xref: /linux/ipc/sem.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
87 
88 #include <linux/uaccess.h>
89 #include "util.h"
90 
91 /* One semaphore structure for each semaphore in the system. */
92 struct sem {
93 	int	semval;		/* current value */
94 	/*
95 	 * PID of the process that last modified the semaphore. For
96 	 * Linux, specifically these are:
97 	 *  - semop
98 	 *  - semctl, via SETVAL and SETALL.
99 	 *  - at task exit when performing undo adjustments (see exit_sem).
100 	 */
101 	struct pid *sempid;
102 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
103 	struct list_head pending_alter; /* pending single-sop operations */
104 					/* that alter the semaphore */
105 	struct list_head pending_const; /* pending single-sop operations */
106 					/* that do not alter the semaphore*/
107 	time_t	sem_otime;	/* candidate for sem_otime */
108 } ____cacheline_aligned_in_smp;
109 
110 /* One sem_array data structure for each set of semaphores in the system. */
111 struct sem_array {
112 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
113 	time64_t		sem_ctime;	/* create/last semctl() time */
114 	struct list_head	pending_alter;	/* pending operations */
115 						/* that alter the array */
116 	struct list_head	pending_const;	/* pending complex operations */
117 						/* that do not alter semvals */
118 	struct list_head	list_id;	/* undo requests on this array */
119 	int			sem_nsems;	/* no. of semaphores in array */
120 	int			complex_count;	/* pending complex operations */
121 	unsigned int		use_global_lock;/* >0: global lock required */
122 
123 	struct sem		sems[];
124 } __randomize_layout;
125 
126 /* One queue for each sleeping process in the system. */
127 struct sem_queue {
128 	struct list_head	list;	 /* queue of pending operations */
129 	struct task_struct	*sleeper; /* this process */
130 	struct sem_undo		*undo;	 /* undo structure */
131 	struct pid		*pid;	 /* process id of requesting process */
132 	int			status;	 /* completion status of operation */
133 	struct sembuf		*sops;	 /* array of pending operations */
134 	struct sembuf		*blocking; /* the operation that blocked */
135 	int			nsops;	 /* number of operations */
136 	bool			alter;	 /* does *sops alter the array? */
137 	bool                    dupsop;	 /* sops on more than one sem_num */
138 };
139 
140 /* Each task has a list of undo requests. They are executed automatically
141  * when the process exits.
142  */
143 struct sem_undo {
144 	struct list_head	list_proc;	/* per-process list: *
145 						 * all undos from one process
146 						 * rcu protected */
147 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
148 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
149 	struct list_head	list_id;	/* per semaphore array list:
150 						 * all undos for one array */
151 	int			semid;		/* semaphore set identifier */
152 	short			*semadj;	/* array of adjustments */
153 						/* one per semaphore */
154 };
155 
156 /* sem_undo_list controls shared access to the list of sem_undo structures
157  * that may be shared among all a CLONE_SYSVSEM task group.
158  */
159 struct sem_undo_list {
160 	refcount_t		refcnt;
161 	spinlock_t		lock;
162 	struct list_head	list_proc;
163 };
164 
165 
166 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
167 
168 static int newary(struct ipc_namespace *, struct ipc_params *);
169 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
170 #ifdef CONFIG_PROC_FS
171 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
172 #endif
173 
174 #define SEMMSL_FAST	256 /* 512 bytes on stack */
175 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
176 
177 /*
178  * Switching from the mode suitable for simple ops
179  * to the mode for complex ops is costly. Therefore:
180  * use some hysteresis
181  */
182 #define USE_GLOBAL_LOCK_HYSTERESIS	10
183 
184 /*
185  * Locking:
186  * a) global sem_lock() for read/write
187  *	sem_undo.id_next,
188  *	sem_array.complex_count,
189  *	sem_array.pending{_alter,_const},
190  *	sem_array.sem_undo
191  *
192  * b) global or semaphore sem_lock() for read/write:
193  *	sem_array.sems[i].pending_{const,alter}:
194  *
195  * c) special:
196  *	sem_undo_list.list_proc:
197  *	* undo_list->lock for write
198  *	* rcu for read
199  *	use_global_lock:
200  *	* global sem_lock() for write
201  *	* either local or global sem_lock() for read.
202  *
203  * Memory ordering:
204  * Most ordering is enforced by using spin_lock() and spin_unlock().
205  * The special case is use_global_lock:
206  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
207  * using smp_store_release().
208  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
209  * smp_load_acquire().
210  * Setting it from 0 to non-zero must be ordered with regards to
211  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
212  * is inside a spin_lock() and after a write from 0 to non-zero a
213  * spin_lock()+spin_unlock() is done.
214  */
215 
216 #define sc_semmsl	sem_ctls[0]
217 #define sc_semmns	sem_ctls[1]
218 #define sc_semopm	sem_ctls[2]
219 #define sc_semmni	sem_ctls[3]
220 
221 int sem_init_ns(struct ipc_namespace *ns)
222 {
223 	ns->sc_semmsl = SEMMSL;
224 	ns->sc_semmns = SEMMNS;
225 	ns->sc_semopm = SEMOPM;
226 	ns->sc_semmni = SEMMNI;
227 	ns->used_sems = 0;
228 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
229 }
230 
231 #ifdef CONFIG_IPC_NS
232 void sem_exit_ns(struct ipc_namespace *ns)
233 {
234 	free_ipcs(ns, &sem_ids(ns), freeary);
235 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
236 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
237 }
238 #endif
239 
240 int __init sem_init(void)
241 {
242 	const int err = sem_init_ns(&init_ipc_ns);
243 
244 	ipc_init_proc_interface("sysvipc/sem",
245 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
246 				IPC_SEM_IDS, sysvipc_sem_proc_show);
247 	return err;
248 }
249 
250 /**
251  * unmerge_queues - unmerge queues, if possible.
252  * @sma: semaphore array
253  *
254  * The function unmerges the wait queues if complex_count is 0.
255  * It must be called prior to dropping the global semaphore array lock.
256  */
257 static void unmerge_queues(struct sem_array *sma)
258 {
259 	struct sem_queue *q, *tq;
260 
261 	/* complex operations still around? */
262 	if (sma->complex_count)
263 		return;
264 	/*
265 	 * We will switch back to simple mode.
266 	 * Move all pending operation back into the per-semaphore
267 	 * queues.
268 	 */
269 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
270 		struct sem *curr;
271 		curr = &sma->sems[q->sops[0].sem_num];
272 
273 		list_add_tail(&q->list, &curr->pending_alter);
274 	}
275 	INIT_LIST_HEAD(&sma->pending_alter);
276 }
277 
278 /**
279  * merge_queues - merge single semop queues into global queue
280  * @sma: semaphore array
281  *
282  * This function merges all per-semaphore queues into the global queue.
283  * It is necessary to achieve FIFO ordering for the pending single-sop
284  * operations when a multi-semop operation must sleep.
285  * Only the alter operations must be moved, the const operations can stay.
286  */
287 static void merge_queues(struct sem_array *sma)
288 {
289 	int i;
290 	for (i = 0; i < sma->sem_nsems; i++) {
291 		struct sem *sem = &sma->sems[i];
292 
293 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
294 	}
295 }
296 
297 static void sem_rcu_free(struct rcu_head *head)
298 {
299 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
300 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
301 
302 	security_sem_free(&sma->sem_perm);
303 	kvfree(sma);
304 }
305 
306 /*
307  * Enter the mode suitable for non-simple operations:
308  * Caller must own sem_perm.lock.
309  */
310 static void complexmode_enter(struct sem_array *sma)
311 {
312 	int i;
313 	struct sem *sem;
314 
315 	if (sma->use_global_lock > 0)  {
316 		/*
317 		 * We are already in global lock mode.
318 		 * Nothing to do, just reset the
319 		 * counter until we return to simple mode.
320 		 */
321 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
322 		return;
323 	}
324 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
325 
326 	for (i = 0; i < sma->sem_nsems; i++) {
327 		sem = &sma->sems[i];
328 		spin_lock(&sem->lock);
329 		spin_unlock(&sem->lock);
330 	}
331 }
332 
333 /*
334  * Try to leave the mode that disallows simple operations:
335  * Caller must own sem_perm.lock.
336  */
337 static void complexmode_tryleave(struct sem_array *sma)
338 {
339 	if (sma->complex_count)  {
340 		/* Complex ops are sleeping.
341 		 * We must stay in complex mode
342 		 */
343 		return;
344 	}
345 	if (sma->use_global_lock == 1) {
346 		/*
347 		 * Immediately after setting use_global_lock to 0,
348 		 * a simple op can start. Thus: all memory writes
349 		 * performed by the current operation must be visible
350 		 * before we set use_global_lock to 0.
351 		 */
352 		smp_store_release(&sma->use_global_lock, 0);
353 	} else {
354 		sma->use_global_lock--;
355 	}
356 }
357 
358 #define SEM_GLOBAL_LOCK	(-1)
359 /*
360  * If the request contains only one semaphore operation, and there are
361  * no complex transactions pending, lock only the semaphore involved.
362  * Otherwise, lock the entire semaphore array, since we either have
363  * multiple semaphores in our own semops, or we need to look at
364  * semaphores from other pending complex operations.
