1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 int sempid; /* pid of last operation */ 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 97 struct list_head pending_alter; /* pending single-sop operations */ 98 /* that alter the semaphore */ 99 struct list_head pending_const; /* pending single-sop operations */ 100 /* that do not alter the semaphore*/ 101 time_t sem_otime; /* candidate for sem_otime */ 102 } ____cacheline_aligned_in_smp; 103 104 /* One queue for each sleeping process in the system. */ 105 struct sem_queue { 106 struct list_head list; /* queue of pending operations */ 107 struct task_struct *sleeper; /* this process */ 108 struct sem_undo *undo; /* undo structure */ 109 int pid; /* process id of requesting process */ 110 int status; /* completion status of operation */ 111 struct sembuf *sops; /* array of pending operations */ 112 struct sembuf *blocking; /* the operation that blocked */ 113 int nsops; /* number of operations */ 114 int alter; /* does *sops alter the array? */ 115 }; 116 117 /* Each task has a list of undo requests. They are executed automatically 118 * when the process exits. 119 */ 120 struct sem_undo { 121 struct list_head list_proc; /* per-process list: * 122 * all undos from one process 123 * rcu protected */ 124 struct rcu_head rcu; /* rcu struct for sem_undo */ 125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 126 struct list_head list_id; /* per semaphore array list: 127 * all undos for one array */ 128 int semid; /* semaphore set identifier */ 129 short *semadj; /* array of adjustments */ 130 /* one per semaphore */ 131 }; 132 133 /* sem_undo_list controls shared access to the list of sem_undo structures 134 * that may be shared among all a CLONE_SYSVSEM task group. 135 */ 136 struct sem_undo_list { 137 atomic_t refcnt; 138 spinlock_t lock; 139 struct list_head list_proc; 140 }; 141 142 143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 144 145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 146 147 static int newary(struct ipc_namespace *, struct ipc_params *); 148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 149 #ifdef CONFIG_PROC_FS 150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 151 #endif 152 153 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 155 156 /* 157 * Locking: 158 * sem_undo.id_next, 159 * sem_array.complex_count, 160 * sem_array.pending{_alter,_cont}, 161 * sem_array.sem_undo: global sem_lock() for read/write 162 * sem_undo.proc_next: only "current" is allowed to read/write that field. 163 * 164 * sem_array.sem_base[i].pending_{const,alter}: 165 * global or semaphore sem_lock() for read/write 166 */ 167 168 #define sc_semmsl sem_ctls[0] 169 #define sc_semmns sem_ctls[1] 170 #define sc_semopm sem_ctls[2] 171 #define sc_semmni sem_ctls[3] 172 173 void sem_init_ns(struct ipc_namespace *ns) 174 { 175 ns->sc_semmsl = SEMMSL; 176 ns->sc_semmns = SEMMNS; 177 ns->sc_semopm = SEMOPM; 178 ns->sc_semmni = SEMMNI; 179 ns->used_sems = 0; 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 181 } 182 183 #ifdef CONFIG_IPC_NS 184 void sem_exit_ns(struct ipc_namespace *ns) 185 { 186 free_ipcs(ns, &sem_ids(ns), freeary); 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 188 } 189 #endif 190 191 void __init sem_init(void) 192 { 193 sem_init_ns(&init_ipc_ns); 194 ipc_init_proc_interface("sysvipc/sem", 195 " key semid perms nsems uid gid cuid cgid otime ctime\n", 196 IPC_SEM_IDS, sysvipc_sem_proc_show); 197 } 198 199 /** 200 * unmerge_queues - unmerge queues, if possible. 201 * @sma: semaphore array 202 * 203 * The function unmerges the wait queues if complex_count is 0. 204 * It must be called prior to dropping the global semaphore array lock. 205 */ 206 static void unmerge_queues(struct sem_array *sma) 207 { 208 struct sem_queue *q, *tq; 209 210 /* complex operations still around? */ 211 if (sma->complex_count) 212 return; 213 /* 214 * We will switch back to simple mode. 215 * Move all pending operation back into the per-semaphore 216 * queues. 217 */ 218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 219 struct sem *curr; 220 curr = &sma->sem_base[q->sops[0].sem_num]; 221 222 list_add_tail(&q->list, &curr->pending_alter); 223 } 224 INIT_LIST_HEAD(&sma->pending_alter); 225 } 226 227 /** 228 * merge_queues - merge single semop queues into global queue 229 * @sma: semaphore array 230 * 231 * This function merges all per-semaphore queues into the global queue. 232 * It is necessary to achieve FIFO ordering for the pending single-sop 233 * operations when a multi-semop operation must sleep. 234 * Only the alter operations must be moved, the const operations can stay. 235 */ 236 static void merge_queues(struct sem_array *sma) 237 { 238 int i; 239 for (i = 0; i < sma->sem_nsems; i++) { 240 struct sem *sem = sma->sem_base + i; 241 242 list_splice_init(&sem->pending_alter, &sma->pending_alter); 243 } 244 } 245 246 static void sem_rcu_free(struct rcu_head *head) 247 { 248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 249 struct sem_array *sma = ipc_rcu_to_struct(p); 250 251 security_sem_free(sma); 252 ipc_rcu_free(head); 253 } 254 255 /* 256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they 257 * are only control barriers. 258 * The code must pair with spin_unlock(&sem->lock) or 259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient. 260 * 261 * smp_rmb() is sufficient, as writes cannot pass the control barrier. 262 */ 263 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb() 264 265 /* 266 * Wait until all currently ongoing simple ops have completed. 267 * Caller must own sem_perm.lock. 268 * New simple ops cannot start, because simple ops first check 269 * that sem_perm.lock is free. 270 * that a) sem_perm.lock is free and b) complex_count is 0. 271 */ 272 static void sem_wait_array(struct sem_array *sma) 273 { 274 int i; 275 struct sem *sem; 276 277 if (sma->complex_count) { 278 /* The thread that increased sma->complex_count waited on 279 * all sem->lock locks. Thus we don't need to wait again. 280 */ 281 return; 282 } 283 284 for (i = 0; i < sma->sem_nsems; i++) { 285 sem = sma->sem_base + i; 286 spin_unlock_wait(&sem->lock); 287 } 288 ipc_smp_acquire__after_spin_is_unlocked(); 289 } 290 291 /* 292 * If the request contains only one semaphore operation, and there are 293 * no complex transactions pending, lock only the semaphore involved. 294 * Otherwise, lock the entire semaphore array, since we either have 295 * multiple semaphores in our own semops, or we need to look at 296 * semaphores from other pending complex operations. 297 */ 298 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 299 int nsops) 300 { 301 struct sem *sem; 302 303 if (nsops != 1) { 304 /* Complex operation - acquire a full lock */ 305 ipc_lock_object(&sma->sem_perm); 306 307 /* And wait until all simple ops that are processed 308 * right now have dropped their locks. 309 */ 310 sem_wait_array(sma); 311 return -1; 312 } 313 314 /* 315 * Only one semaphore affected - try to optimize locking. 316 * The rules are: 317 * - optimized locking is possible if no complex operation 318 * is either enqueued or processed right now. 319 * - The test for enqueued complex ops is simple: 320 * sma->complex_count != 0 321 * - Testing for complex ops that are processed right now is 322 * a bit more difficult. Complex ops acquire the full lock 323 * and first wait that the running simple ops have completed. 