xref: /linux/ipc/sem.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
87 
88 #include <linux/uaccess.h>
89 #include "util.h"
90 
91 
92 /* One queue for each sleeping process in the system. */
93 struct sem_queue {
94 	struct list_head	list;	 /* queue of pending operations */
95 	struct task_struct	*sleeper; /* this process */
96 	struct sem_undo		*undo;	 /* undo structure */
97 	int			pid;	 /* process id of requesting process */
98 	int			status;	 /* completion status of operation */
99 	struct sembuf		*sops;	 /* array of pending operations */
100 	struct sembuf		*blocking; /* the operation that blocked */
101 	int			nsops;	 /* number of operations */
102 	bool			alter;	 /* does *sops alter the array? */
103 	bool                    dupsop;	 /* sops on more than one sem_num */
104 };
105 
106 /* Each task has a list of undo requests. They are executed automatically
107  * when the process exits.
108  */
109 struct sem_undo {
110 	struct list_head	list_proc;	/* per-process list: *
111 						 * all undos from one process
112 						 * rcu protected */
113 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
114 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
115 	struct list_head	list_id;	/* per semaphore array list:
116 						 * all undos for one array */
117 	int			semid;		/* semaphore set identifier */
118 	short			*semadj;	/* array of adjustments */
119 						/* one per semaphore */
120 };
121 
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123  * that may be shared among all a CLONE_SYSVSEM task group.
124  */
125 struct sem_undo_list {
126 	refcount_t		refcnt;
127 	spinlock_t		lock;
128 	struct list_head	list_proc;
129 };
130 
131 
132 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
133 
134 static int newary(struct ipc_namespace *, struct ipc_params *);
135 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
138 #endif
139 
140 #define SEMMSL_FAST	256 /* 512 bytes on stack */
141 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
142 
143 /*
144  * Switching from the mode suitable for simple ops
145  * to the mode for complex ops is costly. Therefore:
146  * use some hysteresis
147  */
148 #define USE_GLOBAL_LOCK_HYSTERESIS	10
149 
150 /*
151  * Locking:
152  * a) global sem_lock() for read/write
153  *	sem_undo.id_next,
154  *	sem_array.complex_count,
155  *	sem_array.pending{_alter,_const},
156  *	sem_array.sem_undo
157  *
158  * b) global or semaphore sem_lock() for read/write:
159  *	sem_array.sems[i].pending_{const,alter}:
160  *
161  * c) special:
162  *	sem_undo_list.list_proc:
163  *	* undo_list->lock for write
164  *	* rcu for read
165  *	use_global_lock:
166  *	* global sem_lock() for write
167  *	* either local or global sem_lock() for read.
168  *
169  * Memory ordering:
170  * Most ordering is enforced by using spin_lock() and spin_unlock().
171  * The special case is use_global_lock:
172  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173  * using smp_store_release().
174  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175  * smp_load_acquire().
176  * Setting it from 0 to non-zero must be ordered with regards to
177  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178  * is inside a spin_lock() and after a write from 0 to non-zero a
179  * spin_lock()+spin_unlock() is done.
180  */
181 
182 #define sc_semmsl	sem_ctls[0]
183 #define sc_semmns	sem_ctls[1]
184 #define sc_semopm	sem_ctls[2]
185 #define sc_semmni	sem_ctls[3]
186 
187 int sem_init_ns(struct ipc_namespace *ns)
188 {
189 	ns->sc_semmsl = SEMMSL;
190 	ns->sc_semmns = SEMMNS;
191 	ns->sc_semopm = SEMOPM;
192 	ns->sc_semmni = SEMMNI;
193 	ns->used_sems = 0;
194 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
195 }
196 
197 #ifdef CONFIG_IPC_NS
198 void sem_exit_ns(struct ipc_namespace *ns)
199 {
200 	free_ipcs(ns, &sem_ids(ns), freeary);
201 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
203 }
204 #endif
205 
206 int __init sem_init(void)
207 {
208 	const int err = sem_init_ns(&init_ipc_ns);
209 
210 	ipc_init_proc_interface("sysvipc/sem",
211 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
212 				IPC_SEM_IDS, sysvipc_sem_proc_show);
213 	return err;
214 }
215 
216 /**
217  * unmerge_queues - unmerge queues, if possible.
218  * @sma: semaphore array
219  *
220  * The function unmerges the wait queues if complex_count is 0.
221  * It must be called prior to dropping the global semaphore array lock.
222  */
223 static void unmerge_queues(struct sem_array *sma)
224 {
225 	struct sem_queue *q, *tq;
226 
227 	/* complex operations still around? */
228 	if (sma->complex_count)
229 		return;
230 	/*
231 	 * We will switch back to simple mode.
232 	 * Move all pending operation back into the per-semaphore
233 	 * queues.
234 	 */
235 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
236 		struct sem *curr;
237 		curr = &sma->sems[q->sops[0].sem_num];
238 
239 		list_add_tail(&q->list, &curr->pending_alter);
240 	}
241 	INIT_LIST_HEAD(&sma->pending_alter);
242 }
243 
244 /**
245  * merge_queues - merge single semop queues into global queue
246  * @sma: semaphore array
247  *
248  * This function merges all per-semaphore queues into the global queue.
249  * It is necessary to achieve FIFO ordering for the pending single-sop
250  * operations when a multi-semop operation must sleep.
251  * Only the alter operations must be moved, the const operations can stay.
252  */
253 static void merge_queues(struct sem_array *sma)
254 {
255 	int i;
256 	for (i = 0; i < sma->sem_nsems; i++) {
257 		struct sem *sem = &sma->sems[i];
258 
259 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
260 	}
261 }
262 
263 static void sem_rcu_free(struct rcu_head *head)
264 {
265 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
266 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
267 
268 	security_sem_free(sma);
269 	kvfree(sma);
270 }
271 
272 /*
273  * Enter the mode suitable for non-simple operations:
274  * Caller must own sem_perm.lock.
275  */
276 static void complexmode_enter(struct sem_array *sma)
277 {
278 	int i;
279 	struct sem *sem;
280 
281 	if (sma->use_global_lock > 0)  {
282 		/*
283 		 * We are already in global lock mode.
284 		 * Nothing to do, just reset the
285 		 * counter until we return to simple mode.
286 		 */
287 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
288 		return;
289 	}
290 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
291 
292 	for (i = 0; i < sma->sem_nsems; i++) {
293 		sem = &sma->sems[i];
294 		spin_lock(&sem->lock);
295 		spin_unlock(&sem->lock);
296 	}
297 }
298 
299 /*
300  * Try to leave the mode that disallows simple operations:
301  * Caller must own sem_perm.lock.
302  */
303 static void complexmode_tryleave(struct sem_array *sma)
304 {
305 	if (sma->complex_count)  {
306 		/* Complex ops are sleeping.
307 		 * We must stay in complex mode
308 		 */
309 		return;
310 	}
311 	if (sma->use_global_lock == 1) {
312 		/*
313 		 * Immediately after setting use_global_lock to 0,
314 		 * a simple op can start. Thus: all memory writes
315 		 * performed by the current operation must be visible
316 		 * before we set use_global_lock to 0.
317 		 */
318 		smp_store_release(&sma->use_global_lock, 0);
319 	} else {
320 		sma->use_global_lock--;
321 	}
322 }
323 
324 #define SEM_GLOBAL_LOCK	(-1)
325 /*
326  * If the request contains only one semaphore operation, and there are
327  * no complex transactions pending, lock only the semaphore involved.
328  * Otherwise, lock the entire semaphore array, since we either have
329  * multiple semaphores in our own semops, or we need to look at
330  * semaphores from other pending complex operations.
331  */
332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 			      int nsops)
334 {
335 	struct sem *sem;
336 
337 	if (nsops != 1) {
338 		/* Complex operation - acquire a full lock */
339 		ipc_lock_object(&sma->sem_perm);
340 
341 		/* Prevent parallel simple ops */
342 		complexmode_enter(sma);
343 		return SEM_GLOBAL_LOCK;
344 	}
345 
346 	/*
347 	 * Only one semaphore affected - try to optimize locking.
348 	 * Optimized locking is possible if no complex operation
349 	 * is either enqueued or processed right now.
350 	 *
351 	 * Both facts are tracked by use_global_mode.
352 	 */
353 	sem = &sma->sems[sops->sem_num];
354 
355 	/*
356 	 * Initial check for use_global_lock. Just an optimization,
357 	 * no locking, no memory barrier.
358 	 */
359 	if (!sma->use_global_lock) {
360 		/*
361 		 * It appears that no complex operation is around.
362 		 * Acquire the per-semaphore lock.
363 		 */
364 		spin_lock(&sem->lock);
365 
366 		/* pairs with smp_store_release() */
367 		if (!smp_load_acquire(&sma->use_global_lock)) {
368 			/* fast path successful! */
369 			return sops->sem_num;
370 		}
371 		spin_unlock(&sem->lock);
372 	}
373 
374 	/* slow path: acquire the full lock */
375 	ipc_lock_object(&sma->sem_perm);
376 
377 	if (sma->use_global_lock == 0) {
378 		/*
379 		 * The use_global_lock mode ended while we waited for
380 		 * sma->sem_perm.lock. Thus we must switch to locking
381 		 * with sem->lock.