365  */
366 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
367 			      int nsops)
368 {
369 	struct sem *sem;
370 
371 	if (nsops != 1) {
372 		/* Complex operation - acquire a full lock */
373 		ipc_lock_object(&sma->sem_perm);
374 
375 		/* Prevent parallel simple ops */
376 		complexmode_enter(sma);
377 		return SEM_GLOBAL_LOCK;
378 	}
379 
380 	/*
381 	 * Only one semaphore affected - try to optimize locking.
382 	 * Optimized locking is possible if no complex operation
383 	 * is either enqueued or processed right now.
384 	 *
385 	 * Both facts are tracked by use_global_mode.
386 	 */
387 	sem = &sma->sems[sops->sem_num];
388 
389 	/*
390 	 * Initial check for use_global_lock. Just an optimization,
391 	 * no locking, no memory barrier.
392 	 */
393 	if (!sma->use_global_lock) {
394 		/*
395 		 * It appears that no complex operation is around.
396 		 * Acquire the per-semaphore lock.
397 		 */
398 		spin_lock(&sem->lock);
399 
400 		/* pairs with smp_store_release() */
401 		if (!smp_load_acquire(&sma->use_global_lock)) {
402 			/* fast path successful! */
403 			return sops->sem_num;
404 		}
405 		spin_unlock(&sem->lock);
406 	}
407 
408 	/* slow path: acquire the full lock */
409 	ipc_lock_object(&sma->sem_perm);
410 
411 	if (sma->use_global_lock == 0) {
412 		/*
413 		 * The use_global_lock mode ended while we waited for
414 		 * sma->sem_perm.lock. Thus we must switch to locking
415 		 * with sem->lock.
416 		 * Unlike in the fast path, there is no need to recheck
417 		 * sma->use_global_lock after we have acquired sem->lock:
418 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
419 		 * change.
420 		 */
421 		spin_lock(&sem->lock);
422 
423 		ipc_unlock_object(&sma->sem_perm);
424 		return sops->sem_num;
425 	} else {
426 		/*
427 		 * Not a false alarm, thus continue to use the global lock
428 		 * mode. No need for complexmode_enter(), this was done by
429 		 * the caller that has set use_global_mode to non-zero.
430 		 */
431 		return SEM_GLOBAL_LOCK;
432 	}
433 }
434 
435 static inline void sem_unlock(struct sem_array *sma, int locknum)
436 {
437 	if (locknum == SEM_GLOBAL_LOCK) {
438 		unmerge_queues(sma);
439 		complexmode_tryleave(sma);
440 		ipc_unlock_object(&sma->sem_perm);
441 	} else {
442 		struct sem *sem = &sma->sems[locknum];
443 		spin_unlock(&sem->lock);
444 	}
445 }
446 
447 /*
448  * sem_lock_(check_) routines are called in the paths where the rwsem
449  * is not held.
450  *
451  * The caller holds the RCU read lock.
452  */
453 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
454 {
455 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
456 
457 	if (IS_ERR(ipcp))
458 		return ERR_CAST(ipcp);
459 
460 	return container_of(ipcp, struct sem_array, sem_perm);
461 }
462 
463 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
464 							int id)
465 {
466 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
467 
468 	if (IS_ERR(ipcp))
469 		return ERR_CAST(ipcp);
470 
471 	return container_of(ipcp, struct sem_array, sem_perm);
472 }
473 
474 static inline void sem_lock_and_putref(struct sem_array *sma)
475 {
476 	sem_lock(sma, NULL, -1);
477 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
478 }
479 
480 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
481 {
482 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
483 }
484 
485 static struct sem_array *sem_alloc(size_t nsems)
486 {
487 	struct sem_array *sma;
488 	size_t size;
489 
490 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
491 		return NULL;
492 
493 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
494 	sma = kvmalloc(size, GFP_KERNEL);
495 	if (unlikely(!sma))
496 		return NULL;
497 
498 	memset(sma, 0, size);
499 
500 	return sma;
501 }
502 
503 /**
504  * newary - Create a new semaphore set
505  * @ns: namespace
506  * @params: ptr to the structure that contains key, semflg and nsems
507  *
508  * Called with sem_ids.rwsem held (as a writer)
509  */
510 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
511 {
512 	int retval;
513 	struct sem_array *sma;
514 	key_t key = params->key;
515 	int nsems = params->u.nsems;
516 	int semflg = params->flg;
517 	int i;
518 
519 	if (!nsems)
520 		return -EINVAL;
521 	if (ns->used_sems + nsems > ns->sc_semmns)
522 		return -ENOSPC;
523 
524 	sma = sem_alloc(nsems);
525 	if (!sma)
526 		return -ENOMEM;
527 
528 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
529 	sma->sem_perm.key = key;
530 
531 	sma->sem_perm.security = NULL;
532 	retval = security_sem_alloc(&sma->sem_perm);
533 	if (retval) {
534 		kvfree(sma);
535 		return retval;
536 	}
537 
538 	for (i = 0; i < nsems; i++) {
539 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
540 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
541 		spin_lock_init(&sma->sems[i].lock);
542 	}
543 
544 	sma->complex_count = 0;
545 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
546 	INIT_LIST_HEAD(&sma->pending_alter);
547 	INIT_LIST_HEAD(&sma->pending_const);
548 	INIT_LIST_HEAD(&sma->list_id);
549 	sma->sem_nsems = nsems;
550 	sma->sem_ctime = ktime_get_real_seconds();
551 
552 	/* ipc_addid() locks sma upon success. */
553 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
554 	if (retval < 0) {
555 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
556 		return retval;
557 	}
558 	ns->used_sems += nsems;
559 
560 	sem_unlock(sma, -1);
561 	rcu_read_unlock();
562 
563 	return sma->sem_perm.id;
564 }
565 
566 
567 /*
568  * Called with sem_ids.rwsem and ipcp locked.
569  */
570 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571 				struct ipc_params *params)
572 {
573 	struct sem_array *sma;
574 
575 	sma = container_of(ipcp, struct sem_array, sem_perm);
576 	if (params->u.nsems > sma->sem_nsems)
577 		return -EINVAL;
578 
579 	return 0;
580 }
581 
582 long ksys_semget(key_t key, int nsems, int semflg)
583 {
584 	struct ipc_namespace *ns;
585 	static const struct ipc_ops sem_ops = {
586 		.getnew = newary,
587 		.associate = security_sem_associate,
588 		.more_checks = sem_more_checks,
589 	};
590 	struct ipc_params sem_params;
591 
592 	ns = current->nsproxy->ipc_ns;
593 
594 	if (nsems < 0 || nsems > ns->sc_semmsl)
595 		return -EINVAL;
596 
597 	sem_params.key = key;
598 	sem_params.flg = semflg;
599 	sem_params.u.nsems = nsems;
600 
601 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
602 }
603 
604 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
605 {
606 	return ksys_semget(key, nsems, semflg);
607 }
608 
609 /**
610  * perform_atomic_semop[_slow] - Attempt to perform semaphore
611  *                               operations on a given array.
612  * @sma: semaphore array
613  * @q: struct sem_queue that describes the operation
614  *
615  * Caller blocking are as follows, based the value
616  * indicated by the semaphore operation (sem_op):
617  *
618  *  (1) >0 never blocks.
619  *  (2)  0 (wait-for-zero operation): semval is non-zero.
620  *  (3) <0 attempting to decrement semval to a value smaller than zero.
621  *
622  * Returns 0 if the operation was possible.
623  * Returns 1 if the operation is impossible, the caller must sleep.
624  * Returns <0 for error codes.
625  */
626 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
627 {
628 	int result, sem_op, nsops;
629 	struct pid *pid;
630 	struct sembuf *sop;
631 	struct sem *curr;
632 	struct sembuf *sops;
633 	struct sem_undo *un;
634 
635 	sops = q->sops;
636 	nsops = q->nsops;
637 	un = q->undo;
638 
639 	for (sop = sops; sop < sops + nsops; sop++) {
640 		curr = &sma->sems[sop->sem_num];
641 		sem_op = sop->sem_op;
642 		result = curr->semval;
643 
644 		if (!sem_op && result)
645 			goto would_block;
646 
647 		result += sem_op;
648 		if (result < 0)
649 			goto would_block;
650 		if (result > SEMVMX)
651 			goto out_of_range;
652 
653 		if (sop->sem_flg & SEM_UNDO) {
654 			int undo = un->semadj[sop->sem_num] - sem_op;
655 			/* Exceeding the undo range is an error. */
656 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 				goto out_of_range;
658 			un->semadj[sop->sem_num] = undo;
659 		}
660 
661 		curr->semval = result;
662 	}
663 
664 	sop--;
665 	pid = q->pid;
666 	while (sop >= sops) {
667 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
668 		sop--;
669 	}
670 
671 	return 0;
672 
673 out_of_range:
674 	result = -ERANGE;
675 	goto undo;
676 
677 would_block:
678 	q->blocking = sop;
679 
680 	if (sop->sem_flg & IPC_NOWAIT)
681 		result = -EAGAIN;
682 	else
683 		result = 1;
684 
685 undo:
686 	sop--;
687 	while (sop >= sops) {
688 		sem_op = sop->sem_op;
689 		sma->sems[sop->sem_num].semval -= sem_op;
690 		if (sop->sem_flg & SEM_UNDO)
691 			un->semadj[sop->sem_num] += sem_op;
692 		sop--;
693 	}
694 
695 	return result;
696 }
697 
698 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699 {
700 	int result, sem_op, nsops;
701 	struct sembuf *sop;
702 	struct sem *curr;
703 	struct sembuf *sops;
704 	struct sem_undo *un;
705 
706 	sops = q->sops;
707 	nsops = q->nsops;
708 	un = q->undo;
709 
710 	if (unlikely(q->dupsop))
711 		return perform_atomic_semop_slow(sma, q);
712 
713 	/*
714 	 * We scan the semaphore set twice, first to ensure that the entire
715 	 * operation can succeed, therefore avoiding any pointless writes
716 	 * to shared memory and having to undo such changes in order to block
717 	 * until the operations can go through.
