xref: /linux/ipc/sem.c (revision 80d7da1cac62f28b3df4880e8143b39cabb4b59a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90 
91 #include <linux/uaccess.h>
92 #include "util.h"
93 
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 	int	semval;		/* current value */
97 	/*
98 	 * PID of the process that last modified the semaphore. For
99 	 * Linux, specifically these are:
100 	 *  - semop
101 	 *  - semctl, via SETVAL and SETALL.
102 	 *  - at task exit when performing undo adjustments (see exit_sem).
103 	 */
104 	struct pid *sempid;
105 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
106 	struct list_head pending_alter; /* pending single-sop operations */
107 					/* that alter the semaphore */
108 	struct list_head pending_const; /* pending single-sop operations */
109 					/* that do not alter the semaphore*/
110 	time64_t	 sem_otime;	/* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112 
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
116 	time64_t		sem_ctime;	/* create/last semctl() time */
117 	struct list_head	pending_alter;	/* pending operations */
118 						/* that alter the array */
119 	struct list_head	pending_const;	/* pending complex operations */
120 						/* that do not alter semvals */
121 	struct list_head	list_id;	/* undo requests on this array */
122 	int			sem_nsems;	/* no. of semaphores in array */
123 	int			complex_count;	/* pending complex operations */
124 	unsigned int		use_global_lock;/* >0: global lock required */
125 
126 	struct sem		sems[];
127 } __randomize_layout;
128 
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 	struct list_head	list;	 /* queue of pending operations */
132 	struct task_struct	*sleeper; /* this process */
133 	struct sem_undo		*undo;	 /* undo structure */
134 	struct pid		*pid;	 /* process id of requesting process */
135 	int			status;	 /* completion status of operation */
136 	struct sembuf		*sops;	 /* array of pending operations */
137 	struct sembuf		*blocking; /* the operation that blocked */
138 	int			nsops;	 /* number of operations */
139 	bool			alter;	 /* does *sops alter the array? */
140 	bool                    dupsop;	 /* sops on more than one sem_num */
141 };
142 
143 /* Each task has a list of undo requests. They are executed automatically
144  * when the process exits.
145  */
146 struct sem_undo {
147 	struct list_head	list_proc;	/* per-process list: *
148 						 * all undos from one process
149 						 * rcu protected */
150 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
151 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
152 	struct list_head	list_id;	/* per semaphore array list:
153 						 * all undos for one array */
154 	int			semid;		/* semaphore set identifier */
155 	short			*semadj;	/* array of adjustments */
156 						/* one per semaphore */
157 };
158 
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160  * that may be shared among all a CLONE_SYSVSEM task group.
161  */
162 struct sem_undo_list {
163 	refcount_t		refcnt;
164 	spinlock_t		lock;
165 	struct list_head	list_proc;
166 };
167 
168 
169 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
170 
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176 
177 #define SEMMSL_FAST	256 /* 512 bytes on stack */
178 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
179 
180 /*
181  * Switching from the mode suitable for simple ops
182  * to the mode for complex ops is costly. Therefore:
183  * use some hysteresis
184  */
185 #define USE_GLOBAL_LOCK_HYSTERESIS	10
186 
187 /*
188  * Locking:
189  * a) global sem_lock() for read/write
190  *	sem_undo.id_next,
191  *	sem_array.complex_count,
192  *	sem_array.pending{_alter,_const},
193  *	sem_array.sem_undo
194  *
195  * b) global or semaphore sem_lock() for read/write:
196  *	sem_array.sems[i].pending_{const,alter}:
197  *
198  * c) special:
199  *	sem_undo_list.list_proc:
200  *	* undo_list->lock for write
201  *	* rcu for read
202  *	use_global_lock:
203  *	* global sem_lock() for write
204  *	* either local or global sem_lock() for read.
205  *
206  * Memory ordering:
207  * Most ordering is enforced by using spin_lock() and spin_unlock().
208  * The special case is use_global_lock:
209  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210  * using smp_store_release().
211  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212  * smp_load_acquire().
213  * Setting it from 0 to non-zero must be ordered with regards to
214  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215  * is inside a spin_lock() and after a write from 0 to non-zero a
216  * spin_lock()+spin_unlock() is done.
217  */
218 
219 #define sc_semmsl	sem_ctls[0]
220 #define sc_semmns	sem_ctls[1]
221 #define sc_semopm	sem_ctls[2]
222 #define sc_semmni	sem_ctls[3]
223 
224 void sem_init_ns(struct ipc_namespace *ns)
225 {
226 	ns->sc_semmsl = SEMMSL;
227 	ns->sc_semmns = SEMMNS;
228 	ns->sc_semopm = SEMOPM;
229 	ns->sc_semmni = SEMMNI;
230 	ns->used_sems = 0;
231 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 }
233 
234 #ifdef CONFIG_IPC_NS
235 void sem_exit_ns(struct ipc_namespace *ns)
236 {
237 	free_ipcs(ns, &sem_ids(ns), freeary);
238 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240 }
241 #endif
242 
243 void __init sem_init(void)
244 {
245 	sem_init_ns(&init_ipc_ns);
246 	ipc_init_proc_interface("sysvipc/sem",
247 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
248 				IPC_SEM_IDS, sysvipc_sem_proc_show);
249 }
250 
251 /**
252  * unmerge_queues - unmerge queues, if possible.
