_process 370 * will oops, because the task structure is already invalid. 371 * (yes, this happened on s390 with sysv msg). 372 * 373 */ 374 #define IN_WAKEUP 1 375 376 /** 377 * newary - Create a new semaphore set 378 * @ns: namespace 379 * @params: ptr to the structure that contains key, semflg and nsems 380 * 381 * Called with sem_ids.rw_mutex held (as a writer) 382 */ 383 384 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 385 { 386 int id; 387 int retval; 388 struct sem_array *sma; 389 int size; 390 key_t key = params->key; 391 int nsems = params->u.nsems; 392 int semflg = params->flg; 393 int i; 394 395 if (!nsems) 396 return -EINVAL; 397 if (ns->used_sems + nsems > ns->sc_semmns) 398 return -ENOSPC; 399 400 size = sizeof (*sma) + nsems * sizeof (struct sem); 401 sma = ipc_rcu_alloc(size); 402 if (!sma) { 403 return -ENOMEM; 404 } 405 memset (sma, 0, size); 406 407 sma->sem_perm.mode = (semflg & S_IRWXUGO); 408 sma->sem_perm.key = key; 409 410 sma->sem_perm.security = NULL; 411 retval = security_sem_alloc(sma); 412 if (retval) { 413 ipc_rcu_putref(sma); 414 return retval; 415 } 416 417 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 418 if (id < 0) { 419 security_sem_free(sma); 420 ipc_rcu_putref(sma); 421 return id; 422 } 423 ns->used_sems += nsems; 424 425 sma->sem_base = (struct sem *) &sma[1]; 426 427 for (i = 0; i < nsems; i++) { 428 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending); 429 spin_lock_init(&sma->sem_base[i].lock); 430 } 431 432 sma->complex_count = 0; 433 INIT_LIST_HEAD(&sma->sem_pending); 434 INIT_LIST_HEAD(&sma->list_id); 435 sma->sem_nsems = nsems; 436 sma->sem_ctime = get_seconds(); 437 sem_unlock(sma, -1); 438 439 return sma->sem_perm.id; 440 } 441 442 443 /* 444 * Called with sem_ids.rw_mutex and ipcp locked. 445 */ 446 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 447 { 448 struct sem_array *sma; 449 450 sma = container_of(ipcp, struct sem_array, sem_perm); 451 return security_sem_associate(sma, semflg); 452 } 453 454 /* 455 * Called with sem_ids.rw_mutex and ipcp locked. 456 */ 457 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 458 struct ipc_params *params) 459 { 460 struct sem_array *sma; 461 462 sma = container_of(ipcp, struct sem_array, sem_perm); 463 if (params->u.nsems > sma->sem_nsems) 464 return -EINVAL; 465 466 return 0; 467 } 468 469 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 470 { 471 struct ipc_namespace *ns; 472 struct ipc_ops sem_ops; 473 struct ipc_params sem_params; 474 475 ns = current->nsproxy->ipc_ns; 476 477 if (nsems < 0 || nsems > ns->sc_semmsl) 478 return -EINVAL; 479 480 sem_ops.getnew = newary; 481 sem_ops.associate = sem_security; 482 sem_ops.more_checks = sem_more_checks; 483 484 sem_params.key = key; 485 sem_params.flg = semflg; 486 sem_params.u.nsems = nsems; 487 488 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 489 } 490 491 /* 492 * Determine whether a sequence of semaphore operations would succeed 493 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 494 */ 495 496 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 497 int nsops, struct sem_undo *un, int pid) 498 { 499 int result, sem_op; 500 struct sembuf *sop; 501 struct sem * curr; 502 503 for (sop = sops; sop < sops + nsops; sop++) { 504 curr = sma->sem_base + sop->sem_num; 505 sem_op = sop->sem_op; 506 result = curr->semval; 507 508 if (!sem_op && result) 509 goto would_block; 510 511 result += sem_op; 512 if (result < 0) 513 goto would_block; 514 if (result > SEMVMX) 515 goto out_of_range; 516 if (sop->sem_flg & SEM_UNDO) { 517 int undo = un->semadj[sop->sem_num] - sem_op; 518 /* 519 * Exceeding the undo range is an error. 520 */ 521 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 522 goto out_of_range; 523 } 524 curr->semval = result; 525 } 526 527 sop--; 528 while (sop >= sops) { 529 sma->sem_base[sop->sem_num].sempid = pid; 530 if (sop->sem_flg & SEM_UNDO) 531 un->semadj[sop->sem_num] -= sop->sem_op; 532 sop--; 533 } 534 535 return 0; 536 537 out_of_range: 538 result = -ERANGE; 539 goto undo; 540 541 would_block: 542 if (sop->sem_flg & IPC_NOWAIT) 543 result = -EAGAIN; 544 else 545 result = 1; 546 547 undo: 548 sop--; 549 while (sop >= sops) { 550 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 551 sop--; 552 } 553 554 return result; 555 } 556 557 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 558 * @q: queue entry that must be signaled 559 * @error: Error value for the signal 560 * 561 * Prepare the wake-up of the queue entry q. 562 */ 563 static void wake_up_sem_queue_prepare(struct list_head *pt, 564 struct sem_queue *q, int error) 565 { 566 if (list_empty(pt)) { 567 /* 568 * Hold preempt off so that we don't get preempted and have the 569 * wakee busy-wait until we're scheduled back on. 570 */ 571 preempt_disable(); 572 } 573 q->status = IN_WAKEUP; 574 q->pid = error; 575 576 list_add_tail(&q->list, pt); 577 } 