718 	 */
719 	for (sop = sops; sop < sops + nsops; sop++) {
720 		curr = &sma->sems[sop->sem_num];
721 		sem_op = sop->sem_op;
722 		result = curr->semval;
723 
724 		if (!sem_op && result)
725 			goto would_block; /* wait-for-zero */
726 
727 		result += sem_op;
728 		if (result < 0)
729 			goto would_block;
730 
731 		if (result > SEMVMX)
732 			return -ERANGE;
733 
734 		if (sop->sem_flg & SEM_UNDO) {
735 			int undo = un->semadj[sop->sem_num] - sem_op;
736 
737 			/* Exceeding the undo range is an error. */
738 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
739 				return -ERANGE;
740 		}
741 	}
742 
743 	for (sop = sops; sop < sops + nsops; sop++) {
744 		curr = &sma->sems[sop->sem_num];
745 		sem_op = sop->sem_op;
746 		result = curr->semval;
747 
748 		if (sop->sem_flg & SEM_UNDO) {
749 			int undo = un->semadj[sop->sem_num] - sem_op;
750 
751 			un->semadj[sop->sem_num] = undo;
752 		}
753 		curr->semval += sem_op;
754 		ipc_update_pid(&curr->sempid, q->pid);
755 	}
756 
757 	return 0;
758 
759 would_block:
760 	q->blocking = sop;
761 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
762 }
763 
764 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
765 					     struct wake_q_head *wake_q)
766 {
767 	wake_q_add(wake_q, q->sleeper);
768 	/*
769 	 * Rely on the above implicit barrier, such that we can
770 	 * ensure that we hold reference to the task before setting
771 	 * q->status. Otherwise we could race with do_exit if the
772 	 * task is awoken by an external event before calling
773 	 * wake_up_process().
774 	 */
775 	WRITE_ONCE(q->status, error);
776 }
777 
778 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
779 {
780 	list_del(&q->list);
781 	if (q->nsops > 1)
782 		sma->complex_count--;
783 }
784 
785 /** check_restart(sma, q)
786  * @sma: semaphore array
787  * @q: the operation that just completed
788  *
789  * update_queue is O(N^2) when it restarts scanning the whole queue of
790  * waiting operations. Therefore this function checks if the restart is
791  * really necessary. It is called after a previously waiting operation
792  * modified the array.
793  * Note that wait-for-zero operations are handled without restart.
794  */
795 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
796 {
797 	/* pending complex alter operations are too difficult to analyse */
798 	if (!list_empty(&sma->pending_alter))
799 		return 1;
800 
801 	/* we were a sleeping complex operation. Too difficult */
802 	if (q->nsops > 1)
803 		return 1;
804 
805 	/* It is impossible that someone waits for the new value:
806 	 * - complex operations always restart.
807 	 * - wait-for-zero are handled seperately.
808 	 * - q is a previously sleeping simple operation that
809 	 *   altered the array. It must be a decrement, because
810 	 *   simple increments never sleep.
811 	 * - If there are older (higher priority) decrements
812 	 *   in the queue, then they have observed the original
813 	 *   semval value and couldn't proceed. The operation
814 	 *   decremented to value - thus they won't proceed either.
815 	 */
816 	return 0;
817 }
818 
819 /**
820  * wake_const_ops - wake up non-alter tasks
821  * @sma: semaphore array.
822  * @semnum: semaphore that was modified.
823  * @wake_q: lockless wake-queue head.
824  *
825  * wake_const_ops must be called after a semaphore in a semaphore array
826  * was set to 0. If complex const operations are pending, wake_const_ops must
827  * be called with semnum = -1, as well as with the number of each modified
828  * semaphore.
829  * The tasks that must be woken up are added to @wake_q. The return code
830  * is stored in q->pid.
831  * The function returns 1 if at least one operation was completed successfully.
832  */
833 static int wake_const_ops(struct sem_array *sma, int semnum,
834 			  struct wake_q_head *wake_q)
835 {
836 	struct sem_queue *q, *tmp;
837 	struct list_head *pending_list;
838 	int semop_completed = 0;
839 
840 	if (semnum == -1)
841 		pending_list = &sma->pending_const;
842 	else
843 		pending_list = &sma->sems[semnum].pending_const;
844 
845 	list_for_each_entry_safe(q, tmp, pending_list, list) {
846 		int error = perform_atomic_semop(sma, q);
847 
848 		if (error > 0)
849 			continue;
850 		/* operation completed, remove from queue & wakeup */
851 		unlink_queue(sma, q);
852 
853 		wake_up_sem_queue_prepare(q, error, wake_q);
854 		if (error == 0)
855 			semop_completed = 1;
856 	}
857 
858 	return semop_completed;
859 }
860 
861 /**
862  * do_smart_wakeup_zero - wakeup all wait for zero tasks
863  * @sma: semaphore array
864  * @sops: operations that were performed
865  * @nsops: number of operations
866  * @wake_q: lockless wake-queue head
867  *
868  * Checks all required queue for wait-for-zero operations, based
869  * on the actual changes that were performed on the semaphore array.
870  * The function returns 1 if at least one operation was completed successfully.
871  */
872 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
873 				int nsops, struct wake_q_head *wake_q)
874 {
875 	int i;
876 	int semop_completed = 0;
877 	int got_zero = 0;
878 
879 	/* first: the per-semaphore queues, if known */
880 	if (sops) {
881 		for (i = 0; i < nsops; i++) {
882 			int num = sops[i].sem_num;
883 
884 			if (sma->sems[num].semval == 0) {
885 				got_zero = 1;
886 				semop_completed |= wake_const_ops(sma, num, wake_q);
887 			}
888 		}
889 	} else {
890 		/*
891 		 * No sops means modified semaphores not known.
892 		 * Assume all were changed.
893 		 */
894 		for (i = 0; i < sma->sem_nsems; i++) {
895 			if (sma->sems[i].semval == 0) {
896 				got_zero = 1;
897 				semop_completed |= wake_const_ops(sma, i, wake_q);
898 			}
899 		}
900 	}
901 	/*
902 	 * If one of the modified semaphores got 0,
903 	 * then check the global queue, too.
904 	 */
905 	if (got_zero)
906 		semop_completed |= wake_const_ops(sma, -1, wake_q);
907 
908 	return semop_completed;
909 }
910 
911 
912 /**
913  * update_queue - look for tasks that can be completed.
914  * @sma: semaphore array.
915  * @semnum: semaphore that was modified.
916  * @wake_q: lockless wake-queue head.
917  *
918  * update_queue must be called after a semaphore in a semaphore array
919  * was modified. If multiple semaphores were modified, update_queue must
920  * be called with semnum = -1, as well as with the number of each modified
921  * semaphore.
922  * The tasks that must be woken up are added to @wake_q. The return code
923  * is stored in q->pid.
924  * The function internally checks if const operations can now succeed.
925  *
926  * The function return 1 if at least one semop was completed successfully.
927  */
928 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
929 {
930 	struct sem_queue *q, *tmp;
931 	struct list_head *pending_list;
932 	int semop_completed = 0;
933 
934 	if (semnum == -1)
935 		pending_list = &sma->pending_alter;
936 	else
937 		pending_list = &sma->sems[semnum].pending_alter;
938 
939 again:
940 	list_for_each_entry_safe(q, tmp, pending_list, list) {
941 		int error, restart;
942 
943 		/* If we are scanning the single sop, per-semaphore list of
944 		 * one semaphore and that semaphore is 0, then it is not
945 		 * necessary to scan further: simple increments
946 		 * that affect only one entry succeed immediately and cannot
947 		 * be in the  per semaphore pending queue, and decrements
948 		 * cannot be successful if the value is already 0.
949 		 */
950 		if (semnum != -1 && sma->sems[semnum].semval == 0)
951 			break;
952 
953 		error = perform_atomic_semop(sma, q);
954 
955 		/* Does q->sleeper still need to sleep? */
956 		if (error > 0)
957 			continue;
958 
959 		unlink_queue(sma, q);
960 
961 		if (error) {
962 			restart = 0;
963 		} else {
964 			semop_completed = 1;
965 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
966 			restart = check_restart(sma, q);
967 		}
968 
969 		wake_up_sem_queue_prepare(q, error, wake_q);
970 		if (restart)
971 			goto again;
972 	}
973 	return semop_completed;
974 }
975 
976 /**
977  * set_semotime - set sem_otime
978  * @sma: semaphore array
979  * @sops: operations that modified the array, may be NULL
980  *
981  * sem_otime is replicated to avoid cache line trashing.