382 		 * Unlike in the fast path, there is no need to recheck
383 		 * sma->use_global_lock after we have acquired sem->lock:
384 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
385 		 * change.
386 		 */
387 		spin_lock(&sem->lock);
388 
389 		ipc_unlock_object(&sma->sem_perm);
390 		return sops->sem_num;
391 	} else {
392 		/*
393 		 * Not a false alarm, thus continue to use the global lock
394 		 * mode. No need for complexmode_enter(), this was done by
395 		 * the caller that has set use_global_mode to non-zero.
396 		 */
397 		return SEM_GLOBAL_LOCK;
398 	}
399 }
400 
401 static inline void sem_unlock(struct sem_array *sma, int locknum)
402 {
403 	if (locknum == SEM_GLOBAL_LOCK) {
404 		unmerge_queues(sma);
405 		complexmode_tryleave(sma);
406 		ipc_unlock_object(&sma->sem_perm);
407 	} else {
408 		struct sem *sem = &sma->sems[locknum];
409 		spin_unlock(&sem->lock);
410 	}
411 }
412 
413 /*
414  * sem_lock_(check_) routines are called in the paths where the rwsem
415  * is not held.
416  *
417  * The caller holds the RCU read lock.
418  */
419 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
420 {
421 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
422 
423 	if (IS_ERR(ipcp))
424 		return ERR_CAST(ipcp);
425 
426 	return container_of(ipcp, struct sem_array, sem_perm);
427 }
428 
429 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
430 							int id)
431 {
432 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
433 
434 	if (IS_ERR(ipcp))
435 		return ERR_CAST(ipcp);
436 
437 	return container_of(ipcp, struct sem_array, sem_perm);
438 }
439 
440 static inline void sem_lock_and_putref(struct sem_array *sma)
441 {
442 	sem_lock(sma, NULL, -1);
443 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
444 }
445 
446 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
447 {
448 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
449 }
450 
451 static struct sem_array *sem_alloc(size_t nsems)
452 {
453 	struct sem_array *sma;
454 	size_t size;
455 
456 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
457 		return NULL;
458 
459 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
460 	sma = kvmalloc(size, GFP_KERNEL);
461 	if (unlikely(!sma))
462 		return NULL;
463 
464 	memset(sma, 0, size);
465 
466 	return sma;
467 }
468 
469 /**
470  * newary - Create a new semaphore set
471  * @ns: namespace
472  * @params: ptr to the structure that contains key, semflg and nsems
473  *
474  * Called with sem_ids.rwsem held (as a writer)
475  */
476 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
477 {
478 	int retval;
479 	struct sem_array *sma;
480 	key_t key = params->key;
481 	int nsems = params->u.nsems;
482 	int semflg = params->flg;
483 	int i;
484 
485 	if (!nsems)
486 		return -EINVAL;
487 	if (ns->used_sems + nsems > ns->sc_semmns)
488 		return -ENOSPC;
489 
490 	sma = sem_alloc(nsems);
491 	if (!sma)
492 		return -ENOMEM;
493 
494 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
495 	sma->sem_perm.key = key;
496 
497 	sma->sem_perm.security = NULL;
498 	retval = security_sem_alloc(sma);
499 	if (retval) {
500 		kvfree(sma);
501 		return retval;
502 	}
503 
504 	for (i = 0; i < nsems; i++) {
505 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
506 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
507 		spin_lock_init(&sma->sems[i].lock);
508 	}
509 
510 	sma->complex_count = 0;
511 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
512 	INIT_LIST_HEAD(&sma->pending_alter);
513 	INIT_LIST_HEAD(&sma->pending_const);
514 	INIT_LIST_HEAD(&sma->list_id);
515 	sma->sem_nsems = nsems;
516 	sma->sem_ctime = ktime_get_real_seconds();
517 
518 	/* ipc_addid() locks sma upon success. */
519 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
520 	if (retval < 0) {
521 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
522 		return retval;
523 	}
524 	ns->used_sems += nsems;
525 
526 	sem_unlock(sma, -1);
527 	rcu_read_unlock();
528 
529 	return sma->sem_perm.id;
530 }
531 
532 
533 /*
534  * Called with sem_ids.rwsem and ipcp locked.
535  */
536 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
537 {
538 	struct sem_array *sma;
539 
540 	sma = container_of(ipcp, struct sem_array, sem_perm);
541 	return security_sem_associate(sma, semflg);
542 }
543 
544 /*
545  * Called with sem_ids.rwsem and ipcp locked.
546  */
547 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
548 				struct ipc_params *params)
549 {
550 	struct sem_array *sma;
551 
552 	sma = container_of(ipcp, struct sem_array, sem_perm);
553 	if (params->u.nsems > sma->sem_nsems)
554 		return -EINVAL;
555 
556 	return 0;
557 }
558 
559 long ksys_semget(key_t key, int nsems, int semflg)
560 {
561 	struct ipc_namespace *ns;
562 	static const struct ipc_ops sem_ops = {
563 		.getnew = newary,
564 		.associate = sem_security,
565 		.more_checks = sem_more_checks,
566 	};
567 	struct ipc_params sem_params;
568 
569 	ns = current->nsproxy->ipc_ns;
570 
571 	if (nsems < 0 || nsems > ns->sc_semmsl)
572 		return -EINVAL;
573 
574 	sem_params.key = key;
575 	sem_params.flg = semflg;
576 	sem_params.u.nsems = nsems;
577 
578 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
579 }
580 
581 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
582 {
583 	return ksys_semget(key, nsems, semflg);
584 }
585 
586 /**
587  * perform_atomic_semop[_slow] - Attempt to perform semaphore
588  *                               operations on a given array.
589  * @sma: semaphore array
590  * @q: struct sem_queue that describes the operation
591  *
592  * Caller blocking are as follows, based the value
593  * indicated by the semaphore operation (sem_op):
594  *
595  *  (1) >0 never blocks.
596  *  (2)  0 (wait-for-zero operation): semval is non-zero.
597  *  (3) <0 attempting to decrement semval to a value smaller than zero.
598  *
599  * Returns 0 if the operation was possible.
600  * Returns 1 if the operation is impossible, the caller must sleep.
601  * Returns <0 for error codes.
602  */
603 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
604 {
605 	int result, sem_op, nsops, pid;
606 	struct sembuf *sop;
607 	struct sem *curr;
608 	struct sembuf *sops;
609 	struct sem_undo *un;
610 
611 	sops = q->sops;
612 	nsops = q->nsops;
613 	un = q->undo;
614 
615 	for (sop = sops; sop < sops + nsops; sop++) {
616 		curr = &sma->sems[sop->sem_num];
617 		sem_op = sop->sem_op;
618 		result = curr->semval;
619 
620 		if (!sem_op && result)
621 			goto would_block;
622 
623 		result += sem_op;
624 		if (result < 0)
625 			goto would_block;
626 		if (result > SEMVMX)
627 			goto out_of_range;
628 
629 		if (sop->sem_flg & SEM_UNDO) {
630 			int undo = un->semadj[sop->sem_num] - sem_op;
631 			/* Exceeding the undo range is an error. */
632 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
633 				goto out_of_range;
634 			un->semadj[sop->sem_num] = undo;
635 		}
636 
637 		curr->semval = result;
638 	}
639 
640 	sop--;
641 	pid = q->pid;
642 	while (sop >= sops) {
643 		sma->sems[sop->sem_num].sempid = pid;
644 		sop--;
645 	}
646 
647 	return 0;
648 
649 out_of_range:
650 	result = -ERANGE;
651 	goto undo;
652 
653 would_block:
654 	q->blocking = sop;
655 
656 	if (sop->sem_flg & IPC_NOWAIT)
657 		result = -EAGAIN;
658 	else
659 		result = 1;
660 
661 undo:
662 	sop--;
663 	while (sop >= sops) {
664 		sem_op = sop->sem_op;
665 		sma->sems[sop->sem_num].semval -= sem_op;
666 		if (sop->sem_flg & SEM_UNDO)
667 			un->semadj[sop->sem_num] += sem_op;
668 		sop--;
669 	}
670 
671 	return result;
672 }
673 
674 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
675 {
676 	int result, sem_op, nsops;
677 	struct sembuf *sop;
678 	struct sem *curr;
679 	struct sembuf *sops;
680 	struct sem_undo *un;
681 
682 	sops = q->sops;
683 	nsops = q->nsops;
684 	un = q->undo;
685 
686 	if (unlikely(q->dupsop))
687 		return perform_atomic_semop_slow(sma, q);
688 
689 	/*
690 	 * We scan the semaphore set twice, first to ensure that the entire
691 	 * operation can succeed, therefore avoiding any pointless writes
692 	 * to shared memory and having to undo such changes in order to block
693 	 * until the operations can go through.