578 579 /** 580 * wake_up_sem_queue_do(pt) - do the actual wake-up 581 * @pt: list of tasks to be woken up 582 * 583 * Do the actual wake-up. 584 * The function is called without any locks held, thus the semaphore array 585 * could be destroyed already and the tasks can disappear as soon as the 586 * status is set to the actual return code. 587 */ 588 static void wake_up_sem_queue_do(struct list_head *pt) 589 { 590 struct sem_queue *q, *t; 591 int did_something; 592 593 did_something = !list_empty(pt); 594 list_for_each_entry_safe(q, t, pt, list) { 595 wake_up_process(q->sleeper); 596 /* q can disappear immediately after writing q->status. */ 597 smp_wmb(); 598 q->status = q->pid; 599 } 600 if (did_something) 601 preempt_enable(); 602 } 603 604 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 605 { 606 list_del(&q->list); 607 if (q->nsops > 1) 608 sma->complex_count--; 609 } 610 611 /** check_restart(sma, q) 612 * @sma: semaphore array 613 * @q: the operation that just completed 614 * 615 * update_queue is O(N^2) when it restarts scanning the whole queue of 616 * waiting operations. Therefore this function checks if the restart is 617 * really necessary. It is called after a previously waiting operation 618 * was completed. 619 */ 620 static int check_restart(struct sem_array *sma, struct sem_queue *q) 621 { 622 struct sem *curr; 623 struct sem_queue *h; 624 625 /* if the operation didn't modify the array, then no restart */ 626 if (q->alter == 0) 627 return 0; 628 629 /* pending complex operations are too difficult to analyse */ 630 if (sma->complex_count) 631 return 1; 632 633 /* we were a sleeping complex operation. Too difficult */ 634 if (q->nsops > 1) 635 return 1; 636 637 curr = sma->sem_base + q->sops[0].sem_num; 638 639 /* No-one waits on this queue */ 640 if (list_empty(&curr->sem_pending)) 641 return 0; 642 643 /* the new semaphore value */ 644 if (curr->semval) { 645 /* It is impossible that someone waits for the new value: 646 * - q is a previously sleeping simple operation that 647 * altered the array. It must be a decrement, because 648 * simple increments never sleep. 649 * - The value is not 0, thus wait-for-zero won't proceed. 650 * - If there are older (higher priority) decrements 651 * in the queue, then they have observed the original 652 * semval value and couldn't proceed. The operation 653 * decremented to value - thus they won't proceed either. 654 */ 655 BUG_ON(q->sops[0].sem_op >= 0); 656 return 0; 657 } 658 /* 659 * semval is 0. Check if there are wait-for-zero semops. 660 * They must be the first entries in the per-semaphore queue 661 */ 662 h = list_first_entry(&curr->sem_pending, struct sem_queue, list); 663 BUG_ON(h->nsops != 1); 664 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num); 665 666 /* Yes, there is a wait-for-zero semop. Restart */ 667 if (h->sops[0].sem_op == 0) 668 return 1; 669 670 /* Again - no-one is waiting for the new value. */ 671 return 0; 672 } 673 674 675 /** 676 * update_queue(sma, semnum): Look for tasks that can be completed. 677 * @sma: semaphore array. 678 * @semnum: semaphore that was modified. 679 * @pt: list head for the tasks that must be woken up. 680 * 681 * update_queue must be called after a semaphore in a semaphore array 682 * was modified. If multiple semaphores were modified, update_queue must 683 * be called with semnum = -1, as well as with the number of each modified 684 * semaphore. 685 * The tasks that must be woken up are added to @pt. The return code 686 * is stored in q->pid. 687 * The function return 1 if at least one semop was completed successfully. 688 */ 689 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 690 { 691 struct sem_queue *q; 692 struct list_head *walk; 693 struct list_head *pending_list; 694 int semop_completed = 0; 695 696 if (semnum == -1) 697 pending_list = &sma->sem_pending; 698 else 699 pending_list = &sma->sem_base[semnum].sem_pending; 700 701 again: 702 walk = pending_list->next; 703 while (walk != pending_list) { 704 int error, restart; 705 706 q = container_of(walk, struct sem_queue, list); 707 walk = walk->next; 708 709 /* If we are scanning the single sop, per-semaphore list of 710 * one semaphore and that semaphore is 0, then it is not 711 * necessary to scan the "alter" entries: simple increments 712 * that affect only one entry succeed immediately and cannot 713 * be in the per semaphore pending queue, and decrements 714 * cannot be successful if the value is already 0. 