982  * This function sets one instance to the current time.
983  */
984 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
985 {
986 	if (sops == NULL) {
987 		sma->sems[0].sem_otime = get_seconds();
988 	} else {
989 		sma->sems[sops[0].sem_num].sem_otime =
990 							get_seconds();
991 	}
992 }
993 
994 /**
995  * do_smart_update - optimized update_queue
996  * @sma: semaphore array
997  * @sops: operations that were performed
998  * @nsops: number of operations
999  * @otime: force setting otime
1000  * @wake_q: lockless wake-queue head
1001  *
1002  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003  * based on the actual changes that were performed on the semaphore array.
1004  * Note that the function does not do the actual wake-up: the caller is
1005  * responsible for calling wake_up_q().
1006  * It is safe to perform this call after dropping all locks.
1007  */
1008 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1009 			    int otime, struct wake_q_head *wake_q)
1010 {
1011 	int i;
1012 
1013 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1014 
1015 	if (!list_empty(&sma->pending_alter)) {
1016 		/* semaphore array uses the global queue - just process it. */
1017 		otime |= update_queue(sma, -1, wake_q);
1018 	} else {
1019 		if (!sops) {
1020 			/*
1021 			 * No sops, thus the modified semaphores are not
1022 			 * known. Check all.
1023 			 */
1024 			for (i = 0; i < sma->sem_nsems; i++)
1025 				otime |= update_queue(sma, i, wake_q);
1026 		} else {
1027 			/*
1028 			 * Check the semaphores that were increased:
1029 			 * - No complex ops, thus all sleeping ops are
1030 			 *   decrease.
1031 			 * - if we decreased the value, then any sleeping
1032 			 *   semaphore ops wont be able to run: If the
1033 			 *   previous value was too small, then the new
1034 			 *   value will be too small, too.
1035 			 */
1036 			for (i = 0; i < nsops; i++) {
1037 				if (sops[i].sem_op > 0) {
1038 					otime |= update_queue(sma,
1039 							      sops[i].sem_num, wake_q);
1040 				}
1041 			}
1042 		}
1043 	}
1044 	if (otime)
1045 		set_semotime(sma, sops);
1046 }
1047 
1048 /*
1049  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1050  */
1051 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1052 			bool count_zero)
1053 {
1054 	struct sembuf *sop = q->blocking;
1055 
1056 	/*
1057 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1058 	 * semaphores. This violates SUS, therefore it was changed to the
1059 	 * standard compliant behavior.
1060 	 * Give the administrators a chance to notice that an application
1061 	 * might misbehave because it relies on the Linux behavior.
1062 	 */
1063 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065 			current->comm, task_pid_nr(current));
1066 
1067 	if (sop->sem_num != semnum)
1068 		return 0;
1069 
1070 	if (count_zero && sop->sem_op == 0)
1071 		return 1;
1072 	if (!count_zero && sop->sem_op < 0)
1073 		return 1;
1074 
1075 	return 0;
1076 }
1077 
1078 /* The following counts are associated to each semaphore:
1079  *   semncnt        number of tasks waiting on semval being nonzero
1080  *   semzcnt        number of tasks waiting on semval being zero
1081  *
1082  * Per definition, a task waits only on the semaphore of the first semop
1083  * that cannot proceed, even if additional operation would block, too.
1084  */
1085 static int count_semcnt(struct sem_array *sma, ushort semnum,
1086 			bool count_zero)
1087 {
1088 	struct list_head *l;
1089 	struct sem_queue *q;
1090 	int semcnt;
1091 
1092 	semcnt = 0;
1093 	/* First: check the simple operations. They are easy to evaluate */
1094 	if (count_zero)
1095 		l = &sma->sems[semnum].pending_const;
1096 	else
1097 		l = &sma->sems[semnum].pending_alter;
1098 
1099 	list_for_each_entry(q, l, list) {
1100 		/* all task on a per-semaphore list sleep on exactly
1101 		 * that semaphore
1102 		 */
1103 		semcnt++;
1104 	}
1105 
1106 	/* Then: check the complex operations. */
1107 	list_for_each_entry(q, &sma->pending_alter, list) {
1108 		semcnt += check_qop(sma, semnum, q, count_zero);
1109 	}
1110 	if (count_zero) {
1111 		list_for_each_entry(q, &sma->pending_const, list) {
1112 			semcnt += check_qop(sma, semnum, q, count_zero);
1113 		}
1114 	}
1115 	return semcnt;
1116 }
1117 
1118 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1120  * remains locked on exit.
1121  */
1122 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1123 {
1124 	struct sem_undo *un, *tu;
1125 	struct sem_queue *q, *tq;
1126 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1127 	int i;
1128 	DEFINE_WAKE_Q(wake_q);
1129 
1130 	/* Free the existing undo structures for this semaphore set.  */
1131 	ipc_assert_locked_object(&sma->sem_perm);
1132 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1133 		list_del(&un->list_id);
1134 		spin_lock(&un->ulp->lock);
1135 		un->semid = -1;
1136 		list_del_rcu(&un->list_proc);
1137 		spin_unlock(&un->ulp->lock);
1138 		kfree_rcu(un, rcu);
1139 	}
1140 
1141 	/* Wake up all pending processes and let them fail with EIDRM. */
1142 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1143 		unlink_queue(sma, q);
1144 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1145 	}
1146 
1147 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1148 		unlink_queue(sma, q);
1149 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1150 	}
1151 	for (i = 0; i < sma->sem_nsems; i++) {
1152 		struct sem *sem = &sma->sems[i];
1153 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1154 			unlink_queue(sma, q);
1155 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1156 		}
1157 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1158 			unlink_queue(sma, q);
1159 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1160 		}
1161 		ipc_update_pid(&sem->sempid, NULL);
1162 	}
1163 
1164 	/* Remove the semaphore set from the IDR */
1165 	sem_rmid(ns, sma);
1166 	sem_unlock(sma, -1);
1167 	rcu_read_unlock();
1168 
1169 	wake_up_q(&wake_q);
1170 	ns->used_sems -= sma->sem_nsems;
1171 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1172 }
1173 
1174 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1175 {
1176 	switch (version) {
1177 	case IPC_64:
1178 		return copy_to_user(buf, in, sizeof(*in));
1179 	case IPC_OLD:
1180 	    {
1181 		struct semid_ds out;
1182 
1183 		memset(&out, 0, sizeof(out));
1184 
1185 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1186 
1187 		out.sem_otime	= in->sem_otime;
1188 		out.sem_ctime	= in->sem_ctime;
1189 		out.sem_nsems	= in->sem_nsems;
1190 
1191 		return copy_to_user(buf, &out, sizeof(out));
1192 	    }
1193 	default:
1194 		return -EINVAL;
1195 	}
1196 }
1197 
1198 static time64_t get_semotime(struct sem_array *sma)
1199 {
1200 	int i;
1201 	time64_t res;
1202 
1203 	res = sma->sems[0].sem_otime;
1204 	for (i = 1; i < sma->sem_nsems; i++) {
1205 		time64_t to = sma->sems[i].sem_otime;
1206 
1207 		if (to > res)
1208 			res = to;
1209 	}
1210 	return res;
1211 }
1212 
1213 static int semctl_stat(struct ipc_namespace *ns, int semid,
1214 			 int cmd, struct semid64_ds *semid64)
1215 {
1216 	struct sem_array *sma;
1217 	int id = 0;
1218 	int err;
1219 
1220 	memset(semid64, 0, sizeof(*semid64));
1221 
1222 	rcu_read_lock();
1223 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1224 		sma = sem_obtain_object(ns, semid);
1225 		if (IS_ERR(sma)) {
1226 			err = PTR_ERR(sma);
1227 			goto out_unlock;
1228 		}
1229 		id = sma->sem_perm.id;
1230 	} else { /* IPC_STAT */
1231 		sma = sem_obtain_object_check(ns, semid);
1232 		if (IS_ERR(sma)) {
1233 			err = PTR_ERR(sma);
1234 			goto out_unlock;
1235 		}
1236 	}
1237 
1238 	/* see comment for SHM_STAT_ANY */
1239 	if (cmd == SEM_STAT_ANY)
1240 		audit_ipc_obj(&sma->sem_perm);
1241 	else {
1242 		err = -EACCES;
1243 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244 			goto out_unlock;
1245 	}
1246 
1247 	err = security_sem_semctl(&sma->sem_perm, cmd);
1248 	if (err)
1249 		goto out_unlock;
1250 
1251 	ipc_lock_object(&sma->sem_perm);
1252 
1253 	if (!ipc_valid_object(&sma->sem_perm)) {
1254 		ipc_unlock_object(&sma->sem_perm);