694 	 */
695 	for (sop = sops; sop < sops + nsops; sop++) {
696 		curr = &sma->sems[sop->sem_num];
697 		sem_op = sop->sem_op;
698 		result = curr->semval;
699 
700 		if (!sem_op && result)
701 			goto would_block; /* wait-for-zero */
702 
703 		result += sem_op;
704 		if (result < 0)
705 			goto would_block;
706 
707 		if (result > SEMVMX)
708 			return -ERANGE;
709 
710 		if (sop->sem_flg & SEM_UNDO) {
711 			int undo = un->semadj[sop->sem_num] - sem_op;
712 
713 			/* Exceeding the undo range is an error. */
714 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
715 				return -ERANGE;
716 		}
717 	}
718 
719 	for (sop = sops; sop < sops + nsops; sop++) {
720 		curr = &sma->sems[sop->sem_num];
721 		sem_op = sop->sem_op;
722 		result = curr->semval;
723 
724 		if (sop->sem_flg & SEM_UNDO) {
725 			int undo = un->semadj[sop->sem_num] - sem_op;
726 
727 			un->semadj[sop->sem_num] = undo;
728 		}
729 		curr->semval += sem_op;
730 		curr->sempid = q->pid;
731 	}
732 
733 	return 0;
734 
735 would_block:
736 	q->blocking = sop;
737 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
738 }
739 
740 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
741 					     struct wake_q_head *wake_q)
742 {
743 	wake_q_add(wake_q, q->sleeper);
744 	/*
745 	 * Rely on the above implicit barrier, such that we can
746 	 * ensure that we hold reference to the task before setting
747 	 * q->status. Otherwise we could race with do_exit if the
748 	 * task is awoken by an external event before calling
749 	 * wake_up_process().
750 	 */
751 	WRITE_ONCE(q->status, error);
752 }
753 
754 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
755 {
756 	list_del(&q->list);
757 	if (q->nsops > 1)
758 		sma->complex_count--;
759 }
760 
761 /** check_restart(sma, q)
762  * @sma: semaphore array
763  * @q: the operation that just completed
764  *
765  * update_queue is O(N^2) when it restarts scanning the whole queue of
766  * waiting operations. Therefore this function checks if the restart is
767  * really necessary. It is called after a previously waiting operation
768  * modified the array.
769  * Note that wait-for-zero operations are handled without restart.
770  */
771 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
772 {
773 	/* pending complex alter operations are too difficult to analyse */
774 	if (!list_empty(&sma->pending_alter))
775 		return 1;
776 
777 	/* we were a sleeping complex operation. Too difficult */
778 	if (q->nsops > 1)
779 		return 1;
780 
781 	/* It is impossible that someone waits for the new value:
782 	 * - complex operations always restart.
783 	 * - wait-for-zero are handled seperately.
784 	 * - q is a previously sleeping simple operation that
785 	 *   altered the array. It must be a decrement, because
786 	 *   simple increments never sleep.
787 	 * - If there are older (higher priority) decrements
788 	 *   in the queue, then they have observed the original
789 	 *   semval value and couldn't proceed. The operation
790 	 *   decremented to value - thus they won't proceed either.
791 	 */
792 	return 0;
793 }
794 
795 /**
796  * wake_const_ops - wake up non-alter tasks
797  * @sma: semaphore array.
798  * @semnum: semaphore that was modified.
799  * @wake_q: lockless wake-queue head.
800  *
801  * wake_const_ops must be called after a semaphore in a semaphore array
802  * was set to 0. If complex const operations are pending, wake_const_ops must
803  * be called with semnum = -1, as well as with the number of each modified
804  * semaphore.
805  * The tasks that must be woken up are added to @wake_q. The return code
806  * is stored in q->pid.
807  * The function returns 1 if at least one operation was completed successfully.
808  */
809 static int wake_const_ops(struct sem_array *sma, int semnum,
810 			  struct wake_q_head *wake_q)
811 {
812 	struct sem_queue *q, *tmp;
813 	struct list_head *pending_list;
814 	int semop_completed = 0;
815 
816 	if (semnum == -1)
817 		pending_list = &sma->pending_const;
818 	else
819 		pending_list = &sma->sems[semnum].pending_const;
820 
821 	list_for_each_entry_safe(q, tmp, pending_list, list) {
822 		int error = perform_atomic_semop(sma, q);
823 
824 		if (error > 0)
825 			continue;
826 		/* operation completed, remove from queue & wakeup */
827 		unlink_queue(sma, q);
828 
829 		wake_up_sem_queue_prepare(q, error, wake_q);
830 		if (error == 0)
831 			semop_completed = 1;
832 	}
833 
834 	return semop_completed;
835 }
836 
837 /**
838  * do_smart_wakeup_zero - wakeup all wait for zero tasks
839  * @sma: semaphore array
840  * @sops: operations that were performed
841  * @nsops: number of operations
842  * @wake_q: lockless wake-queue head
843  *
844  * Checks all required queue for wait-for-zero operations, based
845  * on the actual changes that were performed on the semaphore array.
846  * The function returns 1 if at least one operation was completed successfully.
847  */
848 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
849 				int nsops, struct wake_q_head *wake_q)
850 {
851 	int i;
852 	int semop_completed = 0;
853 	int got_zero = 0;
854 
855 	/* first: the per-semaphore queues, if known */
856 	if (sops) {
857 		for (i = 0; i < nsops; i++) {
858 			int num = sops[i].sem_num;
859 
860 			if (sma->sems[num].semval == 0) {
861 				got_zero = 1;
862 				semop_completed |= wake_const_ops(sma, num, wake_q);
863 			}
864 		}
865 	} else {
866 		/*
867 		 * No sops means modified semaphores not known.
868 		 * Assume all were changed.
869 		 */
870 		for (i = 0; i < sma->sem_nsems; i++) {
871 			if (sma->sems[i].semval == 0) {
872 				got_zero = 1;
873 				semop_completed |= wake_const_ops(sma, i, wake_q);
874 			}
875 		}
876 	}
877 	/*
878 	 * If one of the modified semaphores got 0,
879 	 * then check the global queue, too.
880 	 */
881 	if (got_zero)
882 		semop_completed |= wake_const_ops(sma, -1, wake_q);
883 
884 	return semop_completed;
885 }
886 
887 
888 /**
889  * update_queue - look for tasks that can be completed.
890  * @sma: semaphore array.
891  * @semnum: semaphore that was modified.
892  * @wake_q: lockless wake-queue head.
893  *
894  * update_queue must be called after a semaphore in a semaphore array
895  * was modified. If multiple semaphores were modified, update_queue must
896  * be called with semnum = -1, as well as with the number of each modified
897  * semaphore.
898  * The tasks that must be woken up are added to @wake_q. The return code
899  * is stored in q->pid.
900  * The function internally checks if const operations can now succeed.
901  *
902  * The function return 1 if at least one semop was completed successfully.
903  */
904 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
905 {
906 	struct sem_queue *q, *tmp;
907 	struct list_head *pending_list;
908 	int semop_completed = 0;
909 
910 	if (semnum == -1)
911 		pending_list = &sma->pending_alter;
912 	else
913 		pending_list = &sma->sems[semnum].pending_alter;
914 
915 again:
916 	list_for_each_entry_safe(q, tmp, pending_list, list) {
917 		int error, restart;
918 
919 		/* If we are scanning the single sop, per-semaphore list of
920 		 * one semaphore and that semaphore is 0, then it is not
921 		 * necessary to scan further: simple increments
922 		 * that affect only one entry succeed immediately and cannot
923 		 * be in the  per semaphore pending queue, and decrements
924 		 * cannot be successful if the value is already 0.
925 		 */
926 		if (semnum != -1 && sma->sems[semnum].semval == 0)
927 			break;
928 
929 		error = perform_atomic_semop(sma, q);
930 
931 		/* Does q->sleeper still need to sleep? */
932 		if (error > 0)
933 			continue;
934 
935 		unlink_queue(sma, q);
936 
937 		if (error) {
938 			restart = 0;
939 		} else {
940 			semop_completed = 1;
941 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
942 			restart = check_restart(sma, q);
943 		}
944 
945 		wake_up_sem_queue_prepare(q, error, wake_q);
946 		if (restart)
947 			goto again;
948 	}
949 	return semop_completed;
950 }
951 
952 /**
953  * set_semotime - set sem_otime
954  * @sma: semaphore array
955  * @sops: operations that modified the array, may be NULL
956  *
957  * sem_otime is replicated to avoid cache line trashing.
958  * This function sets one instance to the current time.
959  */
960 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
961 {
962 	if (sops == NULL) {
963 		sma->sems[0].sem_otime = get_seconds();
964 	} else {
965 		sma->sems[sops[0].sem_num].sem_otime =
966 							get_seconds();
967 	}
968 }
969 
970 /**
971  * do_smart_update - optimized update_queue
972  * @sma: semaphore array
973  * @sops: operations that were performed
974  * @nsops: number of operations
975  * @otime: force setting otime
976  * @wake_q: lockless wake-queue head
977  *
978  * do_smart_update() does the required calls to update_queue and wakeup_zero,
979  * based on the actual changes that were performed on the semaphore array.