715 */ 716 if (semnum != -1 && sma->sem_base[semnum].semval == 0 && 717 q->alter) 718 break; 719 720 error = try_atomic_semop(sma, q->sops, q->nsops, 721 q->undo, q->pid); 722 723 /* Does q->sleeper still need to sleep? */ 724 if (error > 0) 725 continue; 726 727 unlink_queue(sma, q); 728 729 if (error) { 730 restart = 0; 731 } else { 732 semop_completed = 1; 733 restart = check_restart(sma, q); 734 } 735 736 wake_up_sem_queue_prepare(pt, q, error); 737 if (restart) 738 goto again; 739 } 740 return semop_completed; 741 } 742 743 /** 744 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue 745 * @sma: semaphore array 746 * @sops: operations that were performed 747 * @nsops: number of operations 748 * @otime: force setting otime 749 * @pt: list head of the tasks that must be woken up. 750 * 751 * do_smart_update() does the required called to update_queue, based on the 752 * actual changes that were performed on the semaphore array. 753 * Note that the function does not do the actual wake-up: the caller is 754 * responsible for calling wake_up_sem_queue_do(@pt). 755 * It is safe to perform this call after dropping all locks. 756 */ 757 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 758 int otime, struct list_head *pt) 759 { 760 int i; 761 762 if (sma->complex_count || sops == NULL) { 763 if (update_queue(sma, -1, pt)) 764 otime = 1; 765 } 766 767 if (!sops) { 768 /* No semops; something special is going on. */ 769 for (i = 0; i < sma->sem_nsems; i++) { 770 if (update_queue(sma, i, pt)) 771 otime = 1; 772 } 773 goto done; 774 } 775 776 /* Check the semaphores that were modified. */ 777 for (i = 0; i < nsops; i++) { 778 if (sops[i].sem_op > 0 || 779 (sops[i].sem_op < 0 && 780 sma->sem_base[sops[i].sem_num].semval == 0)) 781 if (update_queue(sma, sops[i].sem_num, pt)) 782 otime = 1; 783 } 784 done: 785 if (otime) 786 sma->sem_otime = get_seconds(); 787 } 788 789 790 /* The following counts are associated to each semaphore: 791 * semncnt number of tasks waiting on semval being nonzero 792 * semzcnt number of tasks waiting on semval being zero 793 * This model assumes that a task waits on exactly one semaphore. 794 * Since semaphore operations are to be performed atomically, tasks actually 795 * wait on a whole sequence of semaphores simultaneously. 796 * The counts we return here are a rough approximation, but still 797 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 798 */ 799 static int count_semncnt (struct sem_array * sma, ushort semnum) 800 { 801 int semncnt; 802 struct sem_queue * q; 803 804 semncnt = 0; 805 list_for_each_entry(q, &sma->sem_pending, list) { 806 struct sembuf * sops = q->sops; 807 int nsops = q->nsops; 808 int i; 809 for (i = 0; i < nsops; i++) 810 if (sops[i].sem_num == semnum 811 && (sops[i].sem_op < 0) 812 && !(sops[i].sem_flg & IPC_NOWAIT)) 813 semncnt++; 814 } 815 return semncnt; 816 } 817 818 static int count_semzcnt (struct sem_array * sma, ushort semnum) 819 { 820 int semzcnt; 821 struct sem_queue * q; 822 823 semzcnt = 0; 824 list_for_each_entry(q, &sma->sem_pending, list) { 825 struct sembuf * sops = q->sops; 826 int nsops = q->nsops; 827 int i; 828 for (i = 0; i < nsops; i++) 829 if (sops[i].sem_num == semnum 830 && (sops[i].sem_op == 0) 831 && !(sops[i].sem_flg & IPC_NOWAIT)) 832 semzcnt++; 833 } 834 return semzcnt; 835 } 836 837 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked 838 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex 839 * remains locked on exit. 840 */ 841 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 842 { 843 struct sem_undo *un, *tu; 844 struct sem_queue *q, *tq; 845 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 846 struct list_head tasks; 847 int i; 848 849 /* Free the existing undo structures for this semaphore set. */ 850 assert_spin_locked(&sma->sem_perm.lock); 851 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 852 list_del(&un->list_id); 853 spin_lock(&un->ulp->lock); 854 un->semid = -1; 855 list_del_rcu(&un->list_proc); 856 spin_unlock(&un->ulp->lock); 857 kfree_rcu(un, rcu); 858 } 859 860 /* Wake up all pending processes and let them fail with EIDRM. */ 861 INIT_LIST_HEAD(&tasks); 862 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) { 863 unlink_queue(sma, q); 864 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 865 } 866 for (i = 0; i < sma->sem_nsems; i++) { 867 struct sem *sem = sma->sem_base + i; 868 list_for_each_entry_safe(q, tq, &sem->sem_pending, list) { 869 unlink_queue(sma, q); 870 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 871 } 872 } 873 874 /* Remove the semaphore set from the IDR */ 875 sem_rmid(ns, sma); 876 sem_unlock(sma, -1); 877 878 wake_up_sem_queue_do(&tasks); 879 ns->used_sems -= sma->sem_nsems; 880 security_sem_free(sma); 881 ipc_rcu_putref(sma); 882 } 883 884 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 885 { 886 switch(version) { 887 case IPC_64: 888 return copy_to_user(buf, in, sizeof(*in)); 889 case IPC_OLD: 890 { 891 struct semid_ds out; 892 893 memset(&out, 0, sizeof(out)); 894 895 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 896 897 out.sem_otime = in->sem_otime; 898 out.sem_ctime = in->sem_ctime; 899 out.sem_nsems = in->sem_nsems; 900 901 return copy_to_user(buf, &out, sizeof(out)); 902 } 903 default: 904 return -EINVAL; 905 } 906 } 907 908 static int semctl_nolock(struct