1255 		err = -EIDRM;
1256 		goto out_unlock;
1257 	}
1258 
1259 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1260 	semid64->sem_otime = get_semotime(sma);
1261 	semid64->sem_ctime = sma->sem_ctime;
1262 	semid64->sem_nsems = sma->sem_nsems;
1263 
1264 	ipc_unlock_object(&sma->sem_perm);
1265 	rcu_read_unlock();
1266 	return id;
1267 
1268 out_unlock:
1269 	rcu_read_unlock();
1270 	return err;
1271 }
1272 
1273 static int semctl_info(struct ipc_namespace *ns, int semid,
1274 			 int cmd, void __user *p)
1275 {
1276 	struct seminfo seminfo;
1277 	int max_id;
1278 	int err;
1279 
1280 	err = security_sem_semctl(NULL, cmd);
1281 	if (err)
1282 		return err;
1283 
1284 	memset(&seminfo, 0, sizeof(seminfo));
1285 	seminfo.semmni = ns->sc_semmni;
1286 	seminfo.semmns = ns->sc_semmns;
1287 	seminfo.semmsl = ns->sc_semmsl;
1288 	seminfo.semopm = ns->sc_semopm;
1289 	seminfo.semvmx = SEMVMX;
1290 	seminfo.semmnu = SEMMNU;
1291 	seminfo.semmap = SEMMAP;
1292 	seminfo.semume = SEMUME;
1293 	down_read(&sem_ids(ns).rwsem);
1294 	if (cmd == SEM_INFO) {
1295 		seminfo.semusz = sem_ids(ns).in_use;
1296 		seminfo.semaem = ns->used_sems;
1297 	} else {
1298 		seminfo.semusz = SEMUSZ;
1299 		seminfo.semaem = SEMAEM;
1300 	}
1301 	max_id = ipc_get_maxid(&sem_ids(ns));
1302 	up_read(&sem_ids(ns).rwsem);
1303 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1304 		return -EFAULT;
1305 	return (max_id < 0) ? 0 : max_id;
1306 }
1307 
1308 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1309 		int val)
1310 {
1311 	struct sem_undo *un;
1312 	struct sem_array *sma;
1313 	struct sem *curr;
1314 	int err;
1315 	DEFINE_WAKE_Q(wake_q);
1316 
1317 	if (val > SEMVMX || val < 0)
1318 		return -ERANGE;
1319 
1320 	rcu_read_lock();
1321 	sma = sem_obtain_object_check(ns, semid);
1322 	if (IS_ERR(sma)) {
1323 		rcu_read_unlock();
1324 		return PTR_ERR(sma);
1325 	}
1326 
1327 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1328 		rcu_read_unlock();
1329 		return -EINVAL;
1330 	}
1331 
1332 
1333 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1334 		rcu_read_unlock();
1335 		return -EACCES;
1336 	}
1337 
1338 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1339 	if (err) {
1340 		rcu_read_unlock();
1341 		return -EACCES;
1342 	}
1343 
1344 	sem_lock(sma, NULL, -1);
1345 
1346 	if (!ipc_valid_object(&sma->sem_perm)) {
1347 		sem_unlock(sma, -1);
1348 		rcu_read_unlock();
1349 		return -EIDRM;
1350 	}
1351 
1352 	curr = &sma->sems[semnum];
1353 
1354 	ipc_assert_locked_object(&sma->sem_perm);
1355 	list_for_each_entry(un, &sma->list_id, list_id)
1356 		un->semadj[semnum] = 0;
1357 
1358 	curr->semval = val;
1359 	ipc_update_pid(&curr->sempid, task_tgid(current));
1360 	sma->sem_ctime = ktime_get_real_seconds();
1361 	/* maybe some queued-up processes were waiting for this */
1362 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1363 	sem_unlock(sma, -1);
1364 	rcu_read_unlock();
1365 	wake_up_q(&wake_q);
1366 	return 0;
1367 }
1368 
1369 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1370 		int cmd, void __user *p)
1371 {
1372 	struct sem_array *sma;
1373 	struct sem *curr;
1374 	int err, nsems;
1375 	ushort fast_sem_io[SEMMSL_FAST];
1376 	ushort *sem_io = fast_sem_io;
1377 	DEFINE_WAKE_Q(wake_q);
1378 
1379 	rcu_read_lock();
1380 	sma = sem_obtain_object_check(ns, semid);
1381 	if (IS_ERR(sma)) {
1382 		rcu_read_unlock();
1383 		return PTR_ERR(sma);
1384 	}
1385 
1386 	nsems = sma->sem_nsems;
1387 
1388 	err = -EACCES;
1389 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1390 		goto out_rcu_wakeup;
1391 
1392 	err = security_sem_semctl(&sma->sem_perm, cmd);
1393 	if (err)
1394 		goto out_rcu_wakeup;
1395 
1396 	err = -EACCES;
1397 	switch (cmd) {
1398 	case GETALL:
1399 	{
1400 		ushort __user *array = p;
1401 		int i;
1402 
1403 		sem_lock(sma, NULL, -1);
1404 		if (!ipc_valid_object(&sma->sem_perm)) {
1405 			err = -EIDRM;
1406 			goto out_unlock;
1407 		}
1408 		if (nsems > SEMMSL_FAST) {
1409 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1410 				err = -EIDRM;
1411 				goto out_unlock;
1412 			}
1413 			sem_unlock(sma, -1);
1414 			rcu_read_unlock();
1415 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1416 						GFP_KERNEL);
1417 			if (sem_io == NULL) {
1418 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1419 				return -ENOMEM;
1420 			}
1421 
1422 			rcu_read_lock();
1423 			sem_lock_and_putref(sma);
1424 			if (!ipc_valid_object(&sma->sem_perm)) {
1425 				err = -EIDRM;
1426 				goto out_unlock;
1427 			}
1428 		}
1429 		for (i = 0; i < sma->sem_nsems; i++)
1430 			sem_io[i] = sma->sems[i].semval;
1431 		sem_unlock(sma, -1);
1432 		rcu_read_unlock();
1433 		err = 0;
1434 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1435 			err = -EFAULT;
1436 		goto out_free;
1437 	}
1438 	case SETALL:
1439 	{
1440 		int i;
1441 		struct sem_undo *un;
1442 
1443 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1444 			err = -EIDRM;
1445 			goto out_rcu_wakeup;
1446 		}
1447 		rcu_read_unlock();
1448 
1449 		if (nsems > SEMMSL_FAST) {
1450 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451 						GFP_KERNEL);
1452 			if (sem_io == NULL) {
1453 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454 				return -ENOMEM;
1455 			}
1456 		}
1457 
1458 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1459 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1460 			err = -EFAULT;
1461 			goto out_free;
1462 		}
1463 
1464 		for (i = 0; i < nsems; i++) {
1465 			if (sem_io[i] > SEMVMX) {
1466 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1467 				err = -ERANGE;
1468 				goto out_free;
1469 			}
1470 		}
1471 		rcu_read_lock();
1472 		sem_lock_and_putref(sma);
1473 		if (!ipc_valid_object(&sma->sem_perm)) {
1474 			err = -EIDRM;
1475 			goto out_unlock;
1476 		}
1477 
1478 		for (i = 0; i < nsems; i++) {
1479 			sma->sems[i].semval = sem_io[i];
1480 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1481 		}
1482 
1483 		ipc_assert_locked_object(&sma->sem_perm);
1484 		list_for_each_entry(un, &sma->list_id, list_id) {
1485 			for (i = 0; i < nsems; i++)
1486 				un->semadj[i] = 0;
1487 		}
1488 		sma->sem_ctime = ktime_get_real_seconds();
1489 		/* maybe some queued-up processes were waiting for this */
1490 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1491 		err = 0;
1492 		goto out_unlock;
1493 	}
1494 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1495 	}
1496 	err = -EINVAL;
1497 	if (semnum < 0 || semnum >= nsems)
1498 		goto out_rcu_wakeup;
1499 
1500 	sem_lock(sma, NULL, -1);
1501 	if (!ipc_valid_object(&sma->sem_perm)) {
1502 		err = -EIDRM;
1503 		goto out_unlock;
1504 	}
1505 	curr = &sma->sems[semnum];
1506 
1507 	switch (cmd) {
1508 	case GETVAL:
1509 		err = curr->semval;
1510 		goto out_unlock;
1511 	case GETPID:
1512 		err = pid_vnr(curr->sempid);
1513 		goto out_unlock;
1514 	case GETNCNT:
1515 		err = count_semcnt(sma, semnum, 0);
1516 		goto out_unlock;
1517 	case GETZCNT:
1518 		err = count_semcnt(sma, semnum, 1);
1519 		goto out_unlock;
1520 	}
1521 
1522 out_unlock:
1523 	sem_unlock(sma, -1);
1524 out_rcu_wakeup:
1525 	rcu_read_unlock();
1526 	wake_up_q(&wake_q);
1527 out_free:
1528 	if (sem_io != fast_sem_io)
1529 		kvfree(sem_io);
1530 	return err;
1531 }
1532 
1533 static inline unsigned long
1534 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1535 {
1536 	switch (version) {
1537 	case IPC_64:
1538 		if (copy_from_user(out, buf, sizeof(*out)))
1539 			return -EFAULT;
1540 		return 0;
1541 	case IPC_OLD:
1542 	    {
1543 		struct semid_ds tbuf_old;
1544 
1545 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1546 			return -EFAULT;
1547 
1548 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1549 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1550 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1551 
1552 		return 0;
1553 	    }
1554 	default:
1555 		return -EINVAL;
1556 	}
1557 }
1558 
1559 /*
1560  * This function handles some semctl commands which require the rwsem
1561  * to be held in write mode.
1562  * NOTE: no locks must be held, the rwsem is taken inside this function.