253  * @sma: semaphore array
254  *
255  * The function unmerges the wait queues if complex_count is 0.
256  * It must be called prior to dropping the global semaphore array lock.
257  */
258 static void unmerge_queues(struct sem_array *sma)
259 {
260 	struct sem_queue *q, *tq;
261 
262 	/* complex operations still around? */
263 	if (sma->complex_count)
264 		return;
265 	/*
266 	 * We will switch back to simple mode.
267 	 * Move all pending operation back into the per-semaphore
268 	 * queues.
269 	 */
270 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
271 		struct sem *curr;
272 		curr = &sma->sems[q->sops[0].sem_num];
273 
274 		list_add_tail(&q->list, &curr->pending_alter);
275 	}
276 	INIT_LIST_HEAD(&sma->pending_alter);
277 }
278 
279 /**
280  * merge_queues - merge single semop queues into global queue
281  * @sma: semaphore array
282  *
283  * This function merges all per-semaphore queues into the global queue.
284  * It is necessary to achieve FIFO ordering for the pending single-sop
285  * operations when a multi-semop operation must sleep.
286  * Only the alter operations must be moved, the const operations can stay.
287  */
288 static void merge_queues(struct sem_array *sma)
289 {
290 	int i;
291 	for (i = 0; i < sma->sem_nsems; i++) {
292 		struct sem *sem = &sma->sems[i];
293 
294 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
295 	}
296 }
297 
298 static void sem_rcu_free(struct rcu_head *head)
299 {
300 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
301 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
302 
303 	security_sem_free(&sma->sem_perm);
304 	kvfree(sma);
305 }
306 
307 /*
308  * Enter the mode suitable for non-simple operations:
309  * Caller must own sem_perm.lock.
310  */
311 static void complexmode_enter(struct sem_array *sma)
312 {
313 	int i;
314 	struct sem *sem;
315 
316 	if (sma->use_global_lock > 0)  {
317 		/*
318 		 * We are already in global lock mode.
319 		 * Nothing to do, just reset the
320 		 * counter until we return to simple mode.
321 		 */
322 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
323 		return;
324 	}
325 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
326 
327 	for (i = 0; i < sma->sem_nsems; i++) {
328 		sem = &sma->sems[i];
329 		spin_lock(&sem->lock);
330 		spin_unlock(&sem->lock);
331 	}
332 }
333 
334 /*
335  * Try to leave the mode that disallows simple operations:
336  * Caller must own sem_perm.lock.
337  */
338 static void complexmode_tryleave(struct sem_array *sma)
339 {
340 	if (sma->complex_count)  {
341 		/* Complex ops are sleeping.
342 		 * We must stay in complex mode
343 		 */
344 		return;
345 	}
346 	if (sma->use_global_lock == 1) {
347 		/*
348 		 * Immediately after setting use_global_lock to 0,
349 		 * a simple op can start. Thus: all memory writes
350 		 * performed by the current operation must be visible
351 		 * before we set use_global_lock to 0.
352 		 */
353 		smp_store_release(&sma->use_global_lock, 0);
354 	} else {
355 		sma->use_global_lock--;
356 	}
357 }
358 
359 #define SEM_GLOBAL_LOCK	(-1)
360 /*
361  * If the request contains only one semaphore operation, and there are
362  * no complex transactions pending, lock only the semaphore involved.
363  * Otherwise, lock the entire semaphore array, since we either have
364  * multiple semaphores in our own semops, or we need to look at
365  * semaphores from other pending complex operations.
366  */
367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
368 			      int nsops)
369 {
370 	struct sem *sem;
371 	int idx;
372 
373 	if (nsops != 1) {
374 		/* Complex operation - acquire a full lock */
375 		ipc_lock_object(&sma->sem_perm);
376 
377 		/* Prevent parallel simple ops */
378 		complexmode_enter(sma);
379 		return SEM_GLOBAL_LOCK;
380 	}
381 
382 	/*
383 	 * Only one semaphore affected - try to optimize locking.
384 	 * Optimized locking is possible if no complex operation
385 	 * is either enqueued or processed right now.
386 	 *
387 	 * Both facts are tracked by use_global_mode.
388 	 */
389 	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
390 	sem = &sma->sems[idx];
391 
392 	/*
393 	 * Initial check for use_global_lock. Just an