ipc_namespace *ns, int semid, 909 int cmd, int version, void __user *p) 910 { 911 int err; 912 struct sem_array *sma; 913 914 switch(cmd) { 915 case IPC_INFO: 916 case SEM_INFO: 917 { 918 struct seminfo seminfo; 919 int max_id; 920 921 err = security_sem_semctl(NULL, cmd); 922 if (err) 923 return err; 924 925 memset(&seminfo,0,sizeof(seminfo)); 926 seminfo.semmni = ns->sc_semmni; 927 seminfo.semmns = ns->sc_semmns; 928 seminfo.semmsl = ns->sc_semmsl; 929 seminfo.semopm = ns->sc_semopm; 930 seminfo.semvmx = SEMVMX; 931 seminfo.semmnu = SEMMNU; 932 seminfo.semmap = SEMMAP; 933 seminfo.semume = SEMUME; 934 down_read(&sem_ids(ns).rw_mutex); 935 if (cmd == SEM_INFO) { 936 seminfo.semusz = sem_ids(ns).in_use; 937 seminfo.semaem = ns->used_sems; 938 } else { 939 seminfo.semusz = SEMUSZ; 940 seminfo.semaem = SEMAEM; 941 } 942 max_id = ipc_get_maxid(&sem_ids(ns)); 943 up_read(&sem_ids(ns).rw_mutex); 944 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 945 return -EFAULT; 946 return (max_id < 0) ? 0: max_id; 947 } 948 case IPC_STAT: 949 case SEM_STAT: 950 { 951 struct semid64_ds tbuf; 952 int id = 0; 953 954 memset(&tbuf, 0, sizeof(tbuf)); 955 956 if (cmd == SEM_STAT) { 957 rcu_read_lock(); 958 sma = sem_obtain_object(ns, semid); 959 if (IS_ERR(sma)) { 960 err = PTR_ERR(sma); 961 goto out_unlock; 962 } 963 id = sma->sem_perm.id; 964 } else { 965 rcu_read_lock(); 966 sma = sem_obtain_object_check(ns, semid); 967 if (IS_ERR(sma)) { 968 err = PTR_ERR(sma); 969 goto out_unlock; 970 } 971 } 972 973 err = -EACCES; 974 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 975 goto out_unlock; 976 977 err = security_sem_semctl(sma, cmd); 978 if (err) 979 goto out_unlock; 980 981 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 982 tbuf.sem_otime = sma->sem_otime; 983 tbuf.sem_ctime = sma->sem_ctime; 984 tbuf.sem_nsems = sma->sem_nsems; 985 rcu_read_unlock(); 986 if (copy_semid_to_user(p, &tbuf, version)) 987 return -EFAULT; 988 return id; 989 } 990 default: 991 return -EINVAL; 992 } 993 out_unlock: 994 rcu_read_unlock(); 995 return err; 996 } 997 998 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 999 unsigned long arg) 1000 { 1001 struct sem_undo *un; 1002 struct sem_array *sma; 1003 struct sem* curr; 1004 int err; 1005 struct list_head tasks; 1006 int val; 1007 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1008 /* big-endian 64bit */ 1009 val = arg >> 32; 1010 #else 1011 /* 32bit or little-endian 64bit */ 1012 val = arg; 1013 #endif 1014 1015 if (val > SEMVMX || val < 0) 1016 return -ERANGE; 1017 1018 INIT_LIST_HEAD(&tasks); 1019 1020 rcu_read_lock(); 1021 sma = sem_obtain_object_check(ns, semid); 1022 if (IS_ERR(sma)) { 1023 rcu_read_unlock(); 1024 return PTR_ERR(sma); 1025 } 1026 1027 if (semnum < 0 || semnum >= sma->sem_nsems) { 1028 rcu_read_unlock(); 1029 return -EINVAL; 1030 } 1031 1032 1033 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1034 rcu_read_unlock(); 1035 return -EACCES; 1036 } 1037 1038 err = security_sem_semctl(sma, SETVAL); 1039 if (err) { 1040 rcu_read_unlock(); 1041 return -EACCES; 1042 } 1043 1044 sem_lock(sma, NULL, -1); 1045 1046 curr = &sma->sem_base[semnum]; 1047 1048 assert_spin_locked(&sma->sem_perm.lock); 1049 list_for_each_entry(un, &sma->list_id, list_id) 1050 un->semadj[semnum] = 0; 1051 1052 curr->semval = val; 1053 curr->sempid = task_tgid_vnr(current); 1054 sma->sem_ctime = get_seconds(); 1055 /* maybe some queued-up processes were waiting for this */ 1056 do_smart_update(sma, NULL, 0, 0, &tasks); 1057 sem_unlock(sma, -1); 1058 wake_up_sem_queue_do(&tasks); 1059 return 0; 1060 } 1061 1062 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1063 int cmd, void __user *p) 1064 { 1065 struct sem_array *sma; 1066 struct sem* curr; 1067 int err, nsems; 1068 ushort fast_sem_io[SEMMSL_FAST]; 1069 ushort* sem_io = fast_sem_io; 1070 struct list_head tasks; 1071 1072 INIT_LIST_HEAD(&tasks); 1073 1074 rcu_read_lock(); 1075 sma = sem_obtain_object_check(ns, semid); 1076 if (IS_ERR(sma)) { 1077 rcu_read_unlock(); 1078 return PTR_ERR(sma); 1079 } 1080 1081 nsems = sma->sem_nsems; 1082 1083 err = -EACCES; 1084 if (ipcperms(ns, &sma->sem_perm, 1085 cmd == SETALL ? S_IWUGO : S_IRUGO)) { 1086 rcu_read_unlock(); 1087 goto out_wakeup; 1088 } 1089 1090 err = security_sem_semctl(sma, cmd); 1091 if (err) { 1092 rcu_read_unlock(); 1093 goto out_wakeup; 1094 } 1095 1096 err = -EACCES; 1097 switch (cmd) { 1098 case GETALL: 1099 { 1100 ushort __user *array = p; 1101 int i; 1102 1103 sem_lock(sma, NULL, -1); 1104 if(nsems > SEMMSL_FAST) { 1105 if (!ipc_rcu_getref(sma)) { 1106 sem_unlock(sma, -1); 1107 err = -EIDRM; 1108 goto out_free; 1109 } 1110 sem_unlock(sma, -1); 1111 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1112 if(sem_io == NULL) { 1113 sem_putref(sma); 1114 return -ENOMEM; 1115 } 1116 1117 sem_lock_and_putref(sma); 1118 if (sma->sem_perm.deleted) { 1119 sem_unlock(sma, -1); 