980  * Note that the function does not do the actual wake-up: the caller is
981  * responsible for calling wake_up_q().
982  * It is safe to perform this call after dropping all locks.
983  */
984 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
985 			    int otime, struct wake_q_head *wake_q)
986 {
987 	int i;
988 
989 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
990 
991 	if (!list_empty(&sma->pending_alter)) {
992 		/* semaphore array uses the global queue - just process it. */
993 		otime |= update_queue(sma, -1, wake_q);
994 	} else {
995 		if (!sops) {
996 			/*
997 			 * No sops, thus the modified semaphores are not
998 			 * known. Check all.
999 			 */
1000 			for (i = 0; i < sma->sem_nsems; i++)
1001 				otime |= update_queue(sma, i, wake_q);
1002 		} else {
1003 			/*
1004 			 * Check the semaphores that were increased:
1005 			 * - No complex ops, thus all sleeping ops are
1006 			 *   decrease.
1007 			 * - if we decreased the value, then any sleeping
1008 			 *   semaphore ops wont be able to run: If the
1009 			 *   previous value was too small, then the new
1010 			 *   value will be too small, too.
1011 			 */
1012 			for (i = 0; i < nsops; i++) {
1013 				if (sops[i].sem_op > 0) {
1014 					otime |= update_queue(sma,
1015 							      sops[i].sem_num, wake_q);
1016 				}
1017 			}
1018 		}
1019 	}
1020 	if (otime)
1021 		set_semotime(sma, sops);
1022 }
1023 
1024 /*
1025  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1026  */
1027 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1028 			bool count_zero)
1029 {
1030 	struct sembuf *sop = q->blocking;
1031 
1032 	/*
1033 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1034 	 * semaphores. This violates SUS, therefore it was changed to the
1035 	 * standard compliant behavior.
1036 	 * Give the administrators a chance to notice that an application
1037 	 * might misbehave because it relies on the Linux behavior.
1038 	 */
1039 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1040 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1041 			current->comm, task_pid_nr(current));
1042 
1043 	if (sop->sem_num != semnum)
1044 		return 0;
1045 
1046 	if (count_zero && sop->sem_op == 0)
1047 		return 1;
1048 	if (!count_zero && sop->sem_op < 0)
1049 		return 1;
1050 
1051 	return 0;
1052 }
1053 
1054 /* The following counts are associated to each semaphore:
1055  *   semncnt        number of tasks waiting on semval being nonzero
1056  *   semzcnt        number of tasks waiting on semval being zero
1057  *
1058  * Per definition, a task waits only on the semaphore of the first semop
1059  * that cannot proceed, even if additional operation would block, too.
1060  */
1061 static int count_semcnt(struct sem_array *sma, ushort semnum,
1062 			bool count_zero)
1063 {
1064 	struct list_head *l;
1065 	struct sem_queue *q;
1066 	int semcnt;
1067 
1068 	semcnt = 0;
1069 	/* First: check the simple operations. They are easy to evaluate */
1070 	if (count_zero)
1071 		l = &sma->sems[semnum].pending_const;
1072 	else
1073 		l = &sma->sems[semnum].pending_alter;
1074 
1075 	list_for_each_entry(q, l, list) {
1076 		/* all task on a per-semaphore list sleep on exactly
1077 		 * that semaphore
1078 		 */
1079 		semcnt++;
1080 	}
1081 
1082 	/* Then: check the complex operations. */
1083 	list_for_each_entry(q, &sma->pending_alter, list) {
1084 		semcnt += check_qop(sma, semnum, q, count_zero);
1085 	}
1086 	if (count_zero) {
1087 		list_for_each_entry(q, &sma->pending_const, list) {
1088 			semcnt += check_qop(sma, semnum, q, count_zero);
1089 		}
1090 	}
1091 	return semcnt;
1092 }
1093 
1094 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1095  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1096  * remains locked on exit.
1097  */
1098 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1099 {
1100 	struct sem_undo *un, *tu;
1101 	struct sem_queue *q, *tq;
1102 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1103 	int i;
1104 	DEFINE_WAKE_Q(wake_q);
1105 
1106 	/* Free the existing undo structures for this semaphore set.  */
1107 	ipc_assert_locked_object(&sma->sem_perm);
1108 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1109 		list_del(&un->list_id);
1110 		spin_lock(&un->ulp->lock);
1111 		un->semid = -1;
1112 		list_del_rcu(&un->list_proc);
1113 		spin_unlock(&un->ulp->lock);
1114 		kfree_rcu(un, rcu);
1115 	}
1116 
1117 	/* Wake up all pending processes and let them fail with EIDRM. */
1118 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1119 		unlink_queue(sma, q);
1120 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1121 	}
1122 
1123 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1124 		unlink_queue(sma, q);
1125 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1126 	}
1127 	for (i = 0; i < sma->sem_nsems; i++) {
1128 		struct sem *sem = &sma->sems[i];
1129 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1130 			unlink_queue(sma, q);
1131 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1132 		}
1133 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1134 			unlink_queue(sma, q);
1135 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1136 		}
1137 	}
1138 
1139 	/* Remove the semaphore set from the IDR */
1140 	sem_rmid(ns, sma);
1141 	sem_unlock(sma, -1);
1142 	rcu_read_unlock();
1143 
1144 	wake_up_q(&wake_q);
1145 	ns->used_sems -= sma->sem_nsems;
1146 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1147 }
1148 
1149 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1150 {
1151 	switch (version) {
1152 	case IPC_64:
1153 		return copy_to_user(buf, in, sizeof(*in));
1154 	case IPC_OLD:
1155 	    {
1156 		struct semid_ds out;
1157 
1158 		memset(&out, 0, sizeof(out));
1159 
1160 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1161 
1162 		out.sem_otime	= in->sem_otime;
1163 		out.sem_ctime	= in->sem_ctime;
1164 		out.sem_nsems	= in->sem_nsems;
1165 
1166 		return copy_to_user(buf, &out, sizeof(out));
1167 	    }
1168 	default:
1169 		return -EINVAL;
1170 	}
1171 }
1172 
1173 static time64_t get_semotime(struct sem_array *sma)
1174 {
1175 	int i;
1176 	time64_t res;
1177 
1178 	res = sma->sems[0].sem_otime;
1179 	for (i = 1; i < sma->sem_nsems; i++) {
1180 		time64_t to = sma->sems[i].sem_otime;
1181 
1182 		if (to > res)
1183 			res = to;
1184 	}
1185 	return res;
1186 }
1187 
1188 static int semctl_stat(struct ipc_namespace *ns, int semid,
1189 			 int cmd, struct semid64_ds *semid64)
1190 {
1191 	struct sem_array *sma;
1192 	int id = 0;
1193 	int err;
1194 
1195 	memset(semid64, 0, sizeof(*semid64));
1196 
1197 	rcu_read_lock();
1198 	if (cmd == SEM_STAT) {
1199 		sma = sem_obtain_object(ns, semid);
1200 		if (IS_ERR(sma)) {
1201 			err = PTR_ERR(sma);
1202 			goto out_unlock;
1203 		}
1204 		id = sma->sem_perm.id;
1205 	} else {
1206 		sma = sem_obtain_object_check(ns, semid);
1207 		if (IS_ERR(sma)) {
1208 			err = PTR_ERR(sma);
1209 			goto out_unlock;
1210 		}
1211 	}
1212 
1213 	err = -EACCES;
1214 	if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1215 		goto out_unlock;
1216 
1217 	err = security_sem_semctl(sma, cmd);
1218 	if (err)
1219 		goto out_unlock;
1220 
1221 	ipc_lock_object(&sma->sem_perm);
1222 
1223 	if (!ipc_valid_object(&sma->sem_perm)) {
1224 		ipc_unlock_object(&sma->sem_perm);
1225 		err = -EIDRM;
1226 		goto out_unlock;
1227 	}
1228 
1229 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1230 	semid64->sem_otime = get_semotime(sma);
1231 	semid64->sem_ctime = sma->sem_ctime;
1232 	semid64->sem_nsems = sma->sem_nsems;
1233 
1234 	ipc_unlock_object(&sma->sem_perm);
1235 	rcu_read_unlock();
1236 	return id;
1237 
1238 out_unlock:
1239 	rcu_read_unlock();
