xref: /linux/ipc/sem.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51  *   count_semzcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
58  *   wake_up_sem_queue_do())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - The synchronizations between wake-ups due to a timeout/signal and a
64  *   wake-up due to a completed semaphore operation is achieved by using an
65  *   intermediate state (IN_WAKEUP).
66  * - UNDO values are stored in an array (one per process and per
67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
68  *   modes for the UNDO variables are supported (per process, per thread)
69  *   (see copy_semundo, CLONE_SYSVSEM)
70  * - There are two lists of the pending operations: a per-array list
71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
72  *   ordering without always scanning all pending operations.
73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89 
90 #include <asm/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	int	sempid;		/* pid of last operation */
97 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
98 	struct list_head sem_pending; /* pending single-sop operations */
99 };
100 
101 /* One queue for each sleeping process in the system. */
102 struct sem_queue {
103 	struct list_head	list;	 /* queue of pending operations */
104 	struct task_struct	*sleeper; /* this process */
105 	struct sem_undo		*undo;	 /* undo structure */
106 	int			pid;	 /* process id of requesting process */
107 	int			status;	 /* completion status of operation */
108 	struct sembuf		*sops;	 /* array of pending operations */
109 	int			nsops;	 /* number of operations */
110 	int			alter;	 /* does *sops alter the array? */
111 };
112 
113 /* Each task has a list of undo requests. They are executed automatically
114  * when the process exits.
115  */
116 struct sem_undo {
117 	struct list_head	list_proc;	/* per-process list: *
118 						 * all undos from one process
119 						 * rcu protected */
120 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
121 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
122 	struct list_head	list_id;	/* per semaphore array list:
123 						 * all undos for one array */
124 	int			semid;		/* semaphore set identifier */
125 	short			*semadj;	/* array of adjustments */
126 						/* one per semaphore */
127 };
128 
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130  * that may be shared among all a CLONE_SYSVSEM task group.
131  */
132 struct sem_undo_list {
133 	atomic_t		refcnt;
134 	spinlock_t		lock;
135 	struct list_head	list_proc;
136 };
137 
138 
139 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
140 
141 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
142 
143 static int newary(struct ipc_namespace *, struct ipc_params *);
144 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
145 #ifdef CONFIG_PROC_FS
146 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
147 #endif
148 
149 #define SEMMSL_FAST	256 /* 512 bytes on stack */
150 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
151 
152 /*
153  * linked list protection:
154  *	sem_undo.id_next,
155  *	sem_array.sem_pending{,last},
156  *	sem_array.sem_undo: sem_lock() for read/write
157  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
158  *
159  */
160 
161 #define sc_semmsl	sem_ctls[0]
162 #define sc_semmns	sem_ctls[1]
163 #define sc_semopm	sem_ctls[2]
164 #define sc_semmni	sem_ctls[3]
165 
166 void sem_init_ns(struct ipc_namespace *ns)
167 {
168 	ns->sc_semmsl = SEMMSL;
169 	ns->sc_semmns = SEMMNS;
170 	ns->sc_semopm = SEMOPM;
171 	ns->sc_semmni = SEMMNI;
172 	ns->used_sems = 0;
173 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
174 }
175 
176 #ifdef CONFIG_IPC_NS
177 void sem_exit_ns(struct ipc_namespace *ns)
178 {
179 	free_ipcs(ns, &sem_ids(ns), freeary);
180 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
181 }
182 #endif
183 
184 void __init sem_init (void)
185 {
186 	sem_init_ns(&init_ipc_ns);
187 	ipc_init_proc_interface("sysvipc/sem",
188 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
189 				IPC_SEM_IDS, sysvipc_sem_proc_show);
190 }
191 
192 /*
193  * If the request contains only one semaphore operation, and there are
194  * no complex transactions pending, lock only the semaphore involved.
195  * Otherwise, lock the entire semaphore array, since we either have
196  * multiple semaphores in our own semops, or we need to look at
197  * semaphores from other pending complex operations.
198  *
199  * Carefully guard against sma->complex_count changing between zero
200  * and non-zero while we are spinning for the lock. The value of
201  * sma->complex_count cannot change while we are holding the lock,
202  * so sem_unlock should be fine.
203  *
204  * The global lock path checks that all the local locks have been released,
205  * checking each local lock once. This means that the local lock paths
206  * cannot start their critical sections while the global lock is held.
207  */
208 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
209 			      int nsops)
210 {
211 	int locknum;
212  again:
213 	if (nsops == 1 && !sma->complex_count) {
214 		struct sem *sem = sma->sem_base + sops->sem_num;
215 
216 		/* Lock just the semaphore we are interested in. */
217 		spin_lock(&sem->lock);
218 
219 		/*
220 		 * If sma->complex_count was set while we were spinning,
221 		 * we may need to look at things we did not lock here.
222 		 */
223 		if (unlikely(sma->complex_count)) {
224 			spin_unlock(&sem->lock);
225 			goto lock_array;
226 		}
227 
228 		/*
229 		 * Another process is holding the global lock on the
230 		 * sem_array; we cannot enter our critical section,
231 		 * but have to wait for the global lock to be released.
232 		 */
233 		if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
234 			spin_unlock(&sem->lock);
235 			spin_unlock_wait(&sma->sem_perm.lock);
236 			goto again;
237 		}
238 
239 		locknum = sops->sem_num;
240 	} else {
241 		int i;
242 		/*
243 		 * Lock the semaphore array, and wait for all of the
244 		 * individual semaphore locks to go away.  The code
245 		 * above ensures no new single-lock holders will enter
246 		 * their critical section while the array lock is held.
247 		 */
248  lock_array:
249 		spin_lock(&sma->sem_perm.lock);
250 		for (i = 0; i < sma->sem_nsems; i++) {
251 			struct sem *sem = sma->sem_base + i;
252 			spin_unlock_wait(&sem->lock);
253 		}
254 		locknum = -1;
255 	}
256 	return locknum;
257 }
258 
259 static inline void sem_unlock(struct sem_array *sma, int locknum)
260 {
261 	if (locknum == -1) {
262 		spin_unlock(&sma->sem_perm.lock);
263 	} else {
264 		struct sem *sem = sma->sem_base + locknum;
265 		spin_unlock(&sem->lock);
266 	}
267 	rcu_read_unlock();
268 }
269 
270 /*
271  * sem_lock_(check_) routines are called in the paths where the rw_mutex
272  * is not held.