324 * (see above) 325 * Thus: If we own a simple lock and the global lock is free 326 * and complex_count is now 0, then it will stay 0 and 327 * thus just locking sem->lock is sufficient. 328 */ 329 sem = sma->sem_base + sops->sem_num; 330 331 if (sma->complex_count == 0) { 332 /* 333 * It appears that no complex operation is around. 334 * Acquire the per-semaphore lock. 335 */ 336 spin_lock(&sem->lock); 337 338 /* Then check that the global lock is free */ 339 if (!spin_is_locked(&sma->sem_perm.lock)) { 340 /* 341 * We need a memory barrier with acquire semantics, 342 * otherwise we can race with another thread that does: 343 * complex_count++; 344 * spin_unlock(sem_perm.lock); 345 */ 346 ipc_smp_acquire__after_spin_is_unlocked(); 347 348 /* 349 * Now repeat the test of complex_count: 350 * It can't change anymore until we drop sem->lock. 351 * Thus: if is now 0, then it will stay 0. 352 */ 353 if (sma->complex_count == 0) { 354 /* fast path successful! */ 355 return sops->sem_num; 356 } 357 } 358 spin_unlock(&sem->lock); 359 } 360 361 /* slow path: acquire the full lock */ 362 ipc_lock_object(&sma->sem_perm); 363 364 if (sma->complex_count == 0) { 365 /* False alarm: 366 * There is no complex operation, thus we can switch 367 * back to the fast path. 368 */ 369 spin_lock(&sem->lock); 370 ipc_unlock_object(&sma->sem_perm); 371 return sops->sem_num; 372 } else { 373 /* Not a false alarm, thus complete the sequence for a 374 * full lock. 375 */ 376 sem_wait_array(sma); 377 return -1; 378 } 379 } 380 381 static inline void sem_unlock(struct sem_array *sma, int locknum) 382 { 383 if (locknum == -1) { 384 unmerge_queues(sma); 385 ipc_unlock_object(&sma->sem_perm); 386 } else { 387 struct sem *sem = sma->sem_base + locknum; 388 spin_unlock(&sem->lock); 389 } 390 } 391 392 /* 393 * sem_lock_(check_) routines are called in the paths where the rwsem 394 * is not held. 395 * 396 * The caller holds the RCU read lock. 397 */ 398 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 399 int id, struct sembuf *sops, int nsops, int *locknum) 400 { 401 struct kern_ipc_perm *ipcp; 402 struct sem_array *sma; 403 404 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 405 if (IS_ERR(ipcp)) 406 return ERR_CAST(ipcp); 407 408 sma = container_of(ipcp, struct sem_array, sem_perm); 409 *locknum = sem_lock(sma, sops, nsops); 410 411 /* ipc_rmid() may have already freed the ID while sem_lock 412 * was spinning: verify that the structure is still valid 413 */ 414 if (ipc_valid_object(ipcp)) 415 return container_of(ipcp, struct sem_array, sem_perm); 416 417 sem_unlock(sma, *locknum); 418 return ERR_PTR(-EINVAL); 419 } 420 421 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 422 { 423 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 424 425 if (IS_ERR(ipcp)) 426 return ERR_CAST(ipcp); 427 428 return container_of(ipcp, struct sem_array, sem_perm); 429 } 430 431 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 432 int id) 433 { 434 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 435 436 if (IS_ERR(ipcp)) 437 return ERR_CAST(ipcp); 438 439 return container_of(ipcp, struct sem_array, sem_perm); 440 } 441 442 static inline void sem_lock_and_putref(struct sem_array *sma) 443 { 444 sem_lock(sma, NULL, -1); 445 ipc_rcu_putref(sma, ipc_rcu_free); 446 } 447 448 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 449 { 450 ipc_rmid(&sem_ids(ns), &s->sem_perm); 451 } 452 453 /* 454 * Lockless wakeup algorithm: 455 * Without the check/retry algorithm a lockless wakeup is possible: 456 * - queue.status is initialized to -EINTR before blocking. 457 * - wakeup is performed by 458 * * unlinking the queue entry from the pending list 459 * * setting queue.status to IN_WAKEUP 460 * This is the notification for the blocked thread that a 461 * result value is imminent. 462 * * call wake_up_process 463 * * set queue.status to the final value. 464 * - the previously blocked thread checks queue.status: 465 * * if it's IN_WAKEUP, then it must wait until the value changes 466 * * if it's not -EINTR, then the operation was completed by 467 * update_queue. semtimedop can return queue.status without 468 * performing any operation on the sem array. 469 * * otherwise it must acquire the spinlock and check what's up. 470 * 471 * The two-stage algorithm is necessary to protect against the following 472 * races: 473 * - if queue.status is set after wake_up_process, then the woken up idle 474 * thread could race forward and try (and fail) to acquire sma->lock 475 * before update_queue had a chance to set queue.status 476 * - if queue.status is written before wake_up_process and if the 477 * blocked process is woken up by a signal between writing 478 * queue.status and the wake_up_process, then the woken up 479 * process could return from semtimedop and die by calling 480 * sys_exit before wake_up_process is called. Then wake_up_process 481 * will oops, because the task structure is already invalid. 482 * (yes, this happened on s390 with sysv msg). 483 * 484 */ 485 #define IN_WAKEUP 1 486 487 /** 488 * newary - Create a new semaphore set 489 * @ns: namespace 490 * @params: ptr to the structure that contains key, semflg and nsems 491 * 492 * Called with sem_ids.rwsem held (as a writer) 493 */ 494 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 495 { 496 int id; 497 int retval; 498 struct sem_array *sma; 499 int size; 500 key_t key = params->key; 501 int nsems = params->u.nsems; 502 int semflg = params->flg; 503 int i; 504 505 if (!nsems) 506 return -EINVAL; 507 if (ns->used_sems + nsems > ns->sc_semmns) 508 return -ENOSPC; 509 510 size = sizeof(*sma) + nsems * sizeof(struct sem); 511 sma = ipc_rcu_alloc(size); 512 if (!sma) 513 return -ENOMEM; 514 515 memset(sma, 0, size); 516 517 sma->sem_perm.mode = (semflg & S_IRWXUGO); 518 sma->sem_perm.key = key; 519 520 sma->sem_perm.security = NULL; 521 retval = security_sem_alloc(sma); 522 if (retval) { 523 ipc_rcu_putref(sma, ipc_rcu_free); 524 return retval; 525 } 526 527 sma->sem_base = (struct sem *) &sma[1]; 528 529 for (i = 0; i < nsems; i++) { 530 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 531 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 532 spin_lock_init(&sma->sem_base[i].lock); 533 } 534 535 sma->complex_count = 0; 536 INIT_LIST_HEAD(&sma->pending_alter); 537 INIT_LIST_HEAD(&sma->pending_const); 538 INIT_LIST_HEAD(&sma->list_id); 539 sma->sem_nsems = nsems; 540 sma->sem_ctime = get_seconds(); 541 542 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 543 if (id < 0) { 544 ipc_rcu_putref(sma, sem_rcu_free); 545 return id; 546 } 547 ns->used_sems += nsems; 548 549 sem_unlock(sma, -1); 550 rcu_read_unlock(); 551 552 return sma->sem_perm.id; 553 } 554 555 556 /* 557 * Called with sem_ids.rwsem and ipcp locked. 558 */ 559 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 560 { 561 struct sem_array *sma; 562 563 sma = container_of(ipcp, struct sem_array, sem_perm); 564 return security_sem_associate(sma, semflg); 565 } 566 567 /* 568 * Called with sem_ids.rwsem and ipcp locked. 