1120 err = -EIDRM; 1121 goto out_free; 1122 } 1123 } 1124 for (i = 0; i < sma->sem_nsems; i++) 1125 sem_io[i] = sma->sem_base[i].semval; 1126 sem_unlock(sma, -1); 1127 err = 0; 1128 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1129 err = -EFAULT; 1130 goto out_free; 1131 } 1132 case SETALL: 1133 { 1134 int i; 1135 struct sem_undo *un; 1136 1137 if (!ipc_rcu_getref(sma)) { 1138 rcu_read_unlock(); 1139 return -EIDRM; 1140 } 1141 rcu_read_unlock(); 1142 1143 if(nsems > SEMMSL_FAST) { 1144 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1145 if(sem_io == NULL) { 1146 sem_putref(sma); 1147 return -ENOMEM; 1148 } 1149 } 1150 1151 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) { 1152 sem_putref(sma); 1153 err = -EFAULT; 1154 goto out_free; 1155 } 1156 1157 for (i = 0; i < nsems; i++) { 1158 if (sem_io[i] > SEMVMX) { 1159 sem_putref(sma); 1160 err = -ERANGE; 1161 goto out_free; 1162 } 1163 } 1164 sem_lock_and_putref(sma); 1165 if (sma->sem_perm.deleted) { 1166 sem_unlock(sma, -1); 1167 err = -EIDRM; 1168 goto out_free; 1169 } 1170 1171 for (i = 0; i < nsems; i++) 1172 sma->sem_base[i].semval = sem_io[i]; 1173 1174 assert_spin_locked(&sma->sem_perm.lock); 1175 list_for_each_entry(un, &sma->list_id, list_id) { 1176 for (i = 0; i < nsems; i++) 1177 un->semadj[i] = 0; 1178 } 1179 sma->sem_ctime = get_seconds(); 1180 /* maybe some queued-up processes were waiting for this */ 1181 do_smart_update(sma, NULL, 0, 0, &tasks); 1182 err = 0; 1183 goto out_unlock; 1184 } 1185 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1186 } 1187 err = -EINVAL; 1188 if (semnum < 0 || semnum >= nsems) { 1189 rcu_read_unlock(); 1190 goto out_wakeup; 1191 } 1192 1193 sem_lock(sma, NULL, -1); 1194 curr = &sma->sem_base[semnum]; 1195 1196 switch (cmd) { 1197 case GETVAL: 1198 err = curr->semval; 1199 goto out_unlock; 1200 case GETPID: 1201 err = curr->sempid; 1202 goto out_unlock; 1203 case GETNCNT: 1204 err = count_semncnt(sma,semnum); 1205 goto out_unlock; 1206 case GETZCNT: 1207 err = count_semzcnt(sma,semnum); 1208 goto out_unlock; 1209 } 1210 1211 out_unlock: 1212 sem_unlock(sma, -1); 1213 out_wakeup: 1214 wake_up_sem_queue_do(&tasks); 1215 out_free: 1216 if(sem_io != fast_sem_io) 1217 ipc_free(sem_io, sizeof(ushort)*nsems); 1218 return err; 1219 } 1220 1221 static inline unsigned long 1222 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1223 { 1224 switch(version) { 1225 case IPC_64: 1226 if (copy_from_user(out, buf, sizeof(*out))) 1227 return -EFAULT; 1228 return 0; 1229 case IPC_OLD: 1230 { 1231 struct semid_ds tbuf_old; 1232 1233 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1234 return -EFAULT; 1235 1236 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1237 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1238 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1239 1240 return 0; 1241 } 1242 default: 1243 return -EINVAL; 1244 } 1245 } 1246 1247 /* 1248 * This function handles some semctl commands which require the rw_mutex 1249 * to be held in write mode. 1250 * NOTE: no locks must be held, the rw_mutex is taken inside this function. 1251 */ 1252 static int semctl_down(struct ipc_namespace *ns, int semid, 1253 int cmd, int version, void __user *p) 1254 { 1255 struct sem_array *sma; 1256 int err; 1257 struct semid64_ds semid64; 1258 struct kern_ipc_perm *ipcp; 1259 1260 if(cmd == IPC_SET) { 1261 if (copy_semid_from_user(&semid64, p, version)) 1262 return -EFAULT; 1263 } 1264 1265 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1266 &semid64.sem_perm, 0); 1267 if (IS_ERR(ipcp)) 1268 return PTR_ERR(ipcp); 1269 1270 sma = container_of(ipcp, struct sem_array, sem_perm); 1271 1272 err = security_sem_semctl(sma, cmd); 1273 if (err) { 1274 rcu_read_unlock(); 1275 goto out_unlock; 1276 } 1277 1278 switch(cmd){ 1279 case IPC_RMID: 1280 sem_lock(sma, NULL, -1); 1281 freeary(ns, ipcp); 1282 goto out_up; 1283 case IPC_SET: 1284 sem_lock(sma, NULL, -1); 1285 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1286 if (err) 1287 goto out_unlock; 1288 sma->sem_ctime = get_seconds(); 1289 break; 1290 default: 1291 rcu_read_unlock(); 1292 err = -EINVAL; 1293 goto out_up; 1294 } 1295 1296 out_unlock: 1297 sem_unlock(sma, -1); 1298 out_up: 1299 up_write(&sem_ids(ns).rw_mutex); 1300 return err; 1301 } 1302 1303 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1304 { 1305 int version; 1306 struct ipc_namespace *ns; 1307 void __user *p = (void __user *)arg; 1308 1309 if (semid < 0) 1310 return -EINVAL; 1311 1312 version = ipc_parse_version(&cmd); 1313 ns = current->nsproxy->ipc_ns; 1314 1315 switch(cmd) { 1316 case IPC_INFO: 1317 case SEM_INFO: 1318 case IPC_STAT: 1319 case SEM_STAT: 1320 return semctl_nolock(ns, semid, cmd, version, p); 1321 case GETALL: 1322 case GETVAL: 1323 case GETPID: 1324 case GETNCNT: 1325 case GETZCNT: 1326 case SETALL: 1327 return semctl_main(ns, semid, semnum, cmd, p); 1328 case SETVAL: 1329 return semctl_setval(ns, semid, semnum, arg); 1330 case IPC_RMID: 1331 case IPC_SET: 1332 return semctl_down(ns, semid, cmd, version, p); 1333 default: 1334 return -EINVAL; 1335 } 1336 } 1337 1338 /* If the task doesn't already have a undo_list, then allocate one 1339 * here. We guarantee there is only one thread using this undo list, 1340 * and current is THE ONE 1341 * 1342 * If this allocation and assignment succeeds, but later 1343 * portions of this code fail, there is no need to free the sem_undo_list. 1344 * Just let it stay associated with the task, and it'll be freed later 1345 * at exit time. 1346 * 1347 * This can block, so callers must hold no locks. 