273  */
274 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
275 			int id, struct sembuf *sops, int nsops, int *locknum)
276 {
277 	struct kern_ipc_perm *ipcp;
278 	struct sem_array *sma;
279 
280 	rcu_read_lock();
281 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
282 	if (IS_ERR(ipcp)) {
283 		sma = ERR_CAST(ipcp);
284 		goto err;
285 	}
286 
287 	sma = container_of(ipcp, struct sem_array, sem_perm);
288 	*locknum = sem_lock(sma, sops, nsops);
289 
290 	/* ipc_rmid() may have already freed the ID while sem_lock
291 	 * was spinning: verify that the structure is still valid
292 	 */
293 	if (!ipcp->deleted)
294 		return container_of(ipcp, struct sem_array, sem_perm);
295 
296 	sem_unlock(sma, *locknum);
297 	sma = ERR_PTR(-EINVAL);
298 err:
299 	rcu_read_unlock();
300 	return sma;
301 }
302 
303 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
304 {
305 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
306 
307 	if (IS_ERR(ipcp))
308 		return ERR_CAST(ipcp);
309 
310 	return container_of(ipcp, struct sem_array, sem_perm);
311 }
312 
313 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
314 							int id)
315 {
316 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
317 
318 	if (IS_ERR(ipcp))
319 		return ERR_CAST(ipcp);
320 
321 	return container_of(ipcp, struct sem_array, sem_perm);
322 }
323 
324 static inline void sem_lock_and_putref(struct sem_array *sma)
325 {
326 	rcu_read_lock();
327 	sem_lock(sma, NULL, -1);
328 	ipc_rcu_putref(sma);
329 }
330 
331 static inline void sem_putref(struct sem_array *sma)
332 {
333 	sem_lock_and_putref(sma);
334 	sem_unlock(sma, -1);
335 }
336 
337 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
338 {
339 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
340 }
341 
342 /*
343  * Lockless wakeup algorithm:
344  * Without the check/retry algorithm a lockless wakeup is possible:
345  * - queue.status is initialized to -EINTR before blocking.
346  * - wakeup is performed by
347  *	* unlinking the queue entry from sma->sem_pending
348  *	* setting queue.status to IN_WAKEUP
349  *	  This is the notification for the blocked thread that a
350  *	  result value is imminent.
351  *	* call wake_up_process
352  *	* set queue.status to the final value.
353  * - the previously blocked thread checks queue.status:
354  *   	* if it's IN_WAKEUP, then it must wait until the value changes
355  *   	* if it's not -EINTR, then the operation was completed by
356  *   	  update_queue. semtimedop can return queue.status without
357  *   	  performing any operation on the sem array.
358  *   	* otherwise it must acquire the spinlock and check what's up.
359  *
360  * The two-stage algorithm is necessary to protect against the following
361  * races:
362  * - if queue.status is set after wake_up_process, then the woken up idle
363  *   thread could race forward and try (and fail) to acquire sma->lock
364  *   before update_queue had a chance to set queue.status
365  * - if queue.status is written before wake_up_process and if the
366  *   blocked process is woken up by a signal between writing
367  *   queue.status and the wake_up_process, then the woken up
368  *   process could return from semtimedop and die by calling
369  *   sys_exit before wake_up_process is called. Then wake_up_process
370  *   will oops, because the task structure is already invalid.
371  *   (yes, this happened on s390 with sysv msg).
372  *
373  */
374 #define IN_WAKEUP	1
375 
376 /**
377  * newary - Create a new semaphore set
378  * @ns: namespace
379  * @params: ptr to the structure that contains key, semflg and nsems
380  *
381  * Called with sem_ids.rw_mutex held (as a writer)
382  */
383 
384 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
385 {
386 	int id;
387 	int retval;
388 	struct sem_array *sma;
389 	int size;
390 	key_t key = params->key;
391 	int nsems = params->u.nsems;
392 	int semflg = params->flg;
393 	int i;
394 
395 	if (!nsems)
396 		return -EINVAL;
397 	if (ns->used_sems + nsems > ns->sc_semmns)
398 		return -ENOSPC;
399 
400 	size = sizeof (*sma) + nsems * sizeof (struct sem);
401 	sma = ipc_rcu_alloc(size);
402 	if (!sma) {
403 		return -ENOMEM;
404 	}
405 	memset (sma, 0, size);
406 
407 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
408 	sma->sem_perm.key = key;
409 
410 	sma->sem_perm.security = NULL;
411 	retval = security_sem_alloc(sma);
412 	if (retval) {
413 		ipc_rcu_putref(sma);
414 		return retval;
415 	}
416 
417 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
418 	if (id < 0) {
419 		security_sem_free(sma);
420 		ipc_rcu_putref(sma);
421 		return id;
422 	}
423 	ns->used_sems += nsems;
424 
425 	sma->sem_base = (struct sem *) &sma[1];
426 
427 	for (i = 0; i < nsems; i++) {
428 		INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
429 		spin_lock_init(&sma->sem_base[i].lock);
430 	}
431 
432 	sma->complex_count = 0;
433 	INIT_LIST_HEAD(&sma->sem_pending);
434 	INIT_LIST_HEAD(&sma->list_id);
435 	sma->sem_nsems = nsems;
436 	sma->sem_ctime = get_seconds();
437 	sem_unlock(sma, -1);
438 
439 	return sma->sem_perm.id;
440 }
441 
442 
443 /*
444  * Called with sem_ids.rw_mutex and ipcp locked.
445  */
446 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
447 {
448 	struct sem_array *sma;
449 
450 	sma = container_of(ipcp, struct sem_array, sem_perm);
451 	return security_sem_associate(sma, semflg);
452 }
453 
454 /*
455  * Called with sem_ids.rw_mutex and ipcp locked.
456  */
457 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
458 				struct ipc_params *params)
459 {
460 	struct sem_array *sma;
461 
462 	sma = container_of(ipcp, struct sem_array, sem_perm);
463 	if (params->u.nsems > sma->sem_nsems)
464 		return -EINVAL;
465 
466 	return 0;
467 }
468 
469 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
470 {
471 	struct ipc_namespace *ns;
472 	struct ipc_ops sem_ops;
473 	struct ipc_params sem_params;
474 
475 	ns = current->nsproxy->ipc_ns;
476 
477 	if (nsems < 0 || nsems > ns->sc_semmsl)
478 		return -EINVAL;
479 
480 	sem_ops.getnew = newary;
481 	sem_ops.associate = sem_security;
482 	sem_ops.more_checks = sem_more_checks;
483 
484 	sem_params.key = key;
485 	sem_params.flg = semflg;
486 	sem_params.u.nsems = nsems;
487 
488 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
489 }
490 
491 /*
492  * Determine whether a sequence of semaphore operations would succeed
493  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
494  */
495 
496 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
497 			     int nsops, struct sem_undo *un, int pid)
498 {
499 	int result, sem_op;
500 	struct sembuf *sop;
501 	struct sem * curr;
502 
503 	for (sop = sops; sop < sops + nsops; sop++) {
504 		curr = sma->sem_base + sop->sem_num;
505 		sem_op = sop->sem_op;
506 		result = curr->semval;
507 
508 		if (!sem_op && result)
509 			goto would_block;
510 
511 		result += sem_op;
512 		if (result < 0)
513 			goto would_block;
514 		if (result > SEMVMX)
515 			goto out_of_range;
516 		if (sop->sem_flg & SEM_UNDO) {
517 			int undo = un->semadj[sop->sem_num] - sem_op;
518 			/*
519 	 		 *	Exceeding the undo range is an error.