1240 	return err;
1241 }
1242 
1243 static int semctl_info(struct ipc_namespace *ns, int semid,
1244 			 int cmd, void __user *p)
1245 {
1246 	struct seminfo seminfo;
1247 	int max_id;
1248 	int err;
1249 
1250 	err = security_sem_semctl(NULL, cmd);
1251 	if (err)
1252 		return err;
1253 
1254 	memset(&seminfo, 0, sizeof(seminfo));
1255 	seminfo.semmni = ns->sc_semmni;
1256 	seminfo.semmns = ns->sc_semmns;
1257 	seminfo.semmsl = ns->sc_semmsl;
1258 	seminfo.semopm = ns->sc_semopm;
1259 	seminfo.semvmx = SEMVMX;
1260 	seminfo.semmnu = SEMMNU;
1261 	seminfo.semmap = SEMMAP;
1262 	seminfo.semume = SEMUME;
1263 	down_read(&sem_ids(ns).rwsem);
1264 	if (cmd == SEM_INFO) {
1265 		seminfo.semusz = sem_ids(ns).in_use;
1266 		seminfo.semaem = ns->used_sems;
1267 	} else {
1268 		seminfo.semusz = SEMUSZ;
1269 		seminfo.semaem = SEMAEM;
1270 	}
1271 	max_id = ipc_get_maxid(&sem_ids(ns));
1272 	up_read(&sem_ids(ns).rwsem);
1273 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1274 		return -EFAULT;
1275 	return (max_id < 0) ? 0 : max_id;
1276 }
1277 
1278 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1279 		int val)
1280 {
1281 	struct sem_undo *un;
1282 	struct sem_array *sma;
1283 	struct sem *curr;
1284 	int err;
1285 	DEFINE_WAKE_Q(wake_q);
1286 
1287 	if (val > SEMVMX || val < 0)
1288 		return -ERANGE;
1289 
1290 	rcu_read_lock();
1291 	sma = sem_obtain_object_check(ns, semid);
1292 	if (IS_ERR(sma)) {
1293 		rcu_read_unlock();
1294 		return PTR_ERR(sma);
1295 	}
1296 
1297 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1298 		rcu_read_unlock();
1299 		return -EINVAL;
1300 	}
1301 
1302 
1303 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1304 		rcu_read_unlock();
1305 		return -EACCES;
1306 	}
1307 
1308 	err = security_sem_semctl(sma, SETVAL);
1309 	if (err) {
1310 		rcu_read_unlock();
1311 		return -EACCES;
1312 	}
1313 
1314 	sem_lock(sma, NULL, -1);
1315 
1316 	if (!ipc_valid_object(&sma->sem_perm)) {
1317 		sem_unlock(sma, -1);
1318 		rcu_read_unlock();
1319 		return -EIDRM;
1320 	}
1321 
1322 	curr = &sma->sems[semnum];
1323 
1324 	ipc_assert_locked_object(&sma->sem_perm);
1325 	list_for_each_entry(un, &sma->list_id, list_id)
1326 		un->semadj[semnum] = 0;
1327 
1328 	curr->semval = val;
1329 	curr->sempid = task_tgid_vnr(current);
1330 	sma->sem_ctime = ktime_get_real_seconds();
1331 	/* maybe some queued-up processes were waiting for this */
1332 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1333 	sem_unlock(sma, -1);
1334 	rcu_read_unlock();
1335 	wake_up_q(&wake_q);
1336 	return 0;
1337 }
1338 
1339 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1340 		int cmd, void __user *p)
1341 {
1342 	struct sem_array *sma;
1343 	struct sem *curr;
1344 	int err, nsems;
1345 	ushort fast_sem_io[SEMMSL_FAST];
1346 	ushort *sem_io = fast_sem_io;
1347 	DEFINE_WAKE_Q(wake_q);
1348 
1349 	rcu_read_lock();
1350 	sma = sem_obtain_object_check(ns, semid);
1351 	if (IS_ERR(sma)) {
1352 		rcu_read_unlock();
1353 		return PTR_ERR(sma);
1354 	}
1355 
1356 	nsems = sma->sem_nsems;
1357 
1358 	err = -EACCES;
1359 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1360 		goto out_rcu_wakeup;
1361 
1362 	err = security_sem_semctl(sma, cmd);
1363 	if (err)
1364 		goto out_rcu_wakeup;
1365 
1366 	err = -EACCES;
1367 	switch (cmd) {
1368 	case GETALL:
1369 	{
1370 		ushort __user *array = p;
1371 		int i;
1372 
1373 		sem_lock(sma, NULL, -1);
1374 		if (!ipc_valid_object(&sma->sem_perm)) {
1375 			err = -EIDRM;
1376 			goto out_unlock;
1377 		}
1378 		if (nsems > SEMMSL_FAST) {
1379 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1380 				err = -EIDRM;
1381 				goto out_unlock;
1382 			}
1383 			sem_unlock(sma, -1);
1384 			rcu_read_unlock();
1385 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1386 						GFP_KERNEL);
1387 			if (sem_io == NULL) {
1388 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1389 				return -ENOMEM;
1390 			}
1391 
1392 			rcu_read_lock();
1393 			sem_lock_and_putref(sma);
1394 			if (!ipc_valid_object(&sma->sem_perm)) {
1395 				err = -EIDRM;
1396 				goto out_unlock;
1397 			}
1398 		}
1399 		for (i = 0; i < sma->sem_nsems; i++)
1400 			sem_io[i] = sma->sems[i].semval;
1401 		sem_unlock(sma, -1);
1402 		rcu_read_unlock();
1403 		err = 0;
1404 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1405 			err = -EFAULT;
1406 		goto out_free;
1407 	}
1408 	case SETALL:
1409 	{
1410 		int i;
1411 		struct sem_undo *un;
1412 
1413 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1414 			err = -EIDRM;
1415 			goto out_rcu_wakeup;
1416 		}
1417 		rcu_read_unlock();
1418 
1419 		if (nsems > SEMMSL_FAST) {
1420 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1421 						GFP_KERNEL);
1422 			if (sem_io == NULL) {
1423 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1424 				return -ENOMEM;
1425 			}
1426 		}
1427 
1428 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1429 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1430 			err = -EFAULT;
1431 			goto out_free;
1432 		}
1433 
1434 		for (i = 0; i < nsems; i++) {
1435 			if (sem_io[i] > SEMVMX) {
1436 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1437 				err = -ERANGE;
1438 				goto out_free;
1439 			}
1440 		}
1441 		rcu_read_lock();
1442 		sem_lock_and_putref(sma);
1443 		if (!ipc_valid_object(&sma->sem_perm)) {
1444 			err = -EIDRM;
1445 			goto out_unlock;
1446 		}
1447 
1448 		for (i = 0; i < nsems; i++) {
1449 			sma->sems[i].semval = sem_io[i];
1450 			sma->sems[i].sempid = task_tgid_vnr(current);
1451 		}
1452 
1453 		ipc_assert_locked_object(&sma->sem_perm);
1454 		list_for_each_entry(un, &sma->list_id, list_id) {
1455 			for (i = 0; i < nsems; i++)
1456 				un->semadj[i] = 0;
1457 		}
1458 		sma->sem_ctime = ktime_get_real_seconds();
1459 		/* maybe some queued-up processes were waiting for this */
1460 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1461 		err = 0;
1462 		goto out_unlock;
1463 	}
1464 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1465 	}
1466 	err = -EINVAL;
1467 	if (semnum < 0 || semnum >= nsems)
1468 		goto out_rcu_wakeup;
1469 
1470 	sem_lock(sma, NULL, -1);
1471 	if (!ipc_valid_object(&sma->sem_perm)) {
1472 		err = -EIDRM;
1473 		goto out_unlock;
1474 	}
1475 	curr = &sma->sems[semnum];
1476 
1477 	switch (cmd) {
1478 	case GETVAL:
1479 		err = curr->semval;
1480 		goto out_unlock;
1481 	case GETPID:
1482 		err = curr->sempid;
1483 		goto out_unlock;
1484 	case GETNCNT:
1485 		err = count_semcnt(sma, semnum, 0);
1486 		goto out_unlock;
1487 	case GETZCNT:
1488 		err = count_semcnt(sma, semnum, 1);
1489 		goto out_unlock;
1490 	}
1491 
1492 out_unlock:
1493 	sem_unlock(sma, -1);
1494 out_rcu_wakeup:
1495 	rcu_read_unlock();
1496 	wake_up_q(&wake_q);
1497 out_free:
1498 	if (sem_io != fast_sem_io)
1499 		kvfree(sem_io);
1500 	return err;
1501 }
1502 
1503 static inline unsigned long
1504 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1505 {
1506 	switch (version) {
1507 	case IPC_64:
1508 		if (copy_from_user(out, buf, sizeof(*out)))
1509 			return -EFAULT;
1510 		return 0;
1511 	case IPC_OLD:
1512 	    {
1513 		struct semid_ds tbuf_old;
1514 
1515 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1516 			return -EFAULT;
1517 
1518 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1519 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1520 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1521 
1522 		return 0;
1523 	    }
1524 	default:
1525 		return -EINVAL;
1526 	}
1527 }
1528 
1529 /*
1530  * This function handles some semctl commands which require the rwsem
1531  * to be held in write mode.
1532  * NOTE: no locks must be held, the rwsem is taken inside this function.