569 */ 570 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 571 struct ipc_params *params) 572 { 573 struct sem_array *sma; 574 575 sma = container_of(ipcp, struct sem_array, sem_perm); 576 if (params->u.nsems > sma->sem_nsems) 577 return -EINVAL; 578 579 return 0; 580 } 581 582 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 583 { 584 struct ipc_namespace *ns; 585 static const struct ipc_ops sem_ops = { 586 .getnew = newary, 587 .associate = sem_security, 588 .more_checks = sem_more_checks, 589 }; 590 struct ipc_params sem_params; 591 592 ns = current->nsproxy->ipc_ns; 593 594 if (nsems < 0 || nsems > ns->sc_semmsl) 595 return -EINVAL; 596 597 sem_params.key = key; 598 sem_params.flg = semflg; 599 sem_params.u.nsems = nsems; 600 601 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 602 } 603 604 /** 605 * perform_atomic_semop - Perform (if possible) a semaphore operation 606 * @sma: semaphore array 607 * @q: struct sem_queue that describes the operation 608 * 609 * Returns 0 if the operation was possible. 610 * Returns 1 if the operation is impossible, the caller must sleep. 611 * Negative values are error codes. 612 */ 613 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 614 { 615 int result, sem_op, nsops, pid; 616 struct sembuf *sop; 617 struct sem *curr; 618 struct sembuf *sops; 619 struct sem_undo *un; 620 621 sops = q->sops; 622 nsops = q->nsops; 623 un = q->undo; 624 625 for (sop = sops; sop < sops + nsops; sop++) { 626 curr = sma->sem_base + sop->sem_num; 627 sem_op = sop->sem_op; 628 result = curr->semval; 629 630 if (!sem_op && result) 631 goto would_block; 632 633 result += sem_op; 634 if (result < 0) 635 goto would_block; 636 if (result > SEMVMX) 637 goto out_of_range; 638 639 if (sop->sem_flg & SEM_UNDO) { 640 int undo = un->semadj[sop->sem_num] - sem_op; 641 /* Exceeding the undo range is an error. */ 642 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 643 goto out_of_range; 644 un->semadj[sop->sem_num] = undo; 645 } 646 647 curr->semval = result; 648 } 649 650 sop--; 651 pid = q->pid; 652 while (sop >= sops) { 653 sma->sem_base[sop->sem_num].sempid = pid; 654 sop--; 655 } 656 657 return 0; 658 659 out_of_range: 660 result = -ERANGE; 661 goto undo; 662 663 would_block: 664 q->blocking = sop; 665 666 if (sop->sem_flg & IPC_NOWAIT) 667 result = -EAGAIN; 668 else 669 result = 1; 670 671 undo: 672 sop--; 673 while (sop >= sops) { 674 sem_op = sop->sem_op; 675 sma->sem_base[sop->sem_num].semval -= sem_op; 676 if (sop->sem_flg & SEM_UNDO) 677 un->semadj[sop->sem_num] += sem_op; 678 sop--; 679 } 680 681 return result; 682 } 683 684 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 685 * @q: queue entry that must be signaled 686 * @error: Error value for the signal 687 * 688 * Prepare the wake-up of the queue entry q. 689 */ 690 static void wake_up_sem_queue_prepare(struct list_head *pt, 691 struct sem_queue *q, int error) 692 { 693 if (list_empty(pt)) { 694 /* 695 * Hold preempt off so that we don't get preempted and have the 696 * wakee busy-wait until we're scheduled back on. 697 */ 698 preempt_disable(); 699 } 700 q->status = IN_WAKEUP; 701 q->pid = error; 702 703 list_add_tail(&q->list, pt); 704 } 705 706 /** 707 * wake_up_sem_queue_do - do the actual wake-up 708 * @pt: list of tasks to be woken up 709 * 710 * Do the actual wake-up. 711 * The function is called without any locks held, thus the semaphore array 712 * could be destroyed already and the tasks can disappear as soon as the 713 * status is set to the actual return code. 714 */ 715 static void wake_up_sem_queue_do(struct list_head *pt) 716 { 717 struct sem_queue *q, *t; 718 int did_something; 719 720 did_something = !list_empty(pt); 721 list_for_each_entry_safe(q, t, pt, list) { 722 wake_up_process(q->sleeper); 723 /* q can disappear immediately after writing q->status. */ 724 smp_wmb(); 725 q->status = q->pid; 726 } 727 if (did_something) 728 preempt_enable(); 729 } 730 731 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 732 { 733 list_del(&q->list); 734 if (q->nsops > 1) 735 sma->complex_count--; 736 } 737 738 /** check_restart(sma, q) 739 * @sma: semaphore array 740 * @q: the operation that just completed 741 * 742 * update_queue is O(N^2) when it restarts scanning the whole queue of 743 * waiting operations. Therefore this function checks if the restart is 744 * really necessary. It is called after a previously waiting operation 745 * modified the array. 746 * Note that wait-for-zero operations are handled without restart. 747 */ 748 static int check_restart(struct sem_array *sma, struct sem_queue *q) 749 { 750 /* pending complex alter operations are too difficult to analyse */ 751 if (!list_empty(&sma->pending_alter)) 752 return 1; 753 754 /* we were a sleeping complex operation. Too difficult */ 755 if (q->nsops > 1) 756 return 1; 757 758 /* It is impossible that someone waits for the new value: 759 * - complex operations always restart. 760 * - wait-for-zero are handled seperately. 761 * - q is a previously sleeping simple operation that 762 * altered the array. It must be a decrement, because 763 * simple increments never sleep. 764 * - If there are older (higher priority) decrements 765 * in the queue, then they have observed the original 766 * semval value and couldn't proceed. The operation 767 * decremented to value - thus they won't proceed either. 768 */ 769 return 0; 770 } 771 772 /** 773 * wake_const_ops - wake up non-alter tasks 774 * @sma: semaphore array. 775 * @semnum: semaphore that was modified. 776 * @pt: list head for the tasks that must be woken up. 777 * 778 * wake_const_ops must be called after a semaphore in a semaphore array 779 * was set to 0. If complex const operations are pending, wake_const_ops must 780 * be called with semnum = -1, as well as with the number of each modified 781 * semaphore. 782 * The tasks that must be woken up are added to @pt. The return code 783 * is stored in q->pid. 784 * The function returns 1 if at least one operation was completed successfully. 785 */ 786 static int wake_const_ops(struct sem_array *sma, int semnum, 787 struct list_head *pt) 788 { 789 struct sem_queue *q; 790 struct list_head *walk; 791 struct list_head *pending_list; 792 int semop_completed = 0; 793 794 if (semnum == -1) 795 pending_list = &sma->pending_const; 796 else 797 pending_list = &sma->sem_base[semnum].pending_const; 798 799 walk = pending_list->next; 800 while (walk != pending_list) { 801 int error; 802 803 q = container_of(walk, struct sem_queue, list); 804 walk = walk->next; 805 806 error = perform_atomic_semop(sma, q); 807 808 if (error <= 0) { 809 /* operation completed, remove from queue & wakeup */ 810 811 unlink_queue(sma, q); 812 813 wake_up_sem_queue_prepare(pt, q, error); 814 if (error == 0) 815 semop_completed = 1; 816 } 817 } 818 return semop_completed; 819 } 820 821 /** 822 * do_smart_wakeup_zero - wakeup all wait for zero tasks 823 * @sma: semaphore array 824 * @sops: operations that were performed 825 * @nsops: number of operations 826 * @pt: list head of the tasks that must be woken up. 827 * 828 * Checks all required queue for wait-for-zero operations, based 829 * on the actual changes that were performed on the semaphore array. 830 * The function returns 1 if at least one operation was completed successfully. 831 */ 832 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 833 int nsops, struct list_head *pt) 834 { 835 int i; 836 int semop_completed = 0; 837 int got_zero = 0; 838 839 /* first: the per-semaphore queues, if known */ 840 if (sops) { 841 for (i = 0; i < nsops; i++) { 842 int num = sops[i].sem_num; 843 844 if (sma->sem_base[num].semval == 0) { 845 got_zero = 1; 846 semop_completed |= wake_const_ops(sma, num, pt); 847 } 848 } 849 } else { 850 /* 851 * No sops means modified semaphores not known. 