520 			 */
521 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
522 				goto out_of_range;
523 		}
524 		curr->semval = result;
525 	}
526 
527 	sop--;
528 	while (sop >= sops) {
529 		sma->sem_base[sop->sem_num].sempid = pid;
530 		if (sop->sem_flg & SEM_UNDO)
531 			un->semadj[sop->sem_num] -= sop->sem_op;
532 		sop--;
533 	}
534 
535 	return 0;
536 
537 out_of_range:
538 	result = -ERANGE;
539 	goto undo;
540 
541 would_block:
542 	if (sop->sem_flg & IPC_NOWAIT)
543 		result = -EAGAIN;
544 	else
545 		result = 1;
546 
547 undo:
548 	sop--;
549 	while (sop >= sops) {
550 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
551 		sop--;
552 	}
553 
554 	return result;
555 }
556 
557 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
558  * @q: queue entry that must be signaled
559  * @error: Error value for the signal
560  *
561  * Prepare the wake-up of the queue entry q.
562  */
563 static void wake_up_sem_queue_prepare(struct list_head *pt,
564 				struct sem_queue *q, int error)
565 {
566 	if (list_empty(pt)) {
567 		/*
568 		 * Hold preempt off so that we don't get preempted and have the
569 		 * wakee busy-wait until we're scheduled back on.
570 		 */
571 		preempt_disable();
572 	}
573 	q->status = IN_WAKEUP;
574 	q->pid = error;
575 
576 	list_add_tail(&q->list, pt);
577 }
578 
579 /**
580  * wake_up_sem_queue_do(pt) - do the actual wake-up
581  * @pt: list of tasks to be woken up
582  *
583  * Do the actual wake-up.
584  * The function is called without any locks held, thus the semaphore array
585  * could be destroyed already and the tasks can disappear as soon as the
586  * status is set to the actual return code.
587  */
588 static void wake_up_sem_queue_do(struct list_head *pt)
589 {
590 	struct sem_queue *q, *t;
591 	int did_something;
592 
593 	did_something = !list_empty(pt);
594 	list_for_each_entry_safe(q, t, pt, list) {
595 		wake_up_process(q->sleeper);
596 		/* q can disappear immediately after writing q->status. */
597 		smp_wmb();
598 		q->status = q->pid;
599 	}
600 	if (did_something)
601 		preempt_enable();
602 }
603 
604 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
605 {
606 	list_del(&q->list);
607 	if (q->nsops > 1)
608 		sma->complex_count--;
609 }
610 
611 /** check_restart(sma, q)
612  * @sma: semaphore array
613  * @q: the operation that just completed
614  *
615  * update_queue is O(N^2) when it restarts scanning the whole queue of
616  * waiting operations. Therefore this function checks if the restart is
617  * really necessary. It is called after a previously waiting operation
618  * was completed.
619  */
620 static int check_restart(struct sem_array *sma, struct sem_queue *q)
621 {
622 	struct sem *curr;
623 	struct sem_queue *h;
624 
625 	/* if the operation didn't modify the array, then no restart */
626 	if (q->alter == 0)
627 		return 0;
628 
629 	/* pending complex operations are too difficult to analyse */
630 	if (sma->complex_count)
631 		return 1;
632 
633 	/* we were a sleeping complex operation. Too difficult */
634 	if (q->nsops > 1)
635 		return 1;
636 
637 	curr = sma->sem_base + q->sops[0].sem_num;
638 
639 	/* No-one waits on this queue */
640 	if (list_empty(&curr->sem_pending))
641 		return 0;
642 
643 	/* the new semaphore value */
644 	if (curr->semval) {
645 		/* It is impossible that someone waits for the new value:
646 		 * - q is a previously sleeping simple operation that
647 		 *   altered the array. It must be a decrement, because
648 		 *   simple increments never sleep.
649 		 * - The value is not 0, thus wait-for-zero won't proceed.
650 		 * - If there are older (higher priority) decrements
651 		 *   in the queue, then they have observed the original
652 		 *   semval value and couldn't proceed. The operation
653 		 *   decremented to value - thus they won't proceed either.
654 		 */
655 		BUG_ON(q->sops[0].sem_op >= 0);
656 		return 0;
657 	}
658 	/*
659 	 * semval is 0. Check if there are wait-for-zero semops.
660 	 * They must be the first entries in the per-semaphore queue
661 	 */
662 	h = list_first_entry(&curr->sem_pending, struct sem_queue, list);
663 	BUG_ON(h->nsops != 1);
664 	BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
665 
666 	/* Yes, there is a wait-for-zero semop. Restart */
667 	if (h->sops[0].sem_op == 0)
668 		return 1;
669 
670 	/* Again - no-one is waiting for the new value. */
671 	return 0;
672 }
673 
674 
675 /**
676  * update_queue(sma, semnum): Look for tasks that can be completed.
677  * @sma: semaphore array.
678  * @semnum: semaphore that was modified.
679  * @pt: list head for the tasks that must be woken up.
680  *
681  * update_queue must be called after a semaphore in a semaphore array
682  * was modified. If multiple semaphores were modified, update_queue must
683  * be called with semnum = -1, as well as with the number of each modified
684  * semaphore.
685  * The tasks that must be woken up are added to @pt. The return code
686  * is stored in q->pid.
687  * The function return 1 if at least one semop was completed successfully.
688  */
689 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
690 {
691 	struct sem_queue *q;
692 	struct list_head *walk;
693 	struct list_head *pending_list;
694 	int semop_completed = 0;
695 
696 	if (semnum == -1)
697 		pending_list = &sma->sem_pending;
698 	else
699 		pending_list = &sma->sem_base[semnum].sem_pending;
700 
701 again:
702 	walk = pending_list->next;
703 	while (walk != pending_list) {
704 		int error, restart;
705 
706 		q = container_of(walk, struct sem_queue, list);
707 		walk = walk->next;
708 
709 		/* If we are scanning the single sop, per-semaphore list of
710 		 * one semaphore and that semaphore is 0, then it is not
711 		 * necessary to scan the "alter" entries: simple increments
712 		 * that affect only one entry succeed immediately and cannot
713 		 * be in the  per semaphore pending queue, and decrements
714 		 * cannot be successful if the value is already 0.
715 		 */
716 		if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
717 				q->alter)
718 			break;
719 
720 		error = try_atomic_semop(sma, q->sops, q->nsops,
721 					 q->undo, q->pid);
722 
723 		/* Does q->sleeper still need to sleep? */
724 		if (error > 0)
725 			continue;
726 
727 		unlink_queue(sma, q);
728 
729 		if (error) {
730 			restart = 0;
731 		} else {
732 			semop_completed = 1;
733 			restart = check_restart(sma, q);
734 		}
735 
736 		wake_up_sem_queue_prepare(pt, q, error);
737 		if (restart)
738 			goto again;
739 	}
740 	return semop_completed;
741 }
742 
743 /**
744  * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
745  * @sma: semaphore array
746  * @sops: operations that were performed
747  * @nsops: number of operations
748  * @otime: force setting otime
749  * @pt: list head of the tasks that must be woken up.
750  *
751  * do_smart_update() does the required called to update_queue, based on the
752  * actual changes that were performed on the semaphore array.
753  * Note that the function does not do the actual wake-up: the caller is
754  * responsible for calling wake_up_sem_queue_do(@pt).
755  * It is safe to perform this call after dropping all locks.