1348 */ 1349 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1350 { 1351 struct sem_undo_list *undo_list; 1352 1353 undo_list = current->sysvsem.undo_list; 1354 if (!undo_list) { 1355 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1356 if (undo_list == NULL) 1357 return -ENOMEM; 1358 spin_lock_init(&undo_list->lock); 1359 atomic_set(&undo_list->refcnt, 1); 1360 INIT_LIST_HEAD(&undo_list->list_proc); 1361 1362 current->sysvsem.undo_list = undo_list; 1363 } 1364 *undo_listp = undo_list; 1365 return 0; 1366 } 1367 1368 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1369 { 1370 struct sem_undo *un; 1371 1372 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1373 if (un->semid == semid) 1374 return un; 1375 } 1376 return NULL; 1377 } 1378 1379 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1380 { 1381 struct sem_undo *un; 1382 1383 assert_spin_locked(&ulp->lock); 1384 1385 un = __lookup_undo(ulp, semid); 1386 if (un) { 1387 list_del_rcu(&un->list_proc); 1388 list_add_rcu(&un->list_proc, &ulp->list_proc); 1389 } 1390 return un; 1391 } 1392 1393 /** 1394 * find_alloc_undo - Lookup (and if not present create) undo array 1395 * @ns: namespace 1396 * @semid: semaphore array id 1397 * 1398 * The function looks up (and if not present creates) the undo structure. 1399 * The size of the undo structure depends on the size of the semaphore 1400 * array, thus the alloc path is not that straightforward. 1401 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1402 * performs a rcu_read_lock(). 1403 */ 1404 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1405 { 1406 struct sem_array *sma; 1407 struct sem_undo_list *ulp; 1408 struct sem_undo *un, *new; 1409 int nsems, error; 1410 1411 error = get_undo_list(&ulp); 1412 if (error) 1413 return ERR_PTR(error); 1414 1415 rcu_read_lock(); 1416 spin_lock(&ulp->lock); 1417 un = lookup_undo(ulp, semid); 1418 spin_unlock(&ulp->lock); 1419 if (likely(un!=NULL)) 1420 goto out; 1421 1422 /* no undo structure around - allocate one. */ 1423 /* step 1: figure out the size of the semaphore array */ 1424 sma = sem_obtain_object_check(ns, semid); 1425 if (IS_ERR(sma)) { 1426 rcu_read_unlock(); 1427 return ERR_CAST(sma); 1428 } 1429 1430 nsems = sma->sem_nsems; 1431 if (!ipc_rcu_getref(sma)) { 1432 rcu_read_unlock(); 1433 un = ERR_PTR(-EIDRM); 1434 goto out; 1435 } 1436 rcu_read_unlock(); 1437 1438 /* step 2: allocate new undo structure */ 1439 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1440 if (!new) { 1441 sem_putref(sma); 1442 return ERR_PTR(-ENOMEM); 1443 } 1444 1445 /* step 3: Acquire the lock on semaphore array */ 1446 sem_lock_and_putref(sma); 1447 if (sma->sem_perm.deleted) { 1448 sem_unlock(sma, -1); 1449 kfree(new); 1450 un = ERR_PTR(-EIDRM); 1451 goto out; 1452 } 1453 spin_lock(&ulp->lock); 1454 1455 /* 1456 * step 4: check for races: did someone else allocate the undo struct? 1457 */ 1458 un = lookup_undo(ulp, semid); 1459 if (un) { 1460 kfree(new); 1461 goto success; 1462 } 1463 /* step 5: initialize & link new undo structure */ 1464 new->semadj = (short *) &new[1]; 1465 new->ulp = ulp; 1466 new->semid = semid; 1467 assert_spin_locked(&ulp->lock); 1468 list_add_rcu(&new->list_proc, &ulp->list_proc); 1469 assert_spin_locked(&sma->sem_perm.lock); 1470 list_add(&new->list_id, &sma->list_id); 1471 un = new; 1472 1473 success: 1474 spin_unlock(&ulp->lock); 1475 rcu_read_lock(); 1476 sem_unlock(sma, -1); 1477 out: 1478 return un; 1479 } 1480 1481 1482 /** 1483 * get_queue_result - Retrieve the result code from sem_queue 1484 * @q: Pointer to queue structure 1485 * 1486 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1487 * q->status, then we must loop until the value is replaced with the final 1488 * value: This may happen if a task is woken up by an unrelated event (e.g. 1489 * signal) and in parallel the task is woken up by another task because it got 1490 * the requested semaphores. 1491 * 1492 * The function can be called with or without holding the semaphore spinlock. 