1533  */
1534 static int semctl_down(struct ipc_namespace *ns, int semid,
1535 		       int cmd, struct semid64_ds *semid64)
1536 {
1537 	struct sem_array *sma;
1538 	int err;
1539 	struct kern_ipc_perm *ipcp;
1540 
1541 	down_write(&sem_ids(ns).rwsem);
1542 	rcu_read_lock();
1543 
1544 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1545 				      &semid64->sem_perm, 0);
1546 	if (IS_ERR(ipcp)) {
1547 		err = PTR_ERR(ipcp);
1548 		goto out_unlock1;
1549 	}
1550 
1551 	sma = container_of(ipcp, struct sem_array, sem_perm);
1552 
1553 	err = security_sem_semctl(sma, cmd);
1554 	if (err)
1555 		goto out_unlock1;
1556 
1557 	switch (cmd) {
1558 	case IPC_RMID:
1559 		sem_lock(sma, NULL, -1);
1560 		/* freeary unlocks the ipc object and rcu */
1561 		freeary(ns, ipcp);
1562 		goto out_up;
1563 	case IPC_SET:
1564 		sem_lock(sma, NULL, -1);
1565 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1566 		if (err)
1567 			goto out_unlock0;
1568 		sma->sem_ctime = ktime_get_real_seconds();
1569 		break;
1570 	default:
1571 		err = -EINVAL;
1572 		goto out_unlock1;
1573 	}
1574 
1575 out_unlock0:
1576 	sem_unlock(sma, -1);
1577 out_unlock1:
1578 	rcu_read_unlock();
1579 out_up:
1580 	up_write(&sem_ids(ns).rwsem);
1581 	return err;
1582 }
1583 
1584 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1585 {
1586 	int version;
1587 	struct ipc_namespace *ns;
1588 	void __user *p = (void __user *)arg;
1589 	struct semid64_ds semid64;
1590 	int err;
1591 
1592 	if (semid < 0)
1593 		return -EINVAL;
1594 
1595 	version = ipc_parse_version(&cmd);
1596 	ns = current->nsproxy->ipc_ns;
1597 
1598 	switch (cmd) {
1599 	case IPC_INFO:
1600 	case SEM_INFO:
1601 		return semctl_info(ns, semid, cmd, p);
1602 	case IPC_STAT:
1603 	case SEM_STAT:
1604 		err = semctl_stat(ns, semid, cmd, &semid64);
1605 		if (err < 0)
1606 			return err;
1607 		if (copy_semid_to_user(p, &semid64, version))
1608 			err = -EFAULT;
1609 		return err;
1610 	case GETALL:
1611 	case GETVAL:
1612 	case GETPID:
1613 	case GETNCNT:
1614 	case GETZCNT:
1615 	case SETALL:
1616 		return semctl_main(ns, semid, semnum, cmd, p);
1617 	case SETVAL: {
1618 		int val;
1619 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1620 		/* big-endian 64bit */
1621 		val = arg >> 32;
1622 #else
1623 		/* 32bit or little-endian 64bit */
1624 		val = arg;
1625 #endif
1626 		return semctl_setval(ns, semid, semnum, val);
1627 	}
1628 	case IPC_SET:
1629 		if (copy_semid_from_user(&semid64, p, version))
1630 			return -EFAULT;
1631 	case IPC_RMID:
1632 		return semctl_down(ns, semid, cmd, &semid64);
1633 	default:
1634 		return -EINVAL;
1635 	}
1636 }
1637 
1638 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1639 {
1640 	return ksys_semctl(semid, semnum, cmd, arg);
1641 }
1642 
1643 #ifdef CONFIG_COMPAT
1644 
1645 struct compat_semid_ds {
1646 	struct compat_ipc_perm sem_perm;
1647 	compat_time_t sem_otime;
1648 	compat_time_t sem_ctime;
1649 	compat_uptr_t sem_base;
1650 	compat_uptr_t sem_pending;
1651 	compat_uptr_t sem_pending_last;
1652 	compat_uptr_t undo;
1653 	unsigned short sem_nsems;
1654 };
1655 
1656 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1657 					int version)
1658 {
1659 	memset(out, 0, sizeof(*out));
1660 	if (version == IPC_64) {
1661 		struct compat_semid64_ds __user *p = buf;
1662 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1663 	} else {
1664 		struct compat_semid_ds __user *p = buf;
1665 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1666 	}
1667 }
1668 
1669 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1670 					int version)
1671 {
1672 	if (version == IPC_64) {
1673 		struct compat_semid64_ds v;
1674 		memset(&v, 0, sizeof(v));
1675 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1676 		v.sem_otime = in->sem_otime;
1677 		v.sem_ctime = in->sem_ctime;
1678 		v.sem_nsems = in->sem_nsems;
1679 		return copy_to_user(buf, &v, sizeof(v));
1680 	} else {
1681 		struct compat_semid_ds v;
1682 		memset(&v, 0, sizeof(v));
1683 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1684 		v.sem_otime = in->sem_otime;
1685 		v.sem_ctime = in->sem_ctime;
1686 		v.sem_nsems = in->sem_nsems;
1687 		return copy_to_user(buf, &v, sizeof(v));
1688 	}
1689 }
1690 
1691 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1692 {
1693 	void __user *p = compat_ptr(arg);
1694 	struct ipc_namespace *ns;
1695 	struct semid64_ds semid64;
1696 	int version = compat_ipc_parse_version(&cmd);
1697 	int err;
1698 
1699 	ns = current->nsproxy->ipc_ns;
1700 
1701 	if (semid < 0)
1702 		return -EINVAL;
1703 
1704 	switch (cmd & (~IPC_64)) {
1705 	case IPC_INFO:
1706 	case SEM_INFO:
1707 		return semctl_info(ns, semid, cmd, p);
1708 	case IPC_STAT:
1709 	case SEM_STAT:
1710 		err = semctl_stat(ns, semid, cmd, &semid64);
1711 		if (err < 0)
1712 			return err;
1713 		if (copy_compat_semid_to_user(p, &semid64, version))
1714 			err = -EFAULT;
1715 		return err;
1716 	case GETVAL:
1717 	case GETPID:
1718 	case GETNCNT:
1719 	case GETZCNT:
1720 	case GETALL:
1721 	case SETALL:
1722 		return semctl_main(ns, semid, semnum, cmd, p);
1723 	case SETVAL:
1724 		return semctl_setval(ns, semid, semnum, arg);
1725 	case IPC_SET:
1726 		if (copy_compat_semid_from_user(&semid64, p, version))
1727 			return -EFAULT;
1728 		/* fallthru */
1729 	case IPC_RMID:
1730 		return semctl_down(ns, semid, cmd, &semid64);
1731 	default:
1732 		return -EINVAL;
1733 	}
1734 }
1735 
1736 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1737 {
1738 	return compat_ksys_semctl(semid, semnum, cmd, arg);
1739 }
1740 #endif
1741 
1742 /* If the task doesn't already have a undo_list, then allocate one
1743  * here.  We guarantee there is only one thread using this undo list,
1744  * and current is THE ONE
1745  *
1746  * If this allocation and assignment succeeds, but later
1747  * portions of this code fail, there is no need to free the sem_undo_list.
1748  * Just let it stay associated with the task, and it'll be freed later
1749  * at exit time.
1750  *
1751  * This can block, so callers must hold no locks.
1752  */
1753 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1754 {
1755 	struct sem_undo_list *undo_list;
1756 
1757 	undo_list = current->sysvsem.undo_list;
1758 	if (!undo_list) {
1759 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1760 		if (undo_list == NULL)
1761 			return -ENOMEM;
1762 		spin_lock_init(&undo_list->lock);
1763 		refcount_set(&undo_list->refcnt, 1);
1764 		INIT_LIST_HEAD(&undo_list->list_proc);
1765 
1766 		current->sysvsem.undo_list = undo_list;
1767 	}
1768 	*undo_listp = undo_list;
1769 	return 0;
1770 }
1771 
1772 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1773 {
1774 	struct sem_undo *un;
1775 
1776 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1777 		if (un->semid == semid)
1778 			return un;
1779 	}
1780 	return NULL;
1781 }
1782 
1783 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1784 {
1785 	struct sem_undo *un;
1786 
1787 	assert_spin_locked(&ulp->lock);
1788 
1789 	un = __lookup_undo(ulp, semid);
1790 	if (un) {
1791 		list_del_rcu(&un->list_proc);
1792 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1793 	}
1794 	return un;
1795 }
1796 
1797 /**
1798  * find_alloc_undo - lookup (and if not present create) undo array
1799  * @ns: namespace
1800  * @semid: semaphore array id
1801  *
1802  * The function looks up (and if not present creates) the undo structure.
1803  * The size of the undo structure depends on the size of the semaphore
1804  * array, thus the alloc path is not that straightforward.
1805  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1806  * performs a rcu_read_lock().