756  */
757 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
758 			int otime, struct list_head *pt)
759 {
760 	int i;
761 
762 	if (sma->complex_count || sops == NULL) {
763 		if (update_queue(sma, -1, pt))
764 			otime = 1;
765 	}
766 
767 	if (!sops) {
768 		/* No semops; something special is going on. */
769 		for (i = 0; i < sma->sem_nsems; i++) {
770 			if (update_queue(sma, i, pt))
771 				otime = 1;
772 		}
773 		goto done;
774 	}
775 
776 	/* Check the semaphores that were modified. */
777 	for (i = 0; i < nsops; i++) {
778 		if (sops[i].sem_op > 0 ||
779 			(sops[i].sem_op < 0 &&
780 				sma->sem_base[sops[i].sem_num].semval == 0))
781 			if (update_queue(sma, sops[i].sem_num, pt))
782 				otime = 1;
783 	}
784 done:
785 	if (otime)
786 		sma->sem_otime = get_seconds();
787 }
788 
789 
790 /* The following counts are associated to each semaphore:
791  *   semncnt        number of tasks waiting on semval being nonzero
792  *   semzcnt        number of tasks waiting on semval being zero
793  * This model assumes that a task waits on exactly one semaphore.
794  * Since semaphore operations are to be performed atomically, tasks actually
795  * wait on a whole sequence of semaphores simultaneously.
796  * The counts we return here are a rough approximation, but still
797  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
798  */
799 static int count_semncnt (struct sem_array * sma, ushort semnum)
800 {
801 	int semncnt;
802 	struct sem_queue * q;
803 
804 	semncnt = 0;
805 	list_for_each_entry(q, &sma->sem_pending, list) {
806 		struct sembuf * sops = q->sops;
807 		int nsops = q->nsops;
808 		int i;
809 		for (i = 0; i < nsops; i++)
810 			if (sops[i].sem_num == semnum
811 			    && (sops[i].sem_op < 0)
812 			    && !(sops[i].sem_flg & IPC_NOWAIT))
813 				semncnt++;
814 	}
815 	return semncnt;
816 }
817 
818 static int count_semzcnt (struct sem_array * sma, ushort semnum)
819 {
820 	int semzcnt;
821 	struct sem_queue * q;
822 
823 	semzcnt = 0;
824 	list_for_each_entry(q, &sma->sem_pending, list) {
825 		struct sembuf * sops = q->sops;
826 		int nsops = q->nsops;
827 		int i;
828 		for (i = 0; i < nsops; i++)
829 			if (sops[i].sem_num == semnum
830 			    && (sops[i].sem_op == 0)
831 			    && !(sops[i].sem_flg & IPC_NOWAIT))
832 				semzcnt++;
833 	}
834 	return semzcnt;
835 }
836 
837 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
838  * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
839  * remains locked on exit.
840  */
841 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
842 {
843 	struct sem_undo *un, *tu;
844 	struct sem_queue *q, *tq;
845 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
846 	struct list_head tasks;
847 	int i;
848 
849 	/* Free the existing undo structures for this semaphore set.  */
850 	assert_spin_locked(&sma->sem_perm.lock);
851 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
852 		list_del(&un->list_id);
853 		spin_lock(&un->ulp->lock);
854 		un->semid = -1;
855 		list_del_rcu(&un->list_proc);
856 		spin_unlock(&un->ulp->lock);
857 		kfree_rcu(un, rcu);
858 	}
859 
860 	/* Wake up all pending processes and let them fail with EIDRM. */
861 	INIT_LIST_HEAD(&tasks);
862 	list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
863 		unlink_queue(sma, q);
864 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
865 	}
866 	for (i = 0; i < sma->sem_nsems; i++) {
867 		struct sem *sem = sma->sem_base + i;
868 		list_for_each_entry_safe(q, tq, &sem->sem_pending, list) {
869 			unlink_queue(sma, q);
870 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
871 		}
872 	}
873 
874 	/* Remove the semaphore set from the IDR */
875 	sem_rmid(ns, sma);
876 	sem_unlock(sma, -1);
877 
878 	wake_up_sem_queue_do(&tasks);
879 	ns->used_sems -= sma->sem_nsems;
880 	security_sem_free(sma);
881 	ipc_rcu_putref(sma);
882 }
883 
884 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
885 {
886 	switch(version) {
887 	case IPC_64:
888 		return copy_to_user(buf, in, sizeof(*in));
889 	case IPC_OLD:
890 	    {
891 		struct semid_ds out;
892 
893 		memset(&out, 0, sizeof(out));
894 
895 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
896 
897 		out.sem_otime	= in->sem_otime;
898 		out.sem_ctime	= in->sem_ctime;
899 		out.sem_nsems	= in->sem_nsems;
900 
901 		return copy_to_user(buf, &out, sizeof(out));
902 	    }
903 	default:
904 		return -EINVAL;
905 	}
906 }
907 
908 static int semctl_nolock(struct ipc_namespace *ns, int semid,
909 			 int cmd, int version, void __user *p)
910 {
911 	int err;
912 	struct sem_array *sma;
913 
914 	switch(cmd) {
915 	case IPC_INFO:
916 	case SEM_INFO:
917 	{
918 		struct seminfo seminfo;
919 		int max_id;
920 
921 		err = security_sem_semctl(NULL, cmd);
922 		if (err)
923 			return err;
924 
925 		memset(&seminfo,0,sizeof(seminfo));
926 		seminfo.semmni = ns->sc_semmni;
927 		seminfo.semmns = ns->sc_semmns;
928 		seminfo.semmsl = ns->sc_semmsl;
929 		seminfo.semopm = ns->sc_semopm;
930 		seminfo.semvmx = SEMVMX;
931 		seminfo.semmnu = SEMMNU;
932 		seminfo.semmap = SEMMAP;
933 		seminfo.semume = SEMUME;
934 		down_read(&sem_ids(ns).rw_mutex);
935 		if (cmd == SEM_INFO) {
936 			seminfo.semusz = sem_ids(ns).in_use;
937 			seminfo.semaem = ns->used_sems;
938 		} else {
939 			seminfo.semusz = SEMUSZ;
940 			seminfo.semaem = SEMAEM;
941 		}
942 		max_id = ipc_get_maxid(&sem_ids(ns));
943 		up_read(&sem_ids(ns).rw_mutex);
944 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
945 			return -EFAULT;
946 		return (max_id < 0) ? 0: max_id;
947 	}
948 	case IPC_STAT:
949 	case SEM_STAT:
950 	{
951 		struct semid64_ds tbuf;
952 		int id = 0;
953 
954 		memset(&tbuf, 0, sizeof(tbuf));
955 
956 		if (cmd == SEM_STAT) {
957 			rcu_read_lock();
958 			sma = sem_obtain_object(ns, semid);
959 			if (IS_ERR(sma)) {
960 				err = PTR_ERR(sma);
961 				goto out_unlock;
962 			}
963 			id = sma->sem_perm.id;
964 		} else {
965 			rcu_read_lock();
966 			sma = sem_obtain_object_check(ns, semid);
967 			if (IS_ERR(sma)) {
968 				err = PTR_ERR(sma);
969 				goto out_unlock;
970 			}
971 		}
972 
973 		err = -EACCES;
974 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
975 			goto out_unlock;
976 
977 		err = security_sem_semctl(sma, cmd);
978 		if (err)
979 			goto out_unlock;
980 
981 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
982 		tbuf.sem_otime  = sma->sem_otime;
983 		tbuf.sem_ctime  = sma->sem_ctime;
984 		tbuf.sem_nsems  = sma->sem_nsems;
985 		rcu_read_unlock();