1563  */
1564 static int semctl_down(struct ipc_namespace *ns, int semid,
1565 		       int cmd, struct semid64_ds *semid64)
1566 {
1567 	struct sem_array *sma;
1568 	int err;
1569 	struct kern_ipc_perm *ipcp;
1570 
1571 	down_write(&sem_ids(ns).rwsem);
1572 	rcu_read_lock();
1573 
1574 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1575 				      &semid64->sem_perm, 0);
1576 	if (IS_ERR(ipcp)) {
1577 		err = PTR_ERR(ipcp);
1578 		goto out_unlock1;
1579 	}
1580 
1581 	sma = container_of(ipcp, struct sem_array, sem_perm);
1582 
1583 	err = security_sem_semctl(&sma->sem_perm, cmd);
1584 	if (err)
1585 		goto out_unlock1;
1586 
1587 	switch (cmd) {
1588 	case IPC_RMID:
1589 		sem_lock(sma, NULL, -1);
1590 		/* freeary unlocks the ipc object and rcu */
1591 		freeary(ns, ipcp);
1592 		goto out_up;
1593 	case IPC_SET:
1594 		sem_lock(sma, NULL, -1);
1595 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1596 		if (err)
1597 			goto out_unlock0;
1598 		sma->sem_ctime = ktime_get_real_seconds();
1599 		break;
1600 	default:
1601 		err = -EINVAL;
1602 		goto out_unlock1;
1603 	}
1604 
1605 out_unlock0:
1606 	sem_unlock(sma, -1);
1607 out_unlock1:
1608 	rcu_read_unlock();
1609 out_up:
1610 	up_write(&sem_ids(ns).rwsem);
1611 	return err;
1612 }
1613 
1614 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1615 {
1616 	int version;
1617 	struct ipc_namespace *ns;
1618 	void __user *p = (void __user *)arg;
1619 	struct semid64_ds semid64;
1620 	int err;
1621 
1622 	if (semid < 0)
1623 		return -EINVAL;
1624 
1625 	version = ipc_parse_version(&cmd);
1626 	ns = current->nsproxy->ipc_ns;
1627 
1628 	switch (cmd) {
1629 	case IPC_INFO:
1630 	case SEM_INFO:
1631 		return semctl_info(ns, semid, cmd, p);
1632 	case IPC_STAT:
1633 	case SEM_STAT:
1634 	case SEM_STAT_ANY:
1635 		err = semctl_stat(ns, semid, cmd, &semid64);
1636 		if (err < 0)
1637 			return err;
1638 		if (copy_semid_to_user(p, &semid64, version))
1639 			err = -EFAULT;
1640 		return err;
1641 	case GETALL:
1642 	case GETVAL:
1643 	case GETPID:
1644 	case GETNCNT:
1645 	case GETZCNT:
1646 	case SETALL:
1647 		return semctl_main(ns, semid, semnum, cmd, p);
1648 	case SETVAL: {
1649 		int val;
1650 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1651 		/* big-endian 64bit */
1652 		val = arg >> 32;
1653 #else
1654 		/* 32bit or little-endian 64bit */
1655 		val = arg;
1656 #endif
1657 		return semctl_setval(ns, semid, semnum, val);
1658 	}
1659 	case IPC_SET:
1660 		if (copy_semid_from_user(&semid64, p, version))
1661 			return -EFAULT;
1662 	case IPC_RMID:
1663 		return semctl_down(ns, semid, cmd, &semid64);
1664 	default:
1665 		return -EINVAL;
1666 	}
1667 }
1668 
1669 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1670 {
1671 	return ksys_semctl(semid, semnum, cmd, arg);
1672 }
1673 
1674 #ifdef CONFIG_COMPAT
1675 
1676 struct compat_semid_ds {
1677 	struct compat_ipc_perm sem_perm;
1678 	compat_time_t sem_otime;
1679 	compat_time_t sem_ctime;
1680 	compat_uptr_t sem_base;
1681 	compat_uptr_t sem_pending;
1682 	compat_uptr_t sem_pending_last;
1683 	compat_uptr_t undo;
1684 	unsigned short sem_nsems;
1685 };
1686 
1687 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1688 					int version)
1689 {
1690 	memset(out, 0, sizeof(*out));
1691 	if (version == IPC_64) {
1692 		struct compat_semid64_ds __user *p = buf;
1693 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1694 	} else {
1695 		struct compat_semid_ds __user *p = buf;
1696 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1697 	}
1698 }
1699 
1700 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1701 					int version)
1702 {
1703 	if (version == IPC_64) {
1704 		struct compat_semid64_ds v;
1705 		memset(&v, 0, sizeof(v));
1706 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1707 		v.sem_otime = in->sem_otime;
1708 		v.sem_ctime = in->sem_ctime;
1709 		v.sem_nsems = in->sem_nsems;
1710 		return copy_to_user(buf, &v, sizeof(v));
1711 	} else {
1712 		struct compat_semid_ds v;
1713 		memset(&v, 0, sizeof(v));
1714 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1715 		v.sem_otime = in->sem_otime;
1716 		v.sem_ctime = in->sem_ctime;
1717 		v.sem_nsems = in->sem_nsems;
1718 		return copy_to_user(buf, &v, sizeof(v));
1719 	}
1720 }
1721 
1722 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1723 {
1724 	void __user *p = compat_ptr(arg);
1725 	struct ipc_namespace *ns;
1726 	struct semid64_ds semid64;
1727 	int version = compat_ipc_parse_version(&cmd);
1728 	int err;
1729 
1730 	ns = current->nsproxy->ipc_ns;
1731 
1732 	if (semid < 0)
1733 		return -EINVAL;
1734 
1735 	switch (cmd & (~IPC_64)) {
1736 	case IPC_INFO:
1737 	case SEM_INFO:
1738 		return semctl_info(ns, semid, cmd, p);
1739 	case IPC_STAT:
1740 	case SEM_STAT:
1741 	case SEM_STAT_ANY:
1742 		err = semctl_stat(ns, semid, cmd, &semid64);
1743 		if (err < 0)
1744 			return err;
1745 		if (copy_compat_semid_to_user(p, &semid64, version))
1746 			err = -EFAULT;
1747 		return err;
1748 	case GETVAL:
1749 	case GETPID:
1750 	case GETNCNT:
1751 	case GETZCNT:
1752 	case GETALL:
1753 	case SETALL:
1754 		return semctl_main(ns, semid, semnum, cmd, p);
1755 	case SETVAL:
1756 		return semctl_setval(ns, semid, semnum, arg);
1757 	case IPC_SET:
1758 		if (copy_compat_semid_from_user(&semid64, p, version))
1759 			return -EFAULT;
1760 		/* fallthru */
1761 	case IPC_RMID:
1762 		return semctl_down(ns, semid, cmd, &semid64);
1763 	default:
1764 		return -EINVAL;
1765 	}
1766 }
1767 
1768 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1769 {
1770 	return compat_ksys_semctl(semid, semnum, cmd, arg);
1771 }
1772 #endif
1773 
1774 /* If the task doesn't already have a undo_list, then allocate one
1775  * here.  We guarantee there is only one thread using this undo list,
1776  * and current is THE ONE
1777  *
1778  * If this allocation and assignment succeeds, but later
1779  * portions of this code fail, there is no need to free the sem_undo_list.
1780  * Just let it stay associated with the task, and it'll be freed later
1781  * at exit time.
1782  *
1783  * This can block, so callers must hold no locks.
1784  */
1785 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1786 {
1787 	struct sem_undo_list *undo_list;
1788 
1789 	undo_list = current->sysvsem.undo_list;
1790 	if (!undo_list) {
1791 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1792 		if (undo_list == NULL)
1793 			return -ENOMEM;
1794 		spin_lock_init(&undo_list->lock);
1795 		refcount_set(&undo_list->refcnt, 1);
1796 		INIT_LIST_HEAD(&undo_list->list_proc);
1797 
1798 		current->sysvsem.undo_list = undo_list;
1799 	}
1800 	*undo_listp = undo_list;
1801 	return 0;
1802 }
1803 
1804 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1805 {
1806 	struct sem_undo *un;
1807 
1808 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1809 		if (un->semid == semid)
1810 			return un;
1811 	}
1812 	return NULL;
1813 }
1814 
1815 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1816 {
1817 	struct sem_undo *un;
1818 
1819 	assert_spin_locked(&ulp->lock);
1820 
1821 	un = __lookup_undo(ulp, semid);
1822 	if (un) {
1823 		list_del_rcu(&un->list_proc);
1824 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1825 	}
1826 	return un;
1827 }
1828 
1829 /**
1830  * find_alloc_undo - lookup (and if not present create) undo array
1831  * @ns: namespace
1832  * @semid: semaphore array id
1833  *
1834  * The function looks up (and if not present creates) the undo structure.
1835  * The size of the undo structure depends on the size of the semaphore
1836  * array, thus the alloc path is not that straightforward.
1837  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1838  * performs a rcu_read_lock().