1493 */ 1494 static int get_queue_result(struct sem_queue *q) 1495 { 1496 int error; 1497 1498 error = q->status; 1499 while (unlikely(error == IN_WAKEUP)) { 1500 cpu_relax(); 1501 error = q->status; 1502 } 1503 1504 return error; 1505 } 1506 1507 1508 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1509 unsigned, nsops, const struct timespec __user *, timeout) 1510 { 1511 int error = -EINVAL; 1512 struct sem_array *sma; 1513 struct sembuf fast_sops[SEMOPM_FAST]; 1514 struct sembuf* sops = fast_sops, *sop; 1515 struct sem_undo *un; 1516 int undos = 0, alter = 0, max, locknum; 1517 struct sem_queue queue; 1518 unsigned long jiffies_left = 0; 1519 struct ipc_namespace *ns; 1520 struct list_head tasks; 1521 1522 ns = current->nsproxy->ipc_ns; 1523 1524 if (nsops < 1 || semid < 0) 1525 return -EINVAL; 1526 if (nsops > ns->sc_semopm) 1527 return -E2BIG; 1528 if(nsops > SEMOPM_FAST) { 1529 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1530 if(sops==NULL) 1531 return -ENOMEM; 1532 } 1533 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1534 error=-EFAULT; 1535 goto out_free; 1536 } 1537 if (timeout) { 1538 struct timespec _timeout; 1539 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1540 error = -EFAULT; 1541 goto out_free; 1542 } 1543 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1544 _timeout.tv_nsec >= 1000000000L) { 1545 error = -EINVAL; 1546 goto out_free; 1547 } 1548 jiffies_left = timespec_to_jiffies(&_timeout); 1549 } 1550 max = 0; 1551 for (sop = sops; sop < sops + nsops; sop++) { 1552 if (sop->sem_num >= max) 1553 max = sop->sem_num; 1554 if (sop->sem_flg & SEM_UNDO) 1555 undos = 1; 1556 if (sop->sem_op != 0) 1557 alter = 1; 1558 } 1559 1560 INIT_LIST_HEAD(&tasks); 1561 1562 if (undos) { 1563 /* On success, find_alloc_undo takes the rcu_read_lock */ 1564 un = find_alloc_undo(ns, semid); 1565 if (IS_ERR(un)) { 1566 error = PTR_ERR(un); 1567 goto out_free; 1568 } 1569 } else { 1570 un = NULL; 1571 rcu_read_lock(); 1572 } 1573 1574 sma = sem_obtain_object_check(ns, semid); 1575 if (IS_ERR(sma)) { 1576 rcu_read_unlock(); 1577 error = PTR_ERR(sma); 1578 goto out_free; 1579 } 1580 1581 error = -EFBIG; 1582 if (max >= sma->sem_nsems) { 1583 rcu_read_unlock(); 1584 goto out_wakeup; 1585 } 1586 1587 error = -EACCES; 1588 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 1589 rcu_read_unlock(); 1590 goto out_wakeup; 1591 } 1592 1593 error = security_sem_semop(sma, sops, nsops, alter); 1594 if (error) { 1595 rcu_read_unlock(); 1596 goto out_wakeup; 1597 } 1598 1599 /* 1600 * semid identifiers are not unique - find_alloc_undo may have 1601 * allocated an undo structure, it was invalidated by an RMID 1602 * and now a new array with received the same id. Check and fail. 1603 * This case can be detected checking un->semid. The existence of 1604 * "un" itself is guaranteed by rcu. 1605 */ 1606 error = -EIDRM; 1607 locknum = sem_lock(sma, sops, nsops); 1608 if (un && un->semid == -1) 1609 goto out_unlock_free; 1610 1611 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); 1612 if (error <= 0) { 1613 if (alter && error == 0) 1614 do_smart_update(sma, sops, nsops, 1, &tasks); 1615 1616 goto out_unlock_free; 1617 } 1618 1619 /* We need to sleep on this operation, so we put the current 1620 * task into the pending queue and go to sleep. 1621 */ 1622 1623 queue.sops = sops; 1624 queue.nsops = nsops; 1625 queue.undo = un; 1626 queue.pid = task_tgid_vnr(current); 1627 queue.alter = alter; 1628 1629 if (nsops == 1) { 1630 struct sem *curr; 1631 curr = &sma->sem_base[sops->sem_num]; 1632 1633 if (alter) 1634 list_add_tail(&queue.list, &curr->sem_pending); 1635 else 1636 list_add(&queue.list, &curr->sem_pending); 1637 } else { 1638 if (alter) 1639 list_add_tail(&queue.list, &sma->sem_pending); 1640 else 1641 list_add(&queue.list, &sma->sem_pending); 1642 sma->complex_count++; 1643 } 1644 1645 queue.status = -EINTR; 1646 queue.sleeper = current; 1647 1648 sleep_again: 1649 current->state = TASK_INTERRUPTIBLE; 1650 sem_unlock(sma, locknum); 1651 1652 if (timeout) 1653 jiffies_left = schedule_timeout(jiffies_left); 1654 else 1655 schedule(); 1656 1657 error = get_queue_result(&queue); 1658 1659 if (error != -EINTR) { 1660 /* fast path: update_queue already obtained all requested 1661 * resources. 1662 * Perform a smp_mb(): User space could assume that semop() 1663 * is a memory barrier: Without the mb(), the cpu could 1664 * speculatively read in user space stale data that was 1665 * overwritten by the previous owner of the semaphore. 1666 */ 1667 smp_mb(); 1668 1669 goto out_free; 1670 } 1671 1672 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1673 1674 /* 1675 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1676 */ 1677 error = get_queue_result(&queue); 1678 1679 /* 1680 * Array removed? If yes, leave without sem_unlock(). 1681 */ 1682 if (IS_ERR(sma)) { 1683 goto out_free; 1684 } 1685 1686 1687 /* 1688 * If queue.status != -EINTR we are woken up by another process. 1689 * Leave without unlink_queue(), but with sem_unlock(). 