986 		if (copy_semid_to_user(p, &tbuf, version))
987 			return -EFAULT;
988 		return id;
989 	}
990 	default:
991 		return -EINVAL;
992 	}
993 out_unlock:
994 	rcu_read_unlock();
995 	return err;
996 }
997 
998 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
999 		unsigned long arg)
1000 {
1001 	struct sem_undo *un;
1002 	struct sem_array *sma;
1003 	struct sem* curr;
1004 	int err;
1005 	struct list_head tasks;
1006 	int val;
1007 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1008 	/* big-endian 64bit */
1009 	val = arg >> 32;
1010 #else
1011 	/* 32bit or little-endian 64bit */
1012 	val = arg;
1013 #endif
1014 
1015 	if (val > SEMVMX || val < 0)
1016 		return -ERANGE;
1017 
1018 	INIT_LIST_HEAD(&tasks);
1019 
1020 	rcu_read_lock();
1021 	sma = sem_obtain_object_check(ns, semid);
1022 	if (IS_ERR(sma)) {
1023 		rcu_read_unlock();
1024 		return PTR_ERR(sma);
1025 	}
1026 
1027 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1028 		rcu_read_unlock();
1029 		return -EINVAL;
1030 	}
1031 
1032 
1033 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1034 		rcu_read_unlock();
1035 		return -EACCES;
1036 	}
1037 
1038 	err = security_sem_semctl(sma, SETVAL);
1039 	if (err) {
1040 		rcu_read_unlock();
1041 		return -EACCES;
1042 	}
1043 
1044 	sem_lock(sma, NULL, -1);
1045 
1046 	curr = &sma->sem_base[semnum];
1047 
1048 	assert_spin_locked(&sma->sem_perm.lock);
1049 	list_for_each_entry(un, &sma->list_id, list_id)
1050 		un->semadj[semnum] = 0;
1051 
1052 	curr->semval = val;
1053 	curr->sempid = task_tgid_vnr(current);
1054 	sma->sem_ctime = get_seconds();
1055 	/* maybe some queued-up processes were waiting for this */
1056 	do_smart_update(sma, NULL, 0, 0, &tasks);
1057 	sem_unlock(sma, -1);
1058 	wake_up_sem_queue_do(&tasks);
1059 	return 0;
1060 }
1061 
1062 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1063 		int cmd, void __user *p)
1064 {
1065 	struct sem_array *sma;
1066 	struct sem* curr;
1067 	int err, nsems;
1068 	ushort fast_sem_io[SEMMSL_FAST];
1069 	ushort* sem_io = fast_sem_io;
1070 	struct list_head tasks;
1071 
1072 	INIT_LIST_HEAD(&tasks);
1073 
1074 	rcu_read_lock();
1075 	sma = sem_obtain_object_check(ns, semid);
1076 	if (IS_ERR(sma)) {
1077 		rcu_read_unlock();
1078 		return PTR_ERR(sma);
1079 	}
1080 
1081 	nsems = sma->sem_nsems;
1082 
1083 	err = -EACCES;
1084 	if (ipcperms(ns, &sma->sem_perm,
1085 			cmd == SETALL ? S_IWUGO : S_IRUGO)) {
1086 		rcu_read_unlock();
1087 		goto out_wakeup;
1088 	}
1089 
1090 	err = security_sem_semctl(sma, cmd);
1091 	if (err) {
1092 		rcu_read_unlock();
1093 		goto out_wakeup;
1094 	}
1095 
1096 	err = -EACCES;
1097 	switch (cmd) {
1098 	case GETALL:
1099 	{
1100 		ushort __user *array = p;
1101 		int i;
1102 
1103 		sem_lock(sma, NULL, -1);
1104 		if(nsems > SEMMSL_FAST) {
1105 			if (!ipc_rcu_getref(sma)) {
1106 				sem_unlock(sma, -1);
1107 				err = -EIDRM;
1108 				goto out_free;
1109 			}
1110 			sem_unlock(sma, -1);
1111 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1112 			if(sem_io == NULL) {
1113 				sem_putref(sma);
1114 				return -ENOMEM;
1115 			}
1116 
1117 			sem_lock_and_putref(sma);
1118 			if (sma->sem_perm.deleted) {
1119 				sem_unlock(sma, -1);
1120 				err = -EIDRM;
1121 				goto out_free;
1122 			}
1123 		}
1124 		for (i = 0; i < sma->sem_nsems; i++)
1125 			sem_io[i] = sma->sem_base[i].semval;
1126 		sem_unlock(sma, -1);
1127 		err = 0;
1128 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1129 			err = -EFAULT;
1130 		goto out_free;
1131 	}
1132 	case SETALL:
1133 	{
1134 		int i;
1135 		struct sem_undo *un;
1136 
1137 		if (!ipc_rcu_getref(sma)) {
1138 			rcu_read_unlock();
1139 			return -EIDRM;
1140 		}
1141 		rcu_read_unlock();
1142 
1143 		if(nsems > SEMMSL_FAST) {
1144 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1145 			if(sem_io == NULL) {
1146 				sem_putref(sma);
1147 				return -ENOMEM;
1148 			}
1149 		}
1150 
1151 		if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1152 			sem_putref(sma);
1153 			err = -EFAULT;
1154 			goto out_free;
1155 		}
1156 
1157 		for (i = 0; i < nsems; i++) {
1158 			if (sem_io[i] > SEMVMX) {
1159 				sem_putref(sma);
1160 				err = -ERANGE;
1161 				goto out_free;
1162 			}
1163 		}
1164 		sem_lock_and_putref(sma);
1165 		if (sma->sem_perm.deleted) {
1166 			sem_unlock(sma, -1);
1167 			err = -EIDRM;
1168 			goto out_free;
1169 		}
1170 
1171 		for (i = 0; i < nsems; i++)
1172 			sma->sem_base[i].semval = sem_io[i];
1173 
1174 		assert_spin_locked(&sma->sem_perm.lock);
1175 		list_for_each_entry(un, &sma->list_id, list_id) {
1176 			for (i = 0; i < nsems; i++)
1177 				un->semadj[i] = 0;
1178 		}
1179 		sma->sem_ctime = get_seconds();
1180 		/* maybe some queued-up processes were waiting for this */
1181 		do_smart_update(sma, NULL, 0, 0, &tasks);
1182 		err = 0;
1183 		goto out_unlock;
1184 	}
1185 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1186 	}
1187 	err = -EINVAL;
1188 	if (semnum < 0 || semnum >= nsems) {
1189 		rcu_read_unlock();
1190 		goto out_wakeup;
1191 	}
1192 
1193 	sem_lock(sma, NULL, -1);
1194 	curr = &sma->sem_base[semnum];
1195 
1196 	switch (cmd) {
1197 	case GETVAL:
1198 		err = curr->semval;
1199 		goto out_unlock;
1200 	case GETPID:
1201 		err = curr->sempid;
1202 		goto out_unlock;
1203 	case GETNCNT:
1204 		err = count_semncnt(sma,semnum);
1205 		goto out_unlock;
1206 	case GETZCNT:
1207 		err = count_semzcnt(sma,semnum);
1208 		goto out_unlock;
1209 	}
1210 
1211 out_unlock:
1212 	sem_unlock(sma, -1);
1213 out_wakeup:
1214 	wake_up_sem_queue_do(&tasks);
1215 out_free:
1216 	if(sem_io != fast_sem_io)
1217 		ipc_free(sem_io, sizeof(ushort)*nsems);
1218 	return err;
1219 }
1220 
1221 static inline unsigned long
1222 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1223 {
1224 	switch(version) {
1225 	case IPC_64:
1226 		if (copy_from_user(out, buf, sizeof(*out)))
1227 			return -EFAULT;
1228 		return 0;
1229 	case IPC_OLD:
1230 	    {
1231 		struct semid_ds tbuf_old;
1232 
1233 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1234 			return -EFAULT;
1235 
1236 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1237 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1238 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1239 
1240 		return 0;
1241 	    }
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 }
1246 
1247 /*
1248  * This function handles some semctl commands which require the rw_mutex
1249  * to be held in write mode.