852 * Assume all were changed. 853 */ 854 for (i = 0; i < sma->sem_nsems; i++) { 855 if (sma->sem_base[i].semval == 0) { 856 got_zero = 1; 857 semop_completed |= wake_const_ops(sma, i, pt); 858 } 859 } 860 } 861 /* 862 * If one of the modified semaphores got 0, 863 * then check the global queue, too. 864 */ 865 if (got_zero) 866 semop_completed |= wake_const_ops(sma, -1, pt); 867 868 return semop_completed; 869 } 870 871 872 /** 873 * update_queue - look for tasks that can be completed. 874 * @sma: semaphore array. 875 * @semnum: semaphore that was modified. 876 * @pt: list head for the tasks that must be woken up. 877 * 878 * update_queue must be called after a semaphore in a semaphore array 879 * was modified. If multiple semaphores were modified, update_queue must 880 * be called with semnum = -1, as well as with the number of each modified 881 * semaphore. 882 * The tasks that must be woken up are added to @pt. The return code 883 * is stored in q->pid. 884 * The function internally checks if const operations can now succeed. 885 * 886 * The function return 1 if at least one semop was completed successfully. 887 */ 888 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 889 { 890 struct sem_queue *q; 891 struct list_head *walk; 892 struct list_head *pending_list; 893 int semop_completed = 0; 894 895 if (semnum == -1) 896 pending_list = &sma->pending_alter; 897 else 898 pending_list = &sma->sem_base[semnum].pending_alter; 899 900 again: 901 walk = pending_list->next; 902 while (walk != pending_list) { 903 int error, restart; 904 905 q = container_of(walk, struct sem_queue, list); 906 walk = walk->next; 907 908 /* If we are scanning the single sop, per-semaphore list of 909 * one semaphore and that semaphore is 0, then it is not 910 * necessary to scan further: simple increments 911 * that affect only one entry succeed immediately and cannot 912 * be in the per semaphore pending queue, and decrements 913 * cannot be successful if the value is already 0. 914 */ 915 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 916 break; 917 918 error = perform_atomic_semop(sma, q); 919 920 /* Does q->sleeper still need to sleep? */ 921 if (error > 0) 922 continue; 923 924 unlink_queue(sma, q); 925 926 if (error) { 927 restart = 0; 928 } else { 929 semop_completed = 1; 930 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 931 restart = check_restart(sma, q); 932 } 933 934 wake_up_sem_queue_prepare(pt, q, error); 935 if (restart) 936 goto again; 937 } 938 return semop_completed; 939 } 940 941 /** 942 * set_semotime - set sem_otime 943 * @sma: semaphore array 944 * @sops: operations that modified the array, may be NULL 945 * 946 * sem_otime is replicated to avoid cache line trashing. 947 * This function sets one instance to the current time. 948 */ 949 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 950 { 951 if (sops == NULL) { 952 sma->sem_base[0].sem_otime = get_seconds(); 953 } else { 954 sma->sem_base[sops[0].sem_num].sem_otime = 955 get_seconds(); 956 } 957 } 958 959 /** 960 * do_smart_update - optimized update_queue 961 * @sma: semaphore array 962 * @sops: operations that were performed 963 * @nsops: number of operations 964 * @otime: force setting otime 965 * @pt: list head of the tasks that must be woken up. 966 * 967 * do_smart_update() does the required calls to update_queue and wakeup_zero, 968 * based on the actual changes that were performed on the semaphore array. 969 * Note that the function does not do the actual wake-up: the caller is 970 * responsible for calling wake_up_sem_queue_do(@pt). 971 * It is safe to perform this call after dropping all locks. 972 */ 973 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 974 int otime, struct list_head *pt) 975 { 976 int i; 977 978 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 979 980 if (!list_empty(&sma->pending_alter)) { 981 /* semaphore array uses the global queue - just process it. */ 982 otime |= update_queue(sma, -1, pt); 983 } else { 984 if (!sops) { 985 /* 986 * No sops, thus the modified semaphores are not 987 * known. Check all. 988 */ 989 for (i = 0; i < sma->sem_nsems; i++) 990 otime |= update_queue(sma, i, pt); 991 } else { 992 /* 993 * Check the semaphores that were increased: 994 * - No complex ops, thus all sleeping ops are 995 * decrease. 996 * - if we decreased the value, then any sleeping 997 * semaphore ops wont be able to run: If the 998 * previous value was too small, then the new 999 * value will be too small, too. 1000 */ 1001 for (i = 0; i < nsops; i++) { 1002 if (sops[i].sem_op > 0) { 1003 otime |= update_queue(sma, 1004 sops[i].sem_num, pt); 1005 } 1006 } 1007 } 1008 } 1009 if (otime) 1010 set_semotime(sma, sops); 1011 } 1012 1013 /* 1014 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1015 */ 1016 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1017 bool count_zero) 1018 { 1019 struct sembuf *sop = q->blocking; 1020 1021 /* 1022 * Linux always (since 0.99.10) reported a task as sleeping on all 1023 * semaphores. This violates SUS, therefore it was changed to the 1024 * standard compliant behavior. 1025 * Give the administrators a chance to notice that an application 1026 * might misbehave because it relies on the Linux behavior. 1027 */ 1028 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1029 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1030 current->comm, task_pid_nr(current)); 1031 1032 if (sop->sem_num != semnum) 1033 return 0; 1034 1035 if (count_zero && sop->sem_op == 0) 1036 return 1; 1037 if (!count_zero && sop->sem_op < 0) 1038 return 1; 1039 1040 return 0; 1041 } 1042 1043 /* The following counts are associated to each semaphore: 1044 * semncnt number of tasks waiting on semval being nonzero 1045 * semzcnt number of tasks waiting on semval being zero 1046 * 1047 * Per definition, a task waits only on the semaphore of the first semop 1048 * that cannot proceed, even if additional operation would block, too. 1049 */ 1050 static int count_semcnt(struct sem_array *sma, ushort semnum, 1051 bool count_zero) 1052 { 1053 struct list_head *l; 1054 struct sem_queue *q; 1055 int semcnt; 1056 1057 semcnt = 0; 1058 /* First: check the simple operations. They are easy to evaluate */ 1059 if (count_zero) 1060 l = &sma->sem_base[semnum].pending_const; 1061 else 1062 l = &sma->sem_base[semnum].pending_alter; 1063 1064 list_for_each_entry(q, l, list) { 1065 /* all task on a per-semaphore list sleep on exactly 1066 * that semaphore 1067 */ 1068 semcnt++; 1069 } 1070 1071 /* Then: check the complex operations. */ 1072 list_for_each_entry(q, &sma->pending_alter, list) { 1073 semcnt += check_qop(sma, semnum, q, count_zero); 1074 } 1075 if (count_zero) { 1076 list_for_each_entry(q, &sma->pending_const, list) { 1077 semcnt += check_qop(sma, semnum, q, count_zero); 1078 } 1079 } 1080 return semcnt; 1081 } 1082 1083 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1084 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1085 * remains locked on exit. 1086 */ 1087 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1088 { 1089 struct sem_undo *un, *tu; 1090 struct sem_queue *q, *tq; 1091 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1092 