1690 */ 1691 1692 if (error != -EINTR) { 1693 goto out_unlock_free; 1694 } 1695 1696 /* 1697 * If an interrupt occurred we have to clean up the queue 1698 */ 1699 if (timeout && jiffies_left == 0) 1700 error = -EAGAIN; 1701 1702 /* 1703 * If the wakeup was spurious, just retry 1704 */ 1705 if (error == -EINTR && !signal_pending(current)) 1706 goto sleep_again; 1707 1708 unlink_queue(sma, &queue); 1709 1710 out_unlock_free: 1711 sem_unlock(sma, locknum); 1712 out_wakeup: 1713 wake_up_sem_queue_do(&tasks); 1714 out_free: 1715 if(sops != fast_sops) 1716 kfree(sops); 1717 return error; 1718 } 1719 1720 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 1721 unsigned, nsops) 1722 { 1723 return sys_semtimedop(semid, tsops, nsops, NULL); 1724 } 1725 1726 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1727 * parent and child tasks. 1728 */ 1729 1730 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1731 { 1732 struct sem_undo_list *undo_list; 1733 int error; 1734 1735 if (clone_flags & CLONE_SYSVSEM) { 1736 error = get_undo_list(&undo_list); 1737 if (error) 1738 return error; 1739 atomic_inc(&undo_list->refcnt); 1740 tsk->sysvsem.undo_list = undo_list; 1741 } else 1742 tsk->sysvsem.undo_list = NULL; 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * add semadj values to semaphores, free undo structures. 1749 * undo structures are not freed when semaphore arrays are destroyed 1750 * so some of them may be out of date. 1751 * IMPLEMENTATION NOTE: There is some confusion over whether the 1752 * set of adjustments that needs to be done should be done in an atomic 1753 * manner or not. That is, if we are attempting to decrement the semval 1754 * should we queue up and wait until we can do so legally? 1755 * The original implementation attempted to do this (queue and wait). 1756 * The current implementation does not do so. The POSIX standard 1757 * and SVID should be consulted to determine what behavior is mandated. 1758 */ 1759 void exit_sem(struct task_struct *tsk) 1760 { 1761 struct sem_undo_list *ulp; 1762 1763 ulp = tsk->sysvsem.undo_list; 1764 if (!ulp) 1765 return; 1766 tsk->sysvsem.undo_list = NULL; 1767 1768 if (!atomic_dec_and_test(&ulp->refcnt)) 1769 return; 1770 1771 for (;;) { 1772 struct sem_array *sma; 1773 struct sem_undo *un; 1774 struct list_head tasks; 1775 int semid, i; 1776 1777 rcu_read_lock(); 1778 un = list_entry_rcu(ulp->list_proc.next, 1779 struct sem_undo, list_proc); 1780 if (&un->list_proc == &ulp->list_proc) 1781 semid = -1; 1782 else 1783 semid = un->semid; 1784 1785 if (semid == -1) { 1786 rcu_read_unlock(); 1787 break; 1788 } 1789 1790 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); 1791 /* exit_sem raced with IPC_RMID, nothing to do */ 1792 if (IS_ERR(sma)) { 1793 rcu_read_unlock(); 1794 continue; 1795 } 1796 1797 sem_lock(sma, NULL, -1); 1798 un = __lookup_undo(ulp, semid); 1799 if (un == NULL) { 1800 /* exit_sem raced with IPC_RMID+semget() that created 1801 * exactly the same semid. Nothing to do. 1802 */ 1803 sem_unlock(sma, -1); 1804 continue; 1805 } 1806 1807 /* remove un from the linked lists */ 1808 assert_spin_locked(&sma->sem_perm.lock); 1809 list_del(&un->list_id); 1810 1811 spin_lock(&ulp->lock); 1812 list_del_rcu(&un->list_proc); 1813 spin_unlock(&ulp->lock); 1814 1815 /* perform adjustments registered in un */ 1816 for (i = 0; i < sma->sem_nsems; i++) { 1817 struct sem * semaphore = &sma->sem_base[i]; 1818 if (un->semadj[i]) { 1819 semaphore->semval += un->semadj[i]; 1820 /* 1821 * Range checks of the new semaphore value, 1822 * not defined by sus: 1823 * - Some unices ignore the undo entirely 1824 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1825 * - some cap the value (e.g. FreeBSD caps 1826 * at 0, but doesn't enforce SEMVMX) 1827 * 1828 * Linux caps the semaphore value, both at 0 1829 * and at SEMVMX. 1830 * 1831 * Manfred <manfred@colorfullife.com> 1832 */ 1833 if (semaphore->semval < 0) 1834 semaphore->semval = 0; 1835 if (semaphore->semval > SEMVMX) 1836 semaphore->semval = SEMVMX; 1837 semaphore->sempid = task_tgid_vnr(current); 1838 } 1839 } 1840 /* maybe some queued-up processes were waiting for this */ 1841 INIT_LIST_HEAD(&tasks); 1842 do_smart_update(sma, NULL, 0, 1, &tasks); 1843 sem_unlock(sma, -1); 1844 wake_up_sem_queue_do(&tasks); 1845 1846 kfree_rcu(un, rcu); 1847 } 1848 kfree(ulp); 1849 } 1850 1851 #ifdef CONFIG_PROC_FS 1852 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1853 { 1854 struct user_namespace *user_ns = seq_user_ns(s); 1855 struct sem_array *sma = it; 1856 1857 return seq_printf(s, 1858 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 1859 sma->sem_perm.key, 1860 sma->sem_perm.id, 1861 sma->sem_perm.mode, 1862 sma->sem_nsems, 1863 from_kuid_munged(user_ns, sma->sem_perm.uid), 1864 from_kgid_munged(user_ns, sma->sem_perm.gid), 1865 from_kuid_munged(user_ns, sma->sem_perm.cuid), 1866 from_kgid_munged(user_ns, sma->sem_perm.cgid), 1867 sma->sem_otime, 1868 sma->sem_ctime); 1869 } 1870 #endif 1871