1250  * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1251  */
1252 static int semctl_down(struct ipc_namespace *ns, int semid,
1253 		       int cmd, int version, void __user *p)
1254 {
1255 	struct sem_array *sma;
1256 	int err;
1257 	struct semid64_ds semid64;
1258 	struct kern_ipc_perm *ipcp;
1259 
1260 	if(cmd == IPC_SET) {
1261 		if (copy_semid_from_user(&semid64, p, version))
1262 			return -EFAULT;
1263 	}
1264 
1265 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1266 				      &semid64.sem_perm, 0);
1267 	if (IS_ERR(ipcp))
1268 		return PTR_ERR(ipcp);
1269 
1270 	sma = container_of(ipcp, struct sem_array, sem_perm);
1271 
1272 	err = security_sem_semctl(sma, cmd);
1273 	if (err) {
1274 		rcu_read_unlock();
1275 		goto out_unlock;
1276 	}
1277 
1278 	switch(cmd){
1279 	case IPC_RMID:
1280 		sem_lock(sma, NULL, -1);
1281 		freeary(ns, ipcp);
1282 		goto out_up;
1283 	case IPC_SET:
1284 		sem_lock(sma, NULL, -1);
1285 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1286 		if (err)
1287 			goto out_unlock;
1288 		sma->sem_ctime = get_seconds();
1289 		break;
1290 	default:
1291 		rcu_read_unlock();
1292 		err = -EINVAL;
1293 		goto out_up;
1294 	}
1295 
1296 out_unlock:
1297 	sem_unlock(sma, -1);
1298 out_up:
1299 	up_write(&sem_ids(ns).rw_mutex);
1300 	return err;
1301 }
1302 
1303 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1304 {
1305 	int version;
1306 	struct ipc_namespace *ns;
1307 	void __user *p = (void __user *)arg;
1308 
1309 	if (semid < 0)
1310 		return -EINVAL;
1311 
1312 	version = ipc_parse_version(&cmd);
1313 	ns = current->nsproxy->ipc_ns;
1314 
1315 	switch(cmd) {
1316 	case IPC_INFO:
1317 	case SEM_INFO:
1318 	case IPC_STAT:
1319 	case SEM_STAT:
1320 		return semctl_nolock(ns, semid, cmd, version, p);
1321 	case GETALL:
1322 	case GETVAL:
1323 	case GETPID:
1324 	case GETNCNT:
1325 	case GETZCNT:
1326 	case SETALL:
1327 		return semctl_main(ns, semid, semnum, cmd, p);
1328 	case SETVAL:
1329 		return semctl_setval(ns, semid, semnum, arg);
1330 	case IPC_RMID:
1331 	case IPC_SET:
1332 		return semctl_down(ns, semid, cmd, version, p);
1333 	default:
1334 		return -EINVAL;
1335 	}
1336 }
1337 
1338 /* If the task doesn't already have a undo_list, then allocate one
1339  * here.  We guarantee there is only one thread using this undo list,
1340  * and current is THE ONE
1341  *
1342  * If this allocation and assignment succeeds, but later
1343  * portions of this code fail, there is no need to free the sem_undo_list.
1344  * Just let it stay associated with the task, and it'll be freed later
1345  * at exit time.
1346  *
1347  * This can block, so callers must hold no locks.
1348  */
1349 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1350 {
1351 	struct sem_undo_list *undo_list;
1352 
1353 	undo_list = current->sysvsem.undo_list;
1354 	if (!undo_list) {
1355 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1356 		if (undo_list == NULL)
1357 			return -ENOMEM;
1358 		spin_lock_init(&undo_list->lock);
1359 		atomic_set(&undo_list->refcnt, 1);
1360 		INIT_LIST_HEAD(&undo_list->list_proc);
1361 
1362 		current->sysvsem.undo_list = undo_list;
1363 	}
1364 	*undo_listp = undo_list;
1365 	return 0;
1366 }
1367 
1368 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1369 {
1370 	struct sem_undo *un;
1371 
1372 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1373 		if (un->semid == semid)
1374 			return un;
1375 	}
1376 	return NULL;
1377 }
1378 
1379 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1380 {
1381 	struct sem_undo *un;
1382 
1383   	assert_spin_locked(&ulp->lock);
1384 
1385 	un = __lookup_undo(ulp, semid);
1386 	if (un) {
1387 		list_del_rcu(&un->list_proc);
1388 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1389 	}
1390 	return un;
1391 }
1392 
1393 /**
1394  * find_alloc_undo - Lookup (and if not present create) undo array
1395  * @ns: namespace
1396  * @semid: semaphore array id
1397  *
1398  * The function looks up (and if not present creates) the undo structure.
1399  * The size of the undo structure depends on the size of the semaphore
1400  * array, thus the alloc path is not that straightforward.
1401  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1402  * performs a rcu_read_lock().
1403  */
1404 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1405 {
1406 	struct sem_array *sma;
1407 	struct sem_undo_list *ulp;
1408 	struct sem_undo *un, *new;
1409 	int nsems, error;
1410 
1411 	error = get_undo_list(&ulp);
1412 	if (error)
1413 		return ERR_PTR(error);
1414 
1415 	rcu_read_lock();
1416 	spin_lock(&ulp->lock);
1417 	un = lookup_undo(ulp, semid);
1418 	spin_unlock(&ulp->lock);
1419 	if (likely(un!=NULL))
1420 		goto out;
1421 
1422 	/* no undo structure around - allocate one. */
1423 	/* step 1: figure out the size of the semaphore array */
1424 	sma = sem_obtain_object_check(ns, semid);
1425 	if (IS_ERR(sma)) {
1426 		rcu_read_unlock();
1427 		return ERR_CAST(sma);
1428 	}
1429 
1430 	nsems = sma->sem_nsems;
1431 	if (!ipc_rcu_getref(sma)) {
1432 		rcu_read_unlock();
1433 		un = ERR_PTR(-EIDRM);
1434 		goto out;
1435 	}
1436 	rcu_read_unlock();
1437 
1438 	/* step 2: allocate new undo structure */
1439 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1440 	if (!new) {
1441 		sem_putref(sma);
1442 		return ERR_PTR(-ENOMEM);
1443 	}
1444 
1445 	/* step 3: Acquire the lock on semaphore array */
1446 	sem_lock_and_putref(sma);
1447 	if (sma->sem_perm.deleted) {
1448 		sem_unlock(sma, -1);
1449 		kfree(new);
1450 		un = ERR_PTR(-EIDRM);
1451 		goto out;
1452 	}
1453 	spin_lock(&ulp->lock);
1454 
1455 	/*
1456 	 * step 4: check for races: did someone else allocate the undo struct?