struct list_head tasks; 1093 int i; 1094 1095 /* Free the existing undo structures for this semaphore set. */ 1096 ipc_assert_locked_object(&sma->sem_perm); 1097 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1098 list_del(&un->list_id); 1099 spin_lock(&un->ulp->lock); 1100 un->semid = -1; 1101 list_del_rcu(&un->list_proc); 1102 spin_unlock(&un->ulp->lock); 1103 kfree_rcu(un, rcu); 1104 } 1105 1106 /* Wake up all pending processes and let them fail with EIDRM. */ 1107 INIT_LIST_HEAD(&tasks); 1108 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1109 unlink_queue(sma, q); 1110 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1111 } 1112 1113 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1114 unlink_queue(sma, q); 1115 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1116 } 1117 for (i = 0; i < sma->sem_nsems; i++) { 1118 struct sem *sem = sma->sem_base + i; 1119 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1120 unlink_queue(sma, q); 1121 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1122 } 1123 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1124 unlink_queue(sma, q); 1125 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1126 } 1127 } 1128 1129 /* Remove the semaphore set from the IDR */ 1130 sem_rmid(ns, sma); 1131 sem_unlock(sma, -1); 1132 rcu_read_unlock(); 1133 1134 wake_up_sem_queue_do(&tasks); 1135 ns->used_sems -= sma->sem_nsems; 1136 ipc_rcu_putref(sma, sem_rcu_free); 1137 } 1138 1139 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1140 { 1141 switch (version) { 1142 case IPC_64: 1143 return copy_to_user(buf, in, sizeof(*in)); 1144 case IPC_OLD: 1145 { 1146 struct semid_ds out; 1147 1148 memset(&out, 0, sizeof(out)); 1149 1150 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1151 1152 out.sem_otime = in->sem_otime; 1153 out.sem_ctime = in->sem_ctime; 1154 out.sem_nsems = in->sem_nsems; 1155 1156 return copy_to_user(buf, &out, sizeof(out)); 1157 } 1158 default: 1159 return -EINVAL; 1160 } 1161 } 1162 1163 static time_t get_semotime(struct sem_array *sma) 1164 { 1165 int i; 1166 time_t res; 1167 1168 res = sma->sem_base[0].sem_otime; 1169 for (i = 1; i < sma->sem_nsems; i++) { 1170 time_t to = sma->sem_base[i].sem_otime; 1171 1172 if (to > res) 1173 res = to; 1174 } 1175 return res; 1176 } 1177 1178 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1179 int cmd, int version, void __user *p) 1180 { 1181 int err; 1182 struct sem_array *sma; 1183 1184 switch (cmd) { 1185 case IPC_INFO: 1186 case SEM_INFO: 1187 { 1188 struct seminfo seminfo; 1189 int max_id; 1190 1191 err = security_sem_semctl(NULL, cmd); 1192 if (err) 1193 return err; 1194 1195 memset(&seminfo, 0, sizeof(seminfo)); 1196 seminfo.semmni = ns->sc_semmni; 1197 seminfo.semmns = ns->sc_semmns; 1198 seminfo.semmsl = ns->sc_semmsl; 1199 seminfo.semopm = ns->sc_semopm; 1200 seminfo.semvmx = SEMVMX; 1201 seminfo.semmnu = SEMMNU; 1202 seminfo.semmap = SEMMAP; 1203 seminfo.semume = SEMUME; 1204 down_read(&sem_ids(ns).rwsem); 1205 if (cmd == SEM_INFO) { 1206 seminfo.semusz = sem_ids(ns).in_use; 1207 seminfo.semaem = ns->used_sems; 1208 } else { 1209 seminfo.semusz = SEMUSZ; 1210 seminfo.semaem = SEMAEM; 1211 } 1212 max_id = ipc_get_maxid(&sem_ids(ns)); 1213 up_read(&sem_ids(ns).rwsem); 1214 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1215 return -EFAULT; 1216 return (max_id < 0) ? 0 : max_id; 1217 } 1218 case IPC_STAT: 1219 case SEM_STAT: 1220 { 1221 struct semid64_ds tbuf; 1222 int id = 0; 1223 1224 memset(&tbuf, 0, sizeof(tbuf)); 1225 1226 rcu_read_lock(); 1227 if (cmd == SEM_STAT) { 1228 sma = sem_obtain_object(ns, semid); 1229 if (IS_ERR(sma)) { 1230 err = PTR_ERR(sma); 1231 goto out_unlock; 1232 } 1233 id = sma->sem_perm.id; 1234 } else { 1235 sma = sem_obtain_object_check(ns, semid); 1236 if (IS_ERR(sma)) { 1237 err = PTR_ERR(sma); 1238 goto out_unlock; 1239 } 1240 } 1241 1242 err = -EACCES; 1243 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1244 goto out_unlock; 1245 1246 err = security_sem_semctl(sma, cmd); 1247 if (err) 1248 goto out_unlock; 1249 1250 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1251 tbuf.sem_otime = get_semotime(sma); 1252 tbuf.sem_ctime = sma->sem_ctime; 1253 tbuf.sem_nsems = sma->sem_nsems; 1254 rcu_read_unlock(); 1255 if (copy_semid_to_user(p, &tbuf, version)) 1256 return -EFAULT; 1257 return id; 1258 } 1259 default: 1260 return -EINVAL; 1261 } 1262 out_unlock: 1263 rcu_read_unlock(); 1264 return err; 1265 } 1266 1267 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1268 unsigned long arg) 1269 { 1270 struct sem_undo *un; 1271 struct sem_array *sma; 1272 struct sem *curr; 1273 int err; 1274 struct list_head tasks; 1275 int val; 1276 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1277 /* big-endian 64bit */ 1278 val = arg >> 32; 1279 #else 1280 /* 32bit or little-endian 64bit */ 1281 val = arg; 1282 #endif 1283 1284 if (val > SEMVMX || val < 0) 1285 return -ERANGE; 1286 1287 INIT_LIST_HEAD(&tasks); 1288 1289 rcu_read_lock(); 1290 sma = sem_obtain_object_check(ns, semid); 1291 if (IS_ERR(sma)) { 1292 rcu_read_unlock(); 1293 return PTR_ERR(sma); 1294 } 1295 1296 if (semnum < 0 || semnum >= sma->sem_nsems) { 1297 rcu_read_unlock(); 1298 return -EINVAL; 1299 } 1300 1301 1302 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1303 rcu_read_unlock(); 1304 return -EACCES; 1305 } 1306 1307 err = security_sem_semctl(sma, SETVAL); 1308 if (err) { 1309 rcu_read_unlock(); 1310 return -EACCES; 1311 } 1312 1313 sem_lock(sma, NULL, -1); 1314 1315 if (!ipc_valid_object(&sma->sem_perm)) { 1316 sem_unlock(sma, -1); 1317 rcu_read_unlock(); 1318 return -EIDRM; 1319 } 1320 1321 curr = &sma->sem_base[semnum]; 1322 1323 ipc_assert_locked_object(&sma->sem_perm); 1324 list_for_each_entry(un, &sma->list_id, list_id) 1325 un->semadj[semnum] = 0; 1326 1327 curr->semval = val; 1328 curr->sempid = task_tgid_vnr(current); 1329 sma->sem_ctime = get_seconds(); 1330 /* maybe some queued-up processes were waiting for this */ 1331 do_smart_update(sma, NULL, 0, 0, &tasks); 1332 sem_unlock(sma, -1); 1333 rcu_read_unlock(); 1334 wake_up_sem_queue_do(&tasks); 1335 return 0; 1336 } 1337 1338 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1339 int cmd, void __user *p) 1340 { 1341 struct sem_array *sma; 1342 struct sem *curr; 1343 int err, nsems; 1344 ushort fast_sem_io[SEMMSL_FAST]; 1345 ushort *sem_io = fast_sem_io; 1346 struct list_head tasks; 1347 1348 INIT_LIST_HEAD(&tasks); 1349 1350 rcu_read_lock(); 1351 sma = sem_obtain_object_check(ns, semid); 1352 if (IS_ERR(sma)) { 1353 rcu_read_unlock(); 1354 return PTR_ERR(sma); 1355 } 1356 1357 nsems = sma->sem_nsems; 1358 1359 err = -EACCES; 1360 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1361 goto out_rcu_wakeup; 1362 1363 err = security_sem_semctl(sma, cmd); 1364 if (err) 1365 goto out_rcu_wakeup; 1366 1367 err = -EACCES; 1368 switch (cmd) { 1369 case GETALL: 1370 { 1371 ushort __user *array = p; 1372 int i; 1373 1374 sem_lock(sma, NULL, -1); 1375 if (!ipc_valid_object(&sma->sem_perm)) { 1376 err = -EIDRM; 1377 goto out_unlock; 1378 } 1379 if (nsems > SEMMSL_FAST) { 1380 if (!ipc_rcu_getref(sma)) { 1381 err = -EIDRM; 1382 goto out_unlock; 1383 } 1384 sem_unlock(sma, -1); 1385 rcu_read_unlock(); 1386 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1387 if (sem_io == NULL) { 1388 ipc_rcu_putref(sma, ipc_rcu_free); 