1807  */
1808 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1809 {
1810 	struct sem_array *sma;
1811 	struct sem_undo_list *ulp;
1812 	struct sem_undo *un, *new;
1813 	int nsems, error;
1814 
1815 	error = get_undo_list(&ulp);
1816 	if (error)
1817 		return ERR_PTR(error);
1818 
1819 	rcu_read_lock();
1820 	spin_lock(&ulp->lock);
1821 	un = lookup_undo(ulp, semid);
1822 	spin_unlock(&ulp->lock);
1823 	if (likely(un != NULL))
1824 		goto out;
1825 
1826 	/* no undo structure around - allocate one. */
1827 	/* step 1: figure out the size of the semaphore array */
1828 	sma = sem_obtain_object_check(ns, semid);
1829 	if (IS_ERR(sma)) {
1830 		rcu_read_unlock();
1831 		return ERR_CAST(sma);
1832 	}
1833 
1834 	nsems = sma->sem_nsems;
1835 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1836 		rcu_read_unlock();
1837 		un = ERR_PTR(-EIDRM);
1838 		goto out;
1839 	}
1840 	rcu_read_unlock();
1841 
1842 	/* step 2: allocate new undo structure */
1843 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1844 	if (!new) {
1845 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1846 		return ERR_PTR(-ENOMEM);
1847 	}
1848 
1849 	/* step 3: Acquire the lock on semaphore array */
1850 	rcu_read_lock();
1851 	sem_lock_and_putref(sma);
1852 	if (!ipc_valid_object(&sma->sem_perm)) {
1853 		sem_unlock(sma, -1);
1854 		rcu_read_unlock();
1855 		kfree(new);
1856 		un = ERR_PTR(-EIDRM);
1857 		goto out;
1858 	}
1859 	spin_lock(&ulp->lock);
1860 
1861 	/*
1862 	 * step 4: check for races: did someone else allocate the undo struct?
1863 	 */
1864 	un = lookup_undo(ulp, semid);
1865 	if (un) {
1866 		kfree(new);
1867 		goto success;
1868 	}
1869 	/* step 5: initialize & link new undo structure */
1870 	new->semadj = (short *) &new[1];
1871 	new->ulp = ulp;
1872 	new->semid = semid;
1873 	assert_spin_locked(&ulp->lock);
1874 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1875 	ipc_assert_locked_object(&sma->sem_perm);
1876 	list_add(&new->list_id, &sma->list_id);
1877 	un = new;
1878 
1879 success:
1880 	spin_unlock(&ulp->lock);
1881 	sem_unlock(sma, -1);
1882 out:
1883 	return un;
1884 }
1885 
1886 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1887 		unsigned nsops, const struct timespec64 *timeout)
1888 {
1889 	int error = -EINVAL;
1890 	struct sem_array *sma;
1891 	struct sembuf fast_sops[SEMOPM_FAST];
1892 	struct sembuf *sops = fast_sops, *sop;
1893 	struct sem_undo *un;
1894 	int max, locknum;
1895 	bool undos = false, alter = false, dupsop = false;
1896 	struct sem_queue queue;
1897 	unsigned long dup = 0, jiffies_left = 0;
1898 	struct ipc_namespace *ns;
1899 
1900 	ns = current->nsproxy->ipc_ns;
1901 
1902 	if (nsops < 1 || semid < 0)
1903 		return -EINVAL;
1904 	if (nsops > ns->sc_semopm)
1905 		return -E2BIG;
1906 	if (nsops > SEMOPM_FAST) {
1907 		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1908 		if (sops == NULL)
1909 			return -ENOMEM;
1910 	}
1911 
1912 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1913 		error =  -EFAULT;
1914 		goto out_free;
1915 	}
1916 
1917 	if (timeout) {
1918 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1919 			timeout->tv_nsec >= 1000000000L) {
1920 			error = -EINVAL;
1921 			goto out_free;
1922 		}
1923 		jiffies_left = timespec64_to_jiffies(timeout);
1924 	}
1925 
1926 	max = 0;
1927 	for (sop = sops; sop < sops + nsops; sop++) {
1928 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1929 
1930 		if (sop->sem_num >= max)
1931 			max = sop->sem_num;
1932 		if (sop->sem_flg & SEM_UNDO)
1933 			undos = true;
1934 		if (dup & mask) {
1935 			/*
1936 			 * There was a previous alter access that appears
1937 			 * to have accessed the same semaphore, thus use
1938 			 * the dupsop logic. "appears", because the detection
1939 			 * can only check % BITS_PER_LONG.
1940 			 */
1941 			dupsop = true;
1942 		}
1943 		if (sop->sem_op != 0) {
1944 			alter = true;
1945 			dup |= mask;
1946 		}
1947 	}
1948 
1949 	if (undos) {
1950 		/* On success, find_alloc_undo takes the rcu_read_lock */
1951 		un = find_alloc_undo(ns, semid);
1952 		if (IS_ERR(un)) {
1953 			error = PTR_ERR(un);
1954 			goto out_free;
1955 		}
1956 	} else {
1957 		un = NULL;
1958 		rcu_read_lock();
1959 	}
1960 
1961 	sma = sem_obtain_object_check(ns, semid);
1962 	if (IS_ERR(sma)) {
1963 		rcu_read_unlock();
1964 		error = PTR_ERR(sma);
1965 		goto out_free;
1966 	}
1967 
1968 	error = -EFBIG;
1969 	if (max >= sma->sem_nsems) {
1970 		rcu_read_unlock();
1971 		goto out_free;
1972 	}
1973 
1974 	error = -EACCES;
1975 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1976 		rcu_read_unlock();
1977 		goto out_free;
1978 	}
1979 
1980 	error = security_sem_semop(sma, sops, nsops, alter);
1981 	if (error) {
1982 		rcu_read_unlock();
1983 		goto out_free;
1984 	}
1985 
1986 	error = -EIDRM;
1987 	locknum = sem_lock(sma, sops, nsops);
1988 	/*
1989 	 * We eventually might perform the following check in a lockless
1990 	 * fashion, considering ipc_valid_object() locking constraints.
1991 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1992 	 * only a per-semaphore lock is held and it's OK to proceed with the
1993 	 * check below. More details on the fine grained locking scheme
1994 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1995 	 */
1996 	if (!ipc_valid_object(&sma->sem_perm))
1997 		goto out_unlock_free;
1998 	/*
1999 	 * semid identifiers are not unique - find_alloc_undo may have
2000 	 * allocated an undo structure, it was invalidated by an RMID
2001 	 * and now a new array with received the same id. Check and fail.
2002 	 * This case can be detected checking un->semid. The existence of
2003 	 * "un" itself is guaranteed by rcu.
2004 	 */
2005 	if (un && un->semid == -1)
2006 		goto out_unlock_free;
2007 
2008 	queue.sops = sops;
2009 	queue.nsops = nsops;
2010 	queue.undo = un;
2011 	queue.pid = task_tgid_vnr(current);
2012 	queue.alter = alter;
2013 	queue.dupsop = dupsop;
2014 
2015 	error = perform_atomic_semop(sma, &queue);
2016 	if (error == 0) { /* non-blocking succesfull path */
2017 		DEFINE_WAKE_Q(wake_q);
2018 
2019 		/*
2020 		 * If the operation was successful, then do
2021 		 * the required updates.
2022 		 */
2023 		if (alter)
2024 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2025 		else
2026 			set_semotime(sma, sops);
2027 
2028 		sem_unlock(sma, locknum);
2029 		rcu_read_unlock();
2030 		wake_up_q(&wake_q);
2031 
2032 		goto out_free;
2033 	}
2034 	if (error < 0) /* non-blocking error path */
2035 		goto out_unlock_free;
2036 
2037 	/*
2038 	 * We need to sleep on this operation, so we put the current
2039 	 * task into the pending queue and go to sleep.
2040 	 */
2041 	if (nsops == 1) {
2042 		struct sem *curr;
2043 		curr = &sma->sems[sops->sem_num];
2044 
2045 		if (alter) {
2046 			if (sma->complex_count) {
2047 				list_add_tail(&queue.list,
2048 						&sma->pending_alter);
2049 			} else {
2050 
2051 				list_add_tail(&queue.list,
2052 						&curr->pending_alter);
2053 			}
2054 		} else {
2055 			list_add_tail(&queue.list, &curr->pending_const);
2056 		}
2057 	} else {
2058 		if (!sma->complex_count)
2059 			merge_queues(sma);
2060 
2061 		if (alter)
2062 			list_add_tail(&queue.list, &sma->pending_alter);
2063 		else
2064 			list_add_tail(&queue.list, &sma->pending_const);
2065 
2066 		sma->complex_count++;
2067 	}
2068 
2069 	do {
2070 		queue.status = -EINTR;
2071 		queue.sleeper = current;
2072 
2073 		__set_current_state(TASK_INTERRUPTIBLE);
2074 		sem_unlock(sma, locknum);
2075 		rcu_read_unlock();
2076 
2077 		if (timeout)
2078 			jiffies_left = schedule_timeout(jiffies_left);
2079 		else
2080 			schedule();
2081 
2082 		/*
2083 		 * fastpath: the semop has completed, either successfully or
2084 		 * not, from the syscall pov, is quite irrelevant to us at this
2085 		 * point; we're done.
2086 		 *
2087 		 * We _do_ care, nonetheless, about being awoken by a signal or
2088 		 * spuriously.  The queue.status is checked again in the
2089 		 * slowpath (aka after taking sem_lock), such that we can detect
2090 		 * scenarios where we were awakened externally, during the
2091 		 * window between wake_q_add() and wake_up_q().
2092 		 */
2093 		error = READ_ONCE(queue.status);
2094 		if (error != -EINTR) {
2095 			/*
2096 			 * User space could assume that semop() is a memory
2097 			 * barrier: Without the mb(), the cpu could
2098 			 * speculatively read in userspace stale data that was
2099 			 * overwritten by the previous owner of the semaphore.