1457 	 */
1458 	un = lookup_undo(ulp, semid);
1459 	if (un) {
1460 		kfree(new);
1461 		goto success;
1462 	}
1463 	/* step 5: initialize & link new undo structure */
1464 	new->semadj = (short *) &new[1];
1465 	new->ulp = ulp;
1466 	new->semid = semid;
1467 	assert_spin_locked(&ulp->lock);
1468 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1469 	assert_spin_locked(&sma->sem_perm.lock);
1470 	list_add(&new->list_id, &sma->list_id);
1471 	un = new;
1472 
1473 success:
1474 	spin_unlock(&ulp->lock);
1475 	rcu_read_lock();
1476 	sem_unlock(sma, -1);
1477 out:
1478 	return un;
1479 }
1480 
1481 
1482 /**
1483  * get_queue_result - Retrieve the result code from sem_queue
1484  * @q: Pointer to queue structure
1485  *
1486  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1487  * q->status, then we must loop until the value is replaced with the final
1488  * value: This may happen if a task is woken up by an unrelated event (e.g.
1489  * signal) and in parallel the task is woken up by another task because it got
1490  * the requested semaphores.
1491  *
1492  * The function can be called with or without holding the semaphore spinlock.
1493  */
1494 static int get_queue_result(struct sem_queue *q)
1495 {
1496 	int error;
1497 
1498 	error = q->status;
1499 	while (unlikely(error == IN_WAKEUP)) {
1500 		cpu_relax();
1501 		error = q->status;
1502 	}
1503 
1504 	return error;
1505 }
1506 
1507 
1508 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1509 		unsigned, nsops, const struct timespec __user *, timeout)
1510 {
1511 	int error = -EINVAL;
1512 	struct sem_array *sma;
1513 	struct sembuf fast_sops[SEMOPM_FAST];
1514 	struct sembuf* sops = fast_sops, *sop;
1515 	struct sem_undo *un;
1516 	int undos = 0, alter = 0, max, locknum;
1517 	struct sem_queue queue;
1518 	unsigned long jiffies_left = 0;
1519 	struct ipc_namespace *ns;
1520 	struct list_head tasks;
1521 
1522 	ns = current->nsproxy->ipc_ns;
1523 
1524 	if (nsops < 1 || semid < 0)
1525 		return -EINVAL;
1526 	if (nsops > ns->sc_semopm)
1527 		return -E2BIG;
1528 	if(nsops > SEMOPM_FAST) {
1529 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1530 		if(sops==NULL)
1531 			return -ENOMEM;
1532 	}
1533 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1534 		error=-EFAULT;
1535 		goto out_free;
1536 	}
1537 	if (timeout) {
1538 		struct timespec _timeout;
1539 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1540 			error = -EFAULT;
1541 			goto out_free;
1542 		}
1543 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1544 			_timeout.tv_nsec >= 1000000000L) {
1545 			error = -EINVAL;
1546 			goto out_free;
1547 		}
1548 		jiffies_left = timespec_to_jiffies(&_timeout);
1549 	}
1550 	max = 0;
1551 	for (sop = sops; sop < sops + nsops; sop++) {
1552 		if (sop->sem_num >= max)
1553 			max = sop->sem_num;
1554 		if (sop->sem_flg & SEM_UNDO)
1555 			undos = 1;
1556 		if (sop->sem_op != 0)
1557 			alter = 1;
1558 	}
1559 
1560 	INIT_LIST_HEAD(&tasks);
1561 
1562 	if (undos) {
1563 		/* On success, find_alloc_undo takes the rcu_read_lock */
1564 		un = find_alloc_undo(ns, semid);
1565 		if (IS_ERR(un)) {
1566 			error = PTR_ERR(un);
1567 			goto out_free;
1568 		}
1569 	} else {
1570 		un = NULL;
1571 		rcu_read_lock();
1572 	}
1573 
1574 	sma = sem_obtain_object_check(ns, semid);
1575 	if (IS_ERR(sma)) {
1576 		rcu_read_unlock();
1577 		error = PTR_ERR(sma);
1578 		goto out_free;
1579 	}
1580 
1581 	error = -EFBIG;
1582 	if (max >= sma->sem_nsems) {
1583 		rcu_read_unlock();
1584 		goto out_wakeup;
1585 	}
1586 
1587 	error = -EACCES;
1588 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1589 		rcu_read_unlock();
1590 		goto out_wakeup;
1591 	}
1592 
1593 	error = security_sem_semop(sma, sops, nsops, alter);
1594 	if (error) {
1595 		rcu_read_unlock();
1596 		goto out_wakeup;
1597 	}
1598 
1599 	/*
1600 	 * semid identifiers are not unique - find_alloc_undo may have
1601 	 * allocated an undo structure, it was invalidated by an RMID
1602 	 * and now a new array with received the same id. Check and fail.
1603 	 * This case can be detected checking un->semid. The existence of
1604 	 * "un" itself is guaranteed by rcu.
1605 	 */
1606 	error = -EIDRM;
1607 	locknum = sem_lock(sma, sops, nsops);
1608 	if (un && un->semid == -1)
1609 		goto out_unlock_free;
1610 
1611 	error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1612 	if (error <= 0) {
1613 		if (alter && error == 0)
1614 			do_smart_update(sma, sops, nsops, 1, &tasks);
1615 
1616 		goto out_unlock_free;
1617 	}
1618 
1619 	/* We need to sleep on this operation, so we put the current
1620 	 * task into the pending queue and go to sleep.
1621 	 */
1622 
1623 	queue.sops = sops;
1624 	queue.nsops = nsops;
1625 	queue.undo = un;
1626 	queue.pid = task_tgid_vnr(current);
1627 	queue.alter = alter;
1628 
1629 	if (nsops == 1) {
1630 		struct sem *curr;
1631 		curr = &sma->sem_base[sops->sem_num];
1632 
1633 		if (alter)
1634 			list_add_tail(&queue.list, &curr->sem_pending);
1635 		else
1636 			list_add(&queue.list, &curr->sem_pending);
1637 	} else {
1638 		if (alter)
1639 			list_add_tail(&queue.list, &sma->sem_pending);
1640 		else
1641 			list_add(&queue.list, &sma->sem_pending);
1642 		sma->complex_count++;
1643 	}
1644 
1645 	queue.status = -EINTR;
1646 	queue.sleeper = current;
1647 
1648 sleep_again:
1649 	current->state = TASK_INTERRUPTIBLE;
1650 	sem_unlock(sma, locknum);
1651 
1652 	if (timeout)
1653 		jiffies_left = schedule_timeout(jiffies_left);
1654 	else
1655 		schedule();
1656 
1657 	error = get_queue_result(&queue);
1658 
1659 	if (error != -EINTR) {
1660 		/* fast path: update_queue already obtained all requested
1661 		 * resources.