1839  */
1840 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1841 {
1842 	struct sem_array *sma;
1843 	struct sem_undo_list *ulp;
1844 	struct sem_undo *un, *new;
1845 	int nsems, error;
1846 
1847 	error = get_undo_list(&ulp);
1848 	if (error)
1849 		return ERR_PTR(error);
1850 
1851 	rcu_read_lock();
1852 	spin_lock(&ulp->lock);
1853 	un = lookup_undo(ulp, semid);
1854 	spin_unlock(&ulp->lock);
1855 	if (likely(un != NULL))
1856 		goto out;
1857 
1858 	/* no undo structure around - allocate one. */
1859 	/* step 1: figure out the size of the semaphore array */
1860 	sma = sem_obtain_object_check(ns, semid);
1861 	if (IS_ERR(sma)) {
1862 		rcu_read_unlock();
1863 		return ERR_CAST(sma);
1864 	}
1865 
1866 	nsems = sma->sem_nsems;
1867 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1868 		rcu_read_unlock();
1869 		un = ERR_PTR(-EIDRM);
1870 		goto out;
1871 	}
1872 	rcu_read_unlock();
1873 
1874 	/* step 2: allocate new undo structure */
1875 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1876 	if (!new) {
1877 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1878 		return ERR_PTR(-ENOMEM);
1879 	}
1880 
1881 	/* step 3: Acquire the lock on semaphore array */
1882 	rcu_read_lock();
1883 	sem_lock_and_putref(sma);
1884 	if (!ipc_valid_object(&sma->sem_perm)) {
1885 		sem_unlock(sma, -1);
1886 		rcu_read_unlock();
1887 		kfree(new);
1888 		un = ERR_PTR(-EIDRM);
1889 		goto out;
1890 	}
1891 	spin_lock(&ulp->lock);
1892 
1893 	/*
1894 	 * step 4: check for races: did someone else allocate the undo struct?
1895 	 */
1896 	un = lookup_undo(ulp, semid);
1897 	if (un) {
1898 		kfree(new);
1899 		goto success;
1900 	}
1901 	/* step 5: initialize & link new undo structure */
1902 	new->semadj = (short *) &new[1];
1903 	new->ulp = ulp;
1904 	new->semid = semid;
1905 	assert_spin_locked(&ulp->lock);
1906 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1907 	ipc_assert_locked_object(&sma->sem_perm);
1908 	list_add(&new->list_id, &sma->list_id);
1909 	un = new;
1910 
1911 success:
1912 	spin_unlock(&ulp->lock);
1913 	sem_unlock(sma, -1);
1914 out:
1915 	return un;
1916 }
1917 
1918 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1919 		unsigned nsops, const struct timespec64 *timeout)
1920 {
1921 	int error = -EINVAL;
1922 	struct sem_array *sma;
1923 	struct sembuf fast_sops[SEMOPM_FAST];
1924 	struct sembuf *sops = fast_sops, *sop;
1925 	struct sem_undo *un;
1926 	int max, locknum;
1927 	bool undos = false, alter = false, dupsop = false;
1928 	struct sem_queue queue;
1929 	unsigned long dup = 0, jiffies_left = 0;
1930 	struct ipc_namespace *ns;
1931 
1932 	ns = current->nsproxy->ipc_ns;
1933 
1934 	if (nsops < 1 || semid < 0)
1935 		return -EINVAL;
1936 	if (nsops > ns->sc_semopm)
1937 		return -E2BIG;
1938 	if (nsops > SEMOPM_FAST) {
1939 		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1940 		if (sops == NULL)
1941 			return -ENOMEM;
1942 	}
1943 
1944 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1945 		error =  -EFAULT;
1946 		goto out_free;
1947 	}
1948 
1949 	if (timeout) {
1950 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1951 			timeout->tv_nsec >= 1000000000L) {
1952 			error = -EINVAL;
1953 			goto out_free;
1954 		}
1955 		jiffies_left = timespec64_to_jiffies(timeout);
1956 	}
1957 
1958 	max = 0;
1959 	for (sop = sops; sop < sops + nsops; sop++) {
1960 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1961 
1962 		if (sop->sem_num >= max)
1963 			max = sop->sem_num;
1964 		if (sop->sem_flg & SEM_UNDO)
1965 			undos = true;
1966 		if (dup & mask) {
1967 			/*
1968 			 * There was a previous alter access that appears
1969 			 * to have accessed the same semaphore, thus use
1970 			 * the dupsop logic. "appears", because the detection
1971 			 * can only check % BITS_PER_LONG.
1972 			 */
1973 			dupsop = true;
1974 		}
1975 		if (sop->sem_op != 0) {
1976 			alter = true;
1977 			dup |= mask;
1978 		}
1979 	}
1980 
1981 	if (undos) {
1982 		/* On success, find_alloc_undo takes the rcu_read_lock */
1983 		un = find_alloc_undo(ns, semid);
1984 		if (IS_ERR(un)) {
1985 			error = PTR_ERR(un);
1986 			goto out_free;
1987 		}
1988 	} else {
1989 		un = NULL;
1990 		rcu_read_lock();
1991 	}
1992 
1993 	sma = sem_obtain_object_check(ns, semid);
1994 	if (IS_ERR(sma)) {
1995 		rcu_read_unlock();
1996 		error = PTR_ERR(sma);
1997 		goto out_free;
1998 	}
1999 
2000 	error = -EFBIG;
2001 	if (max >= sma->sem_nsems) {
2002 		rcu_read_unlock();
2003 		goto out_free;
2004 	}
2005 
2006 	error = -EACCES;
2007 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2008 		rcu_read_unlock();
2009 		goto out_free;
2010 	}
2011 
2012 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2013 	if (error) {
2014 		rcu_read_unlock();
2015 		goto out_free;
2016 	}
2017 
2018 	error = -EIDRM;
2019 	locknum = sem_lock(sma, sops, nsops);
2020 	/*
2021 	 * We eventually might perform the following check in a lockless
2022 	 * fashion, considering ipc_valid_object() locking constraints.
2023 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2024 	 * only a per-semaphore lock is held and it's OK to proceed with the
2025 	 * check below. More details on the fine grained locking scheme
2026 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2027 	 */
2028 	if (!ipc_valid_object(&sma->sem_perm))
2029 		goto out_unlock_free;
2030 	/*
2031 	 * semid identifiers are not unique - find_alloc_undo may have
2032 	 * allocated an undo structure, it was invalidated by an RMID
2033 	 * and now a new array with received the same id. Check and fail.
2034 	 * This case can be detected checking un->semid. The existence of
2035 	 * "un" itself is guaranteed by rcu.
2036 	 */
2037 	if (un && un->semid == -1)
2038 		goto out_unlock_free;
2039 
2040 	queue.sops = sops;
2041 	queue.nsops = nsops;
2042 	queue.undo = un;
2043 	queue.pid = task_tgid(current);
2044 	queue.alter = alter;
2045 	queue.dupsop = dupsop;
2046 
2047 	error = perform_atomic_semop(sma, &queue);
2048 	if (error == 0) { /* non-blocking succesfull path */
2049 		DEFINE_WAKE_Q(wake_q);
2050 
2051 		/*
2052 		 * If the operation was successful, then do
2053 		 * the required updates.
2054 		 */
2055 		if (alter)
2056 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2057 		else
2058 			set_semotime(sma, sops);
2059 
2060 		sem_unlock(sma, locknum);
2061 		rcu_read_unlock();
2062 		wake_up_q(&wake_q);
2063 
2064 		goto out_free;
2065 	}
2066 	if (error < 0) /* non-blocking error path */
2067 		goto out_unlock_free;
2068 
2069 	/*
2070 	 * We need to sleep on this operation, so we put the current
2071 	 * task into the pending queue and go to sleep.
2072 	 */
2073 	if (nsops == 1) {
2074 		struct sem *curr;
2075 		curr = &sma->sems[sops->sem_num];
2076 
2077 		if (alter) {
2078 			if (sma->complex_count) {
2079 				list_add_tail(&queue.list,
2080 						&sma->pending_alter);
2081 			} else {
2082 
2083 				list_add_tail(&queue.list,
2084 						&curr->pending_alter);
2085 			}
2086 		} else {
2087 			list_add_tail(&queue.list, &curr->pending_const);
2088 		}
2089 	} else {
2090 		if (!sma->complex_count)
2091 			merge_queues(sma);
2092 
2093 		if (alter)
2094 			list_add_tail(&queue.list, &sma->pending_alter);
2095 		else
2096 			list_add_tail(&queue.list, &sma->pending_const);
2097 
2098 		sma->complex_count++;
2099 	}
2100 
2101 	do {
2102 		queue.status = -EINTR;
2103 		queue.sleeper = current;
2104 
2105 		__set_current_state(TASK_INTERRUPTIBLE);
2106 		sem_unlock(sma, locknum);
2107 		rcu_read_unlock();
2108 
2109 		if (timeout)
2110 			jiffies_left = schedule_timeout(jiffies_left);
2111 		else
2112 			schedule();
2113 
2114 		/*
2115 		 * fastpath: the semop has completed, either successfully or
2116 		 * not, from the syscall pov, is quite irrelevant to us at this
2117 		 * point; we're done.
2118 		 *
2119 		 * We _do_ care, nonetheless, about being awoken by a signal or
2120 		 * spuriously.  The queue.status is checked again in the
2121 		 * slowpath (aka after taking sem_lock), such that we can detect
2122 		 * scenarios where we were awakened externally, during the
2123 		 * window between wake_q_add() and wake_up_q().