2100 			 */
2101 			smp_mb();
2102 			goto out_free;
2103 		}
2104 
2105 		rcu_read_lock();
2106 		locknum = sem_lock(sma, sops, nsops);
2107 
2108 		if (!ipc_valid_object(&sma->sem_perm))
2109 			goto out_unlock_free;
2110 
2111 		error = READ_ONCE(queue.status);
2112 
2113 		/*
2114 		 * If queue.status != -EINTR we are woken up by another process.
2115 		 * Leave without unlink_queue(), but with sem_unlock().
2116 		 */
2117 		if (error != -EINTR)
2118 			goto out_unlock_free;
2119 
2120 		/*
2121 		 * If an interrupt occurred we have to clean up the queue.
2122 		 */
2123 		if (timeout && jiffies_left == 0)
2124 			error = -EAGAIN;
2125 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2126 
2127 	unlink_queue(sma, &queue);
2128 
2129 out_unlock_free:
2130 	sem_unlock(sma, locknum);
2131 	rcu_read_unlock();
2132 out_free:
2133 	if (sops != fast_sops)
2134 		kvfree(sops);
2135 	return error;
2136 }
2137 
2138 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2139 		     unsigned int nsops, const struct timespec __user *timeout)
2140 {
2141 	if (timeout) {
2142 		struct timespec64 ts;
2143 		if (get_timespec64(&ts, timeout))
2144 			return -EFAULT;
2145 		return do_semtimedop(semid, tsops, nsops, &ts);
2146 	}
2147 	return do_semtimedop(semid, tsops, nsops, NULL);
2148 }
2149 
2150 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2151 		unsigned int, nsops, const struct timespec __user *, timeout)
2152 {
2153 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2154 }
2155 
2156 #ifdef CONFIG_COMPAT
2157 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2158 			    unsigned int nsops,
2159 			    const struct compat_timespec __user *timeout)
2160 {
2161 	if (timeout) {
2162 		struct timespec64 ts;
2163 		if (compat_get_timespec64(&ts, timeout))
2164 			return -EFAULT;
2165 		return do_semtimedop(semid, tsems, nsops, &ts);
2166 	}
2167 	return do_semtimedop(semid, tsems, nsops, NULL);
2168 }
2169 
2170 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2171 		       unsigned int, nsops,
2172 		       const struct compat_timespec __user *, timeout)
2173 {
2174 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2175 }
2176 #endif
2177 
2178 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2179 		unsigned, nsops)
2180 {
2181 	return do_semtimedop(semid, tsops, nsops, NULL);
2182 }
2183 
2184 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2185  * parent and child tasks.
2186  */
2187 
2188 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2189 {
2190 	struct sem_undo_list *undo_list;
2191 	int error;
2192 
2193 	if (clone_flags & CLONE_SYSVSEM) {
2194 		error = get_undo_list(&undo_list);
2195 		if (error)
2196 			return error;
2197 		refcount_inc(&undo_list->refcnt);
2198 		tsk->sysvsem.undo_list = undo_list;
2199 	} else
2200 		tsk->sysvsem.undo_list = NULL;
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * add semadj values to semaphores, free undo structures.
2207  * undo structures are not freed when semaphore arrays are destroyed
2208  * so some of them may be out of date.
2209  * IMPLEMENTATION NOTE: There is some confusion over whether the
2210  * set of adjustments that needs to be done should be done in an atomic
2211  * manner or not. That is, if we are attempting to decrement the semval
2212  * should we queue up and wait until we can do so legally?
2213  * The original implementation attempted to do this (queue and wait).
2214  * The current implementation does not do so. The POSIX standard
2215  * and SVID should be consulted to determine what behavior is mandated.
2216  */
2217 void exit_sem(struct task_struct *tsk)
2218 {
2219 	struct sem_undo_list *ulp;
2220 
2221 	ulp = tsk->sysvsem.undo_list;
2222 	if (!ulp)
2223 		return;
2224 	tsk->sysvsem.undo_list = NULL;
2225 
2226 	if (!refcount_dec_and_test(&ulp->refcnt))
2227 		return;
2228 
2229 	for (;;) {
2230 		struct sem_array *sma;
2231 		struct sem_undo *un;
2232 		int semid, i;
2233 		DEFINE_WAKE_Q(wake_q);
2234 
2235 		cond_resched();
2236 
2237 		rcu_read_lock();
2238 		un = list_entry_rcu(ulp->list_proc.next,
2239 				    struct sem_undo, list_proc);
2240 		if (&un->list_proc == &ulp->list_proc) {
2241 			/*
2242 			 * We must wait for freeary() before freeing this ulp,
2243 			 * in case we raced with last sem_undo. There is a small
2244 			 * possibility where we exit while freeary() didn't
2245 			 * finish unlocking sem_undo_list.
2246 			 */
2247 			spin_lock(&ulp->lock);
2248 			spin_unlock(&ulp->lock);
2249 			rcu_read_unlock();
2250 			break;
2251 		}
2252 		spin_lock(&ulp->lock);
2253 		semid = un->semid;
2254 		spin_unlock(&ulp->lock);
2255 
2256 		/* exit_sem raced with IPC_RMID, nothing to do */
2257 		if (semid == -1) {
2258 			rcu_read_unlock();
2259 			continue;
2260 		}
2261 
2262 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2263 		/* exit_sem raced with IPC_RMID, nothing to do */
2264 		if (IS_ERR(sma)) {
2265 			rcu_read_unlock();
2266 			continue;
2267 		}
2268 
2269 		sem_lock(sma, NULL, -1);
2270 		/* exit_sem raced with IPC_RMID, nothing to do */
2271 		if (!ipc_valid_object(&sma->sem_perm)) {
2272 			sem_unlock(sma, -1);
2273 			rcu_read_unlock();
2274 			continue;
2275 		}
2276 		un = __lookup_undo(ulp, semid);
2277 		if (un == NULL) {
2278 			/* exit_sem raced with IPC_RMID+semget() that created
2279 			 * exactly the same semid. Nothing to do.
2280 			 */
2281 			sem_unlock(sma, -1);
2282 			rcu_read_unlock();
2283 			continue;
2284 		}
2285 
2286 		/* remove un from the linked lists */
2287 		ipc_assert_locked_object(&sma->sem_perm);
2288 		list_del(&un->list_id);
2289 
2290 		/* we are the last process using this ulp, acquiring ulp->lock
2291 		 * isn't required. Besides that, we are also protected against
2292 		 * IPC_RMID as we hold sma->sem_perm lock now
2293 		 */
2294 		list_del_rcu(&un->list_proc);
2295 
2296 		/* perform adjustments registered in un */
2297 		for (i = 0; i < sma->sem_nsems; i++) {
2298 			struct sem *semaphore = &sma->sems[i];
2299 			if (un->semadj[i]) {
2300 				semaphore->semval += un->semadj[i];
2301 				/*
2302 				 * Range checks of the new semaphore value,
2303 				 * not defined by sus:
2304 				 * - Some unices ignore the undo entirely
2305 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2306 				 * - some cap the value (e.g. FreeBSD caps
2307 				 *   at 0, but doesn't enforce SEMVMX)
2308 				 *
2309 				 * Linux caps the semaphore value, both at 0
2310 				 * and at SEMVMX.
2311 				 *
2312 				 *	Manfred <manfred@colorfullife.com>
2313 				 */
2314 				if (semaphore->semval < 0)
2315 					semaphore->semval = 0;
2316 				if (semaphore->semval > SEMVMX)
2317 					semaphore->semval = SEMVMX;
2318 				semaphore->sempid = task_tgid_vnr(current);
2319 			}
2320 		}
2321 		/* maybe some queued-up processes were waiting for this */
2322 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2323 		sem_unlock(sma, -1);
2324 		rcu_read_unlock();
2325 		wake_up_q(&wake_q);
2326 
2327 		kfree_rcu(un, rcu);
2328 	}
2329 	kfree(ulp);
2330 }
2331 
2332 #ifdef CONFIG_PROC_FS
2333 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2334 {
2335 	struct user_namespace *user_ns = seq_user_ns(s);
2336 	struct kern_ipc_perm *ipcp = it;
2337 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2338 	time64_t sem_otime;
2339 
2340 	/*
2341 	 * The proc interface isn't aware of sem_lock(), it calls
2342 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2343 	 * In order to stay compatible with sem_lock(), we must
2344 	 * enter / leave complex_mode.
2345 	 */
2346 	complexmode_enter(sma);
2347 
2348 	sem_otime = get_semotime(sma);
2349 
2350 	seq_printf(s,
2351 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2352 		   sma->sem_perm.key,
2353 		   sma->sem_perm.id,
2354 		   sma->sem_perm.mode,
2355 		   sma->sem_nsems,
2356 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2357 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2358 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2359 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2360 		   sem_otime,
2361 		   sma->sem_ctime);
2362 
2363 	complexmode_tryleave(sma);
2364 
2365 	return 0;
2366 }
2367 #endif
2368