1662 		 * Perform a smp_mb(): User space could assume that semop()
1663 		 * is a memory barrier: Without the mb(), the cpu could
1664 		 * speculatively read in user space stale data that was
1665 		 * overwritten by the previous owner of the semaphore.
1666 		 */
1667 		smp_mb();
1668 
1669 		goto out_free;
1670 	}
1671 
1672 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1673 
1674 	/*
1675 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1676 	 */
1677 	error = get_queue_result(&queue);
1678 
1679 	/*
1680 	 * Array removed? If yes, leave without sem_unlock().
1681 	 */
1682 	if (IS_ERR(sma)) {
1683 		goto out_free;
1684 	}
1685 
1686 
1687 	/*
1688 	 * If queue.status != -EINTR we are woken up by another process.
1689 	 * Leave without unlink_queue(), but with sem_unlock().
1690 	 */
1691 
1692 	if (error != -EINTR) {
1693 		goto out_unlock_free;
1694 	}
1695 
1696 	/*
1697 	 * If an interrupt occurred we have to clean up the queue
1698 	 */
1699 	if (timeout && jiffies_left == 0)
1700 		error = -EAGAIN;
1701 
1702 	/*
1703 	 * If the wakeup was spurious, just retry
1704 	 */
1705 	if (error == -EINTR && !signal_pending(current))
1706 		goto sleep_again;
1707 
1708 	unlink_queue(sma, &queue);
1709 
1710 out_unlock_free:
1711 	sem_unlock(sma, locknum);
1712 out_wakeup:
1713 	wake_up_sem_queue_do(&tasks);
1714 out_free:
1715 	if(sops != fast_sops)
1716 		kfree(sops);
1717 	return error;
1718 }
1719 
1720 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1721 		unsigned, nsops)
1722 {
1723 	return sys_semtimedop(semid, tsops, nsops, NULL);
1724 }
1725 
1726 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1727  * parent and child tasks.
1728  */
1729 
1730 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1731 {
1732 	struct sem_undo_list *undo_list;
1733 	int error;
1734 
1735 	if (clone_flags & CLONE_SYSVSEM) {
1736 		error = get_undo_list(&undo_list);
1737 		if (error)
1738 			return error;
1739 		atomic_inc(&undo_list->refcnt);
1740 		tsk->sysvsem.undo_list = undo_list;
1741 	} else
1742 		tsk->sysvsem.undo_list = NULL;
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * add semadj values to semaphores, free undo structures.
1749  * undo structures are not freed when semaphore arrays are destroyed
1750  * so some of them may be out of date.
1751  * IMPLEMENTATION NOTE: There is some confusion over whether the
1752  * set of adjustments that needs to be done should be done in an atomic
1753  * manner or not. That is, if we are attempting to decrement the semval
1754  * should we queue up and wait until we can do so legally?
1755  * The original implementation attempted to do this (queue and wait).
1756  * The current implementation does not do so. The POSIX standard
1757  * and SVID should be consulted to determine what behavior is mandated.
1758  */
1759 void exit_sem(struct task_struct *tsk)
1760 {
1761 	struct sem_undo_list *ulp;
1762 
1763 	ulp = tsk->sysvsem.undo_list;
1764 	if (!ulp)
1765 		return;
1766 	tsk->sysvsem.undo_list = NULL;
1767 
1768 	if (!atomic_dec_and_test(&ulp->refcnt))
1769 		return;
1770 
1771 	for (;;) {
1772 		struct sem_array *sma;
1773 		struct sem_undo *un;
1774 		struct list_head tasks;
1775 		int semid, i;
1776 
1777 		rcu_read_lock();
1778 		un = list_entry_rcu(ulp->list_proc.next,
1779 				    struct sem_undo, list_proc);
1780 		if (&un->list_proc == &ulp->list_proc)
1781 			semid = -1;
1782 		 else
1783 			semid = un->semid;
1784 
1785 		if (semid == -1) {
1786 			rcu_read_unlock();
1787 			break;
1788 		}
1789 
1790 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1791 		/* exit_sem raced with IPC_RMID, nothing to do */
1792 		if (IS_ERR(sma)) {
1793 			rcu_read_unlock();
1794 			continue;
1795 		}
1796 
1797 		sem_lock(sma, NULL, -1);
1798 		un = __lookup_undo(ulp, semid);
1799 		if (un == NULL) {
1800 			/* exit_sem raced with IPC_RMID+semget() that created
1801 			 * exactly the same semid. Nothing to do.
1802 			 */
1803 			sem_unlock(sma, -1);
1804 			continue;
1805 		}
1806 
1807 		/* remove un from the linked lists */
1808 		assert_spin_locked(&sma->sem_perm.lock);
1809 		list_del(&un->list_id);
1810 
1811 		spin_lock(&ulp->lock);
1812 		list_del_rcu(&un->list_proc);
1813 		spin_unlock(&ulp->lock);
1814 
1815 		/* perform adjustments registered in un */
1816 		for (i = 0; i < sma->sem_nsems; i++) {
1817 			struct sem * semaphore = &sma->sem_base[i];
1818 			if (un->semadj[i]) {
1819 				semaphore->semval += un->semadj[i];
1820 				/*
1821 				 * Range checks of the new semaphore value,
1822 				 * not defined by sus:
1823 				 * - Some unices ignore the undo entirely
1824 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1825 				 * - some cap the value (e.g. FreeBSD caps
1826 				 *   at 0, but doesn't enforce SEMVMX)
1827 				 *
1828 				 * Linux caps the semaphore value, both at 0
1829 				 * and at SEMVMX.
1830 				 *
1831 				 * 	Manfred <manfred@colorfullife.com>
1832 				 */
1833 				if (semaphore->semval < 0)
1834 					semaphore->semval = 0;
1835 				if (semaphore->semval > SEMVMX)
1836 					semaphore->semval = SEMVMX;
1837 				semaphore->sempid = task_tgid_vnr(current);
1838 			}
1839 		}
1840 		/* maybe some queued-up processes were waiting for this */
1841 		INIT_LIST_HEAD(&tasks);
1842 		do_smart_update(sma, NULL, 0, 1, &tasks);
1843 		sem_unlock(sma, -1);
1844 		wake_up_sem_queue_do(&tasks);
1845 
1846 		kfree_rcu(un, rcu);
1847 	}
1848 	kfree(ulp);
1849 }
1850 
1851 #ifdef CONFIG_PROC_FS
1852 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1853 {
1854 	struct user_namespace *user_ns = seq_user_ns(s);
1855 	struct sem_array *sma = it;
1856 
1857 	return seq_printf(s,
1858 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1859 			  sma->sem_perm.key,
1860 			  sma->sem_perm.id,
1861 			  sma->sem_perm.mode,
1862 			  sma->sem_nsems,
1863 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
1864 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
1865 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
1866 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
1867 			  sma->sem_otime,
1868 			  sma->sem_ctime);
1869 }
1870 #endif
1871