2124 		 */
2125 		error = READ_ONCE(queue.status);
2126 		if (error != -EINTR) {
2127 			/*
2128 			 * User space could assume that semop() is a memory
2129 			 * barrier: Without the mb(), the cpu could
2130 			 * speculatively read in userspace stale data that was
2131 			 * overwritten by the previous owner of the semaphore.
2132 			 */
2133 			smp_mb();
2134 			goto out_free;
2135 		}
2136 
2137 		rcu_read_lock();
2138 		locknum = sem_lock(sma, sops, nsops);
2139 
2140 		if (!ipc_valid_object(&sma->sem_perm))
2141 			goto out_unlock_free;
2142 
2143 		error = READ_ONCE(queue.status);
2144 
2145 		/*
2146 		 * If queue.status != -EINTR we are woken up by another process.
2147 		 * Leave without unlink_queue(), but with sem_unlock().
2148 		 */
2149 		if (error != -EINTR)
2150 			goto out_unlock_free;
2151 
2152 		/*
2153 		 * If an interrupt occurred we have to clean up the queue.
2154 		 */
2155 		if (timeout && jiffies_left == 0)
2156 			error = -EAGAIN;
2157 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2158 
2159 	unlink_queue(sma, &queue);
2160 
2161 out_unlock_free:
2162 	sem_unlock(sma, locknum);
2163 	rcu_read_unlock();
2164 out_free:
2165 	if (sops != fast_sops)
2166 		kvfree(sops);
2167 	return error;
2168 }
2169 
2170 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2171 		     unsigned int nsops, const struct timespec __user *timeout)
2172 {
2173 	if (timeout) {
2174 		struct timespec64 ts;
2175 		if (get_timespec64(&ts, timeout))
2176 			return -EFAULT;
2177 		return do_semtimedop(semid, tsops, nsops, &ts);
2178 	}
2179 	return do_semtimedop(semid, tsops, nsops, NULL);
2180 }
2181 
2182 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2183 		unsigned int, nsops, const struct timespec __user *, timeout)
2184 {
2185 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2186 }
2187 
2188 #ifdef CONFIG_COMPAT
2189 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2190 			    unsigned int nsops,
2191 			    const struct compat_timespec __user *timeout)
2192 {
2193 	if (timeout) {
2194 		struct timespec64 ts;
2195 		if (compat_get_timespec64(&ts, timeout))
2196 			return -EFAULT;
2197 		return do_semtimedop(semid, tsems, nsops, &ts);
2198 	}
2199 	return do_semtimedop(semid, tsems, nsops, NULL);
2200 }
2201 
2202 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2203 		       unsigned int, nsops,
2204 		       const struct compat_timespec __user *, timeout)
2205 {
2206 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2207 }
2208 #endif
2209 
2210 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2211 		unsigned, nsops)
2212 {
2213 	return do_semtimedop(semid, tsops, nsops, NULL);
2214 }
2215 
2216 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2217  * parent and child tasks.
2218  */
2219 
2220 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2221 {
2222 	struct sem_undo_list *undo_list;
2223 	int error;
2224 
2225 	if (clone_flags & CLONE_SYSVSEM) {
2226 		error = get_undo_list(&undo_list);
2227 		if (error)
2228 			return error;
2229 		refcount_inc(&undo_list->refcnt);
2230 		tsk->sysvsem.undo_list = undo_list;
2231 	} else
2232 		tsk->sysvsem.undo_list = NULL;
2233 
2234 	return 0;
2235 }
2236 
2237 /*
2238  * add semadj values to semaphores, free undo structures.
2239  * undo structures are not freed when semaphore arrays are destroyed
2240  * so some of them may be out of date.
2241  * IMPLEMENTATION NOTE: There is some confusion over whether the
2242  * set of adjustments that needs to be done should be done in an atomic
2243  * manner or not. That is, if we are attempting to decrement the semval
2244  * should we queue up and wait until we can do so legally?
2245  * The original implementation attempted to do this (queue and wait).
2246  * The current implementation does not do so. The POSIX standard
2247  * and SVID should be consulted to determine what behavior is mandated.
2248  */
2249 void exit_sem(struct task_struct *tsk)
2250 {
2251 	struct sem_undo_list *ulp;
2252 
2253 	ulp = tsk->sysvsem.undo_list;
2254 	if (!ulp)
2255 		return;
2256 	tsk->sysvsem.undo_list = NULL;
2257 
2258 	if (!refcount_dec_and_test(&ulp->refcnt))
2259 		return;
2260 
2261 	for (;;) {
2262 		struct sem_array *sma;
2263 		struct sem_undo *un;
2264 		int semid, i;
2265 		DEFINE_WAKE_Q(wake_q);
2266 
2267 		cond_resched();
2268 
2269 		rcu_read_lock();
2270 		un = list_entry_rcu(ulp->list_proc.next,
2271 				    struct sem_undo, list_proc);
2272 		if (&un->list_proc == &ulp->list_proc) {
2273 			/*
2274 			 * We must wait for freeary() before freeing this ulp,
2275 			 * in case we raced with last sem_undo. There is a small
2276 			 * possibility where we exit while freeary() didn't
2277 			 * finish unlocking sem_undo_list.
2278 			 */
2279 			spin_lock(&ulp->lock);
2280 			spin_unlock(&ulp->lock);
2281 			rcu_read_unlock();
2282 			break;
2283 		}
2284 		spin_lock(&ulp->lock);
2285 		semid = un->semid;
2286 		spin_unlock(&ulp->lock);
2287 
2288 		/* exit_sem raced with IPC_RMID, nothing to do */
2289 		if (semid == -1) {
2290 			rcu_read_unlock();
2291 			continue;
2292 		}
2293 
2294 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2295 		/* exit_sem raced with IPC_RMID, nothing to do */
2296 		if (IS_ERR(sma)) {
2297 			rcu_read_unlock();
2298 			continue;
2299 		}
2300 
2301 		sem_lock(sma, NULL, -1);
2302 		/* exit_sem raced with IPC_RMID, nothing to do */
2303 		if (!ipc_valid_object(&sma->sem_perm)) {
2304 			sem_unlock(sma, -1);
2305 			rcu_read_unlock();
2306 			continue;
2307 		}
2308 		un = __lookup_undo(ulp, semid);
2309 		if (un == NULL) {
2310 			/* exit_sem raced with IPC_RMID+semget() that created
2311 			 * exactly the same semid. Nothing to do.
2312 			 */
2313 			sem_unlock(sma, -1);
2314 			rcu_read_unlock();
2315 			continue;
2316 		}
2317 
2318 		/* remove un from the linked lists */
2319 		ipc_assert_locked_object(&sma->sem_perm);
2320 		list_del(&un->list_id);
2321 
2322 		/* we are the last process using this ulp, acquiring ulp->lock
2323 		 * isn't required. Besides that, we are also protected against
2324 		 * IPC_RMID as we hold sma->sem_perm lock now
2325 		 */
2326 		list_del_rcu(&un->list_proc);
2327 
2328 		/* perform adjustments registered in un */
2329 		for (i = 0; i < sma->sem_nsems; i++) {
2330 			struct sem *semaphore = &sma->sems[i];
2331 			if (un->semadj[i]) {
2332 				semaphore->semval += un->semadj[i];
2333 				/*
2334 				 * Range checks of the new semaphore value,
2335 				 * not defined by sus:
2336 				 * - Some unices ignore the undo entirely
2337 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2338 				 * - some cap the value (e.g. FreeBSD caps
2339 				 *   at 0, but doesn't enforce SEMVMX)
2340 				 *
2341 				 * Linux caps the semaphore value, both at 0
2342 				 * and at SEMVMX.
2343 				 *
2344 				 *	Manfred <manfred@colorfullife.com>
2345 				 */
2346 				if (semaphore->semval < 0)
2347 					semaphore->semval = 0;
2348 				if (semaphore->semval > SEMVMX)
2349 					semaphore->semval = SEMVMX;
2350 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2351 			}
2352 		}
2353 		/* maybe some queued-up processes were waiting for this */
2354 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2355 		sem_unlock(sma, -1);
2356 		rcu_read_unlock();
2357 		wake_up_q(&wake_q);
2358 
2359 		kfree_rcu(un, rcu);
2360 	}
2361 	kfree(ulp);
2362 }
2363 
2364 #ifdef CONFIG_PROC_FS
2365 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2366 {
2367 	struct user_namespace *user_ns = seq_user_ns(s);
2368 	struct kern_ipc_perm *ipcp = it;
2369 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2370 	time64_t sem_otime;
2371 
2372 	/*
2373 	 * The proc interface isn't aware of sem_lock(), it calls
2374 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2375 	 * In order to stay compatible with sem_lock(), we must
2376 	 * enter / leave complex_mode.
2377 	 */
2378 	complexmode_enter(sma);
2379 
2380 	sem_otime = get_semotime(sma);
2381 
2382 	seq_printf(s,
2383 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2384 		   sma->sem_perm.key,
2385 		   sma->sem_perm.id,
2386 		   sma->sem_perm.mode,
2387 		   sma->sem_nsems,
2388 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2389 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2390 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2391 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2392 		   sem_otime,
2393 		   sma->sem_ctime);
2394 
2395 	complexmode_tryleave(sma);
2396 
2397 	return 0;
2398 }
2399 #endif
2400