1389 return -ENOMEM; 1390 } 1391 1392 rcu_read_lock(); 1393 sem_lock_and_putref(sma); 1394 if (!ipc_valid_object(&sma->sem_perm)) { 1395 err = -EIDRM; 1396 goto out_unlock; 1397 } 1398 } 1399 for (i = 0; i < sma->sem_nsems; i++) 1400 sem_io[i] = sma->sem_base[i].semval; 1401 sem_unlock(sma, -1); 1402 rcu_read_unlock(); 1403 err = 0; 1404 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1405 err = -EFAULT; 1406 goto out_free; 1407 } 1408 case SETALL: 1409 { 1410 int i; 1411 struct sem_undo *un; 1412 1413 if (!ipc_rcu_getref(sma)) { 1414 err = -EIDRM; 1415 goto out_rcu_wakeup; 1416 } 1417 rcu_read_unlock(); 1418 1419 if (nsems > SEMMSL_FAST) { 1420 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1421 if (sem_io == NULL) { 1422 ipc_rcu_putref(sma, ipc_rcu_free); 1423 return -ENOMEM; 1424 } 1425 } 1426 1427 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1428 ipc_rcu_putref(sma, ipc_rcu_free); 1429 err = -EFAULT; 1430 goto out_free; 1431 } 1432 1433 for (i = 0; i < nsems; i++) { 1434 if (sem_io[i] > SEMVMX) { 1435 ipc_rcu_putref(sma, ipc_rcu_free); 1436 err = -ERANGE; 1437 goto out_free; 1438 } 1439 } 1440 rcu_read_lock(); 1441 sem_lock_and_putref(sma); 1442 if (!ipc_valid_object(&sma->sem_perm)) { 1443 err = -EIDRM; 1444 goto out_unlock; 1445 } 1446 1447 for (i = 0; i < nsems; i++) 1448 sma->sem_base[i].semval = sem_io[i]; 1449 1450 ipc_assert_locked_object(&sma->sem_perm); 1451 list_for_each_entry(un, &sma->list_id, list_id) { 1452 for (i = 0; i < nsems; i++) 1453 un->semadj[i] = 0; 1454 } 1455 sma->sem_ctime = get_seconds(); 1456 /* maybe some queued-up processes were waiting for this */ 1457 do_smart_update(sma, NULL, 0, 0, &tasks); 1458 err = 0; 1459 goto out_unlock; 1460 } 1461 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1462 } 1463 err = -EINVAL; 1464 if (semnum < 0 || semnum >= nsems) 1465 goto out_rcu_wakeup; 1466 1467 sem_lock(sma, NULL, -1); 1468 if (!ipc_valid_object(&sma->sem_perm)) { 1469 err = -EIDRM; 1470 goto out_unlock; 1471 } 1472 curr = &sma->sem_base[semnum]; 1473 1474 switch (cmd) { 1475 case GETVAL: 1476 err = curr->semval; 1477 goto out_unlock; 1478 case GETPID: 1479 err = curr->sempid; 1480 goto out_unlock; 1481 case GETNCNT: 1482 err = count_semcnt(sma, semnum, 0); 1483 goto out_unlock; 1484 case GETZCNT: 1485 err = count_semcnt(sma, semnum, 1); 1486 goto out_unlock; 1487 } 1488 1489 out_unlock: 1490 sem_unlock(sma, -1); 1491 out_rcu_wakeup: 1492 rcu_read_unlock(); 1493 wake_up_sem_queue_do(&tasks); 1494 out_free: 1495 if (sem_io != fast_sem_io) 1496 ipc_free(sem_io); 1497 return err; 1498 } 1499 1500 static inline unsigned long 1501 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1502 { 1503 switch (version) { 1504 case IPC_64: 1505 if (copy_from_user(out, buf, sizeof(*out))) 1506 return -EFAULT; 1507 return 0; 1508 case IPC_OLD: 1509 { 1510 struct semid_ds tbuf_old; 1511 1512 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1513 return -EFAULT; 1514 1515 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1516 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1517 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1518 1519 return 0; 1520 } 1521 default: 1522 return -EINVAL; 1523 } 1524 } 1525 1526 /* 1527 * This function handles some semctl commands which require the rwsem 1528 * to be held in write mode. 1529 * NOTE: no locks must be held, the rwsem is taken inside this function. 1530 */ 1531 static int semctl_down(struct ipc_namespace *ns, int semid, 1532 int cmd, int version, void __user *p) 1533 { 1534 struct sem_array *sma; 1535 int err; 1536 struct semid64_ds semid64; 1537 struct kern_ipc_perm *ipcp; 1538 1539 if (cmd == IPC_SET) { 1540 if (copy_semid_from_user(&semid64, p, version)) 1541 return -EFAULT; 1542 } 1543 1544 down_write(&sem_ids(ns).rwsem); 1545 rcu_read_lock(); 1546 1547 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1548 &semid64.sem_perm, 0); 1549 if (IS_ERR(ipcp)) { 1550 err = PTR_ERR(ipcp); 1551 goto out_unlock1; 1552 } 1553 1554 sma = container_of(ipcp, struct sem_array, sem_perm); 1555 1556 err = security_sem_semctl(sma, cmd); 1557 if (err) 1558 goto out_unlock1; 1559 1560 switch (cmd) { 1561 case IPC_RMID: 1562 sem_lock(sma, NULL, -1); 1563 /* freeary unlocks the ipc object and rcu */ 1564 freeary(ns, ipcp); 1565 goto out_up; 1566 case IPC_SET: 1567 sem_lock(sma, NULL, -1); 1568 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1569 if (err) 1570 goto out_unlock0; 1571 sma->sem_ctime = get_seconds(); 1572 break; 1573 default: 1574 err = -EINVAL; 1575 goto out_unlock1; 1576 } 1577 1578 out_unlock0: 1579 sem_unlock(sma, -1); 1580 out_unlock1: 1581 rcu_read_unlock(); 1582 out_up: 1583 up_write(&sem_ids(ns).rwsem); 1584 return err; 1585 } 1586 1587 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1588 { 1589 int version; 1590 struct ipc_namespace *ns; 1591 void __user *p = (void __user *)arg; 1592 1593 if (semid < 0) 1594 return -EINVAL; 1595 1596 version = ipc_parse_version(&cmd); 1597 ns = current->nsproxy->ipc_ns; 1598 1599 switch (cmd) { 1600 case IPC_INFO: 1601 case SEM_INFO: 1602 case IPC_STAT: 1603 case SEM_STAT: 1604 return semctl_nolock(ns, semid, cmd, version, p); 1605 case GETALL: 1606 case GETVAL: 1607 case GETPID: 1608 case GETNCNT: 1609 case GETZCNT: 1610 case SETALL: 1611 return semctl_main(ns, semid, semnum, cmd, p); 1612 case SETVAL: 1613 return semctl_setval(ns, semid, semnum, arg); 1614 case IPC_RMID: 1615 case IPC_SET: 1616 return semctl_down(ns, semid, cmd, version, p); 1617 default: 1618 return -EINVAL; 1619 } 1620 } 1621 1622 /* If the task doesn't already have a undo_list, then allocate one 1623 * here. We guarantee there is only one thread using this undo list, 1624 * and current is THE ONE 1625 * 1626 * If this allocation and assignment succeeds, but later 1627 * portions of this code fail, there is no need to free the sem_undo_list. 1628 * Just let it stay associated with the task, and it'll be freed later 1629 * at exit time. 1630 * 1631 * This can block, so callers must hold no locks. 1632 */ 1633 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1634 { 1635 struct sem_undo_list *undo_list; 1636 1637 undo_list = current->sysvsem.undo_list; 1638 if (!undo_list) { 1639 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1640 if (undo_list == NULL) 1641 return -ENOMEM; 1642 spin_lock_init(&undo_list->lock); 1643 atomic_set(&undo_list->refcnt, 1); 1644 INIT_LIST_HEAD(&undo_list->list_proc); 1645 1646 current->sysvsem.undo_list = undo_list; 1647 } 1648 *undo_listp = undo_list; 1649 return 0; 1650 } 1651 1652 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1653 { 1654 struct sem_undo *un; 1655 1656 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1657 if (un->semid == semid) 1658 return un; 1659 } 1660 return NULL; 1661 } 1662 1663 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1664 { 1665 struct sem_undo *un; 1666 1667 assert_spin_locked(&ulp->lock); 1668 1669 un = __lookup_undo(ulp, semid); 1670 if (un) { 1671 list_del_rcu(&un->list_proc); 1672 list_add_rcu(&un->list_proc, &ulp->list_proc); 1673 } 1674 return un; 1675 } 1676 1677 /** 1678 * find_alloc_undo - lookup (and if not present create) undo array 1679 * @ns: namespace 1680 * @semid: semaphore array id 1681 * 1682 * The function looks up (and if not present creates) the undo structure. 1683 * The size of the undo structure depends on the size of the semaphore 1684 * array, thus the alloc path is not that straightforward. 1685 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1686 * performs a rcu_read_lock(). 1687 */ 1688 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1689 { 1690 struct sem_array *sma; 1691 struct sem_undo_list *ulp; 1692 struct sem_undo *un, *new; 1693 int nsems, error; 1694 1695 error = get_undo_list(&ulp); 1696 if (error) 1697 return ERR_PTR(error); 1698 1699 rcu_read_lock(); 1700 spin_lock(&ulp->lock); 1701 un = lookup_undo(ulp, semid); 1702 spin_unlock(&ulp->lock); 1703 if (likely(un != NULL)) 1704 goto out; 1705 1706 /* no undo structure around - allocate one. */ 1707 /* step 1: figure out the size of the semaphore array */ 1708 sma = sem_obtain_object_check(ns, semid); 1709 if (IS_ERR(sma)) { 1710 rcu_read_unlock(); 1711 return ERR_CAST(sma); 1712 } 1713 1714 nsems = sma->sem_nsems; 1715 if (!ipc_rcu_getref(sma)) { 1716 rcu_read_unlock(); 1717 un = ERR_PTR(-EIDRM); 1718 goto out; 1719 } 1720 rcu_read_unlock(); 1721 1722 /* step 2: allocate new undo structure */ 1723 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1724 if (!new) { 1725 ipc_rcu_putref(sma, ipc_rcu_free); 1726 return ERR_PTR(-ENOMEM); 1727 } 1728 1729 /* step 3: Acquire the lock on semaphore array */ 1730 rcu_read_lock(); 1731 sem_lock_and_putref(sma); 1732 if (!ipc_valid_object(&sma->sem_perm)) { 1733 sem_unlock(sma, -1); 1734 rcu_read_unlock(); 1735 kfree(new); 1736 un = ERR_PTR(-EIDRM); 1737 goto out; 1738 } 1739 spin_lock(&ulp->lock); 1740 1741 /* 1742 * step 4: check for races: did someone else allocate the undo struct? 1743 */ 1744 un = lookup_undo(ulp, semid); 1745 if (un) { 1746 kfree(new); 1747 goto success; 1748 } 1749 /* step 5: initialize & link new undo structure */ 1750 new->semadj = (short *) &new[1]; 1751 new->ulp = ulp; 1752 new->semid = semid; 1753 assert_spin_locked(&ulp->lock); 1754 list_add_rcu(&new->list_proc, &ulp->list_proc); 1755 ipc_assert_locked_object(&sma->sem_perm); 1756 list_add(&new->list_id, &sma->list_id); 1757 un = new; 1758 1759 success: 1760 spin_unlock(&ulp->lock); 1761 sem_unlock(sma, -1); 1762 out: 1763 return un; 1764 } 1765 1766 1767 /** 1768 * get_queue_result - retrieve the result code from sem_queue 1769 * @q: Pointer to queue structure 1770 * 1771 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1772 * q->status, then we must loop until the value is replaced with the final 1773 * value: This may happen if a task is woken up by an unrelated event (e.g. 1774 * signal) and in parallel the task is woken up by another task because it got 1775 * the requested semaphores. 1776 * 1777 * The function can be called with or without holding the semaphore spinlock. 1778 */ 1779 static int get_queue_result(struct sem_queue *q) 1780 { 1781 int error; 1782 1783 error = q->status; 1784 while (unlikely(error == IN_WAKEUP)) { 1785 cpu_relax(); 1786 error = q->status; 1787 } 1788 1789 return error; 1790 } 1791 1792 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1793 unsigned, nsops, const struct timespec __user *, timeout) 1794 { 1795 int error = -EINVAL; 1796 struct sem_array *sma; 1797 struct sembuf fast_sops[SEMOPM_FAST]; 1798 struct sembuf *sops = fast_sops, *sop; 1799 struct sem_undo *un; 1800 int undos = 0, alter = 0, max, locknum; 1801 struct sem_queue queue; 1802 unsigned long jiffies_left = 0; 1803 struct ipc_namespace *ns; 1804 struct list_head tasks; 1805 1806 ns = current->nsproxy->ipc_ns; 1807 1808 if (nsops < 1 || semid < 0) 1809 return -EINVAL; 1810 if (nsops > ns->sc_semopm) 1811 return -E2BIG; 1812 if (nsops > SEMOPM_FAST) { 1813 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1814 if (sops == NULL) 1815 return -ENOMEM; 1816 } 1817 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1818 error = -EFAULT; 1819 goto out_free; 1820 } 1821 if (timeout) { 1822 struct timespec _timeout; 1823 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1824 error = -EFAULT; 1825 goto out_free; 1826 } 1827 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1828 _timeout.tv_nsec >= 1000000000L) { 1829 error = -EINVAL; 1830 goto out_free; 1831 } 1832 jiffies_left = timespec_to_jiffies(&_timeout); 1833 } 1834 max = 0; 1835 for (sop = sops; sop < sops + nsops; sop++) { 1836 if (sop->sem_num >= max) 1837 max = sop->sem_num; 1838 if (sop->sem_flg & SEM_UNDO) 1839 undos = 1; 1840 if (sop->sem_op != 0) 1841 alter = 1; 1842 } 1843 1844 INIT_LIST_HEAD(&tasks); 1845 1846 if (undos) { 1847 /* On success, find_alloc_undo takes the rcu_read_lock */ 1848 un = find_alloc_undo(ns, semid); 1849 if (IS_ERR(un)) { 1850 error = PTR_ERR(un); 1851 goto out_free; 1852 } 1853 } else { 1854 un = NULL; 1855 rcu_read_lock(); 1856 } 1857 1858 sma = sem_obtain_object_check(ns, semid); 1859 if (IS_ERR(sma)) { 1860 rcu_read_unlock(); 1861 error = PTR_ERR(sma); 1862 goto out_free; 1863 } 1864 1865 error = -EFBIG; 1866 if (max >= sma->sem_nsems) 1867 goto out_rcu_wakeup; 1868 1869 error = -EACCES; 1870 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1871 goto out_rcu_wakeup; 1872 1873 error = security_sem_semop(sma, sops, nsops, alter); 1874 if (error) 1875 goto out_rcu_wakeup; 1876 1877 error = -EIDRM; 1878 locknum = sem_lock(sma, sops, nsops); 1879 /* 1880 * We eventually might perform the following check in a lockless 1881 * fashion, considering ipc_valid_object() locking constraints. 1882 * If nsops == 1 and there is no contention for sem_perm.lock, then 1883 * only a per-semaphore lock is held and it's OK to proceed with the 1884 * check below. More details on the fine grained locking scheme 1885 * entangled here and why it's RMID race safe on comments at sem_lock() 1886 */ 1887 if (!ipc_valid_object(&sma->sem_perm)) 1888 goto out_unlock_free; 1889 /* 1890 * semid identifiers are not unique - find_alloc_undo may have 1891 * allocated an undo structure, it was invalidated by an RMID 1892 * and now a new array with received the same id. Check and fail. 1893 * This case can be detected checking un->semid. The existence of 1894 * "un" itself is guaranteed by rcu. 1895 */ 1896 if (un && un->semid == -1) 1897 goto out_unlock_free; 1898 1899 queue.sops = sops; 1900 queue.nsops = nsops; 1901 queue.undo = un; 1902 queue.pid = task_tgid_vnr(current); 1903 queue.alter = alter; 1904 1905 error = perform_atomic_semop(sma, &queue); 1906 if (error == 0) { 1907 /* If the operation was successful, then do 1908 * the required updates. 1909 */ 1910 if (alter) 1911 do_smart_update(sma, sops, nsops, 1, &tasks); 1912 else 1913 set_semotime(sma, sops); 1914 } 1915 if (error <= 0) 1916 goto out_unlock_free; 1917 1918 /* We need to sleep on this operation, so we put the current 1919 * task into the pending queue and go to sleep. 1920 */ 1921 1922 if (nsops == 1) { 1923 struct sem *curr; 1924 curr = &sma->sem_base[sops->sem_num]; 1925 1926 if (alter) { 1927 if (sma->complex_count) { 1928 list_add_tail(&queue.list, 1929 &sma->pending_alter); 1930 } else { 1931 1932 list_add_tail(&queue.list, 1933 &curr->pending_alter); 1934 } 1935 } else { 1936 list_add_tail(&queue.list, &curr->pending_const); 1937 } 1938 } else { 1939 if (!sma->complex_count) 1940 merge_queues(sma); 1941 1942 if (alter) 1943 list_add_tail(&queue.list, &sma->pending_alter); 1944 else 1945 list_add_tail(&queue.list, &sma->pending_const); 1946 1947 sma->complex_count++; 1948 } 1949 1950 queue.status = -EINTR; 1951 queue.sleeper = current; 1952 1953 sleep_again: 1954 __set_current_state(TASK_INTERRUPTIBLE); 1955 sem_unlock(sma, locknum); 1956 rcu_read_unlock(); 1957 1958 if (timeout) 1959 jiffies_left = schedule_timeout(jiffies_left); 1960 else 1961 schedule(); 1962 1963 error = get_queue_result(&queue); 1964 1965 if (error != -EINTR) { 1966 /* fast path: update_queue already obtained all requested 1967 * resources. 1968 * Perform a smp_mb(): User space could assume that semop() 1969 * is a memory barrier: Without the mb(), the cpu could 1970 * speculatively read in user space stale data that was 1971 * overwritten by the previous owner of the semaphore. 1972 */ 1973 smp_mb(); 1974 1975 goto out_free; 1976 } 1977 1978 rcu_read_lock(); 1979 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1980 1981 /* 1982 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1983 */ 1984 error = get_queue_result(&queue); 1985 1986 /* 1987 * Array removed? If yes, leave without sem_unlock(). 1988 */ 1989 if (IS_ERR(sma)) { 1990 rcu_read_unlock(); 1991 goto out_free; 1992 } 1993 1994 1995 /* 1996 * If queue.status != -EINTR we are woken up by another process. 1997 * Leave without unlink_queue(), but with sem_unlock(). 1998 */ 1999 if (error != -EINTR) 2000 goto out_unlock_free; 2001 2002 /* 2003 * If an interrupt occurred we have to clean up the queue 2004 */ 2005 if (timeout && jiffies_left == 0) 2006 error = -EAGAIN; 2007 2008 /* 2009 * If the wakeup was spurious, just retry 2010 */ 2011 if (error == -EINTR && !signal_pending(current)) 2012 goto sleep_again; 2013 2014 unlink_queue(sma, &queue); 2015 2016 out_unlock_free: 2017 sem_unlock(sma, locknum); 2018 out_rcu_wakeup: 2019 rcu_read_unlock(); 2020 wake_up_sem_queue_do(&tasks); 2021 out_free: 2022 if (sops != fast_sops) 2023 kfree(sops); 2024 return error; 2025 } 2026 2027 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2028 unsigned, nsops) 2029 { 2030 return sys_semtimedop(semid, tsops, nsops, NULL); 2031 } 2032 2033 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2034 * parent and child tasks. 2035 */ 2036 2037 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2038 { 2039 struct sem_undo_list *undo_list; 2040 int error; 2041 2042 if (clone_flags & CLONE_SYSVSEM) { 2043 error = get_undo_list(&undo_list); 2044 if (error) 2045 return error; 2046 atomic_inc(&undo_list->refcnt); 2047 tsk->sysvsem.undo_list = undo_list; 2048 } else 2049 tsk->sysvsem.undo_list = NULL; 2050 2051 return 0; 2052 } 2053 2054 /* 2055 * add semadj values to semaphores, free undo structures. 2056 * undo structures are not freed when semaphore arrays are destroyed 2057 * so some of them may be out of date. 2058 * IMPLEMENTATION NOTE: There is some confusion over whether the 2059 * set of adjustments that needs to be done should be done in an atomic 2060 * manner or not. That is, if we are attempting to decrement the semval 2061 * should we queue up and wait until we can do so legally? 2062 * The original implementation attempted to do this (queue and wait). 2063 * The current implementation does not do so. The POSIX standard 2064 * and SVID should be consulted to determine what behavior is mandated. 2065 */ 2066 void exit_sem(struct task_struct *tsk) 2067 { 2068 struct sem_undo_list *ulp; 2069 2070 ulp = tsk->sysvsem.undo_list; 2071 if (!ulp) 2072 return; 2073 tsk->sysvsem.undo_list = NULL; 2074 2075 if (!atomic_dec_and_test(&ulp->refcnt)) 2076 return; 2077 2078 for (;;) { 2079 struct sem_array *sma; 2080 struct sem_undo *un; 2081 struct list_head tasks; 2082 int semid, i; 2083 2084 rcu_read_lock(); 2085 un = list_entry_rcu(ulp->list_proc.next, 2086 struct sem_undo, list_proc); 2087 if (&un->list_proc == &ulp->list_proc) { 2088 /* 2089 * We must wait for freeary() before freeing this ulp, 2090 * in case we raced with last sem_undo. There is a small 2091 * possibility where we exit while freeary() didn't 2092 * finish unlocking sem_undo_list. 2093 */ 2094 spin_unlock_wait(&ulp->lock); 2095 rcu_read_unlock(); 2096 break; 2097 } 2098 spin_lock(&ulp->lock); 2099 semid = un->semid; 2100 spin_unlock(&ulp->lock); 2101 2102 /* exit_sem raced with IPC_RMID, nothing to do */ 2103 if (semid == -1) { 2104 rcu_read_unlock(); 2105 continue; 2106 } 2107 2108 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2109 /* exit_sem raced with IPC_RMID, nothing to do */ 2110 if (IS_ERR(sma)) { 2111 rcu_read_unlock(); 2112 continue; 2113 } 2114 2115 sem_lock(sma, NULL, -1); 2116 /* exit_sem raced with IPC_RMID, nothing to do */ 2117 if (!ipc_valid_object(&sma->sem_perm)) { 2118 sem_unlock(sma, -1); 2119 rcu_read_unlock(); 2120 continue; 2121 } 2122 un = __lookup_undo(ulp, semid); 2123 if (un == NULL) { 2124 /* exit_sem raced with IPC_RMID+semget() that created 2125 * exactly the same semid. Nothing to do. 2126 */ 2127 sem_unlock(sma, -1); 2128 rcu_read_unlock(); 2129 continue; 2130 } 2131 2132 /* remove un from the linked lists */ 2133 ipc_assert_locked_object(&sma->sem_perm); 2134 list_del(&un->list_id); 2135 2136 /* we are the last process using this ulp, acquiring ulp->lock 2137 * isn't required. Besides that, we are also protected against 2138 * IPC_RMID as we hold sma->sem_perm lock now 2139 */ 2140 list_del_rcu(&un->list_proc); 2141 2142 /* perform adjustments registered in un */ 2143 for (i = 0; i < sma->sem_nsems; i++) { 2144 struct sem *semaphore = &sma->sem_base[i]; 2145 if (un->semadj[i]) { 2146 semaphore->semval += un->semadj[i]; 2147 /* 2148 * Range checks of the new semaphore value, 2149 * not defined by sus: 2150 * - Some unices ignore the undo entirely 2151 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2152 * - some cap the value (e.g. FreeBSD caps 2153 * at 0, but doesn't enforce SEMVMX) 2154 * 2155 * Linux caps the semaphore value, both at 0 2156 * and at SEMVMX. 2157 * 2158 * Manfred <manfred@colorfullife.com> 2159 */ 2160 if (semaphore->semval < 0) 2161 semaphore->semval = 0; 2162 if (semaphore->semval > SEMVMX) 2163 semaphore->semval = SEMVMX; 2164 semaphore->sempid = task_tgid_vnr(current); 2165 } 2166 } 2167 /* maybe some queued-up processes were waiting for this */ 2168 INIT_LIST_HEAD(&tasks); 2169 do_smart_update(sma, NULL, 0, 1, &tasks); 2170 sem_unlock(sma, -1); 2171 rcu_read_unlock(); 2172 wake_up_sem_queue_do(&tasks); 2173 2174 kfree_rcu(un, rcu); 2175 } 2176 kfree(ulp); 2177 } 2178 2179 #ifdef CONFIG_PROC_FS 2180 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2181 { 2182 struct user_namespace *user_ns = seq_user_ns(s); 2183 struct sem_array *sma = it; 2184 time_t sem_otime; 2185 2186 /* 2187 * The proc interface isn't aware of sem_lock(), it calls 2188 * ipc_lock_object() directly (in sysvipc_find_ipc). 2189 * In order to stay compatible with sem_lock(), we must wait until 2190 * all simple semop() calls have left their critical regions. 2191 */ 2192 sem_wait_array(sma); 2193 2194 sem_otime = get_semotime(sma); 2195 2196 seq_printf(s, 2197 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2198 sma->sem_perm.key, 2199 sma->sem_perm.id, 2200 sma->sem_perm.mode, 2201 sma->sem_nsems, 2202 from_kuid_munged(user_ns, sma->sem_perm.uid), 2203 from_kgid_munged(user_ns, sma->sem_perm.gid), 2204 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2205 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2206 sem_otime, 2207 sma->sem_ctime); 2208 2209 return 0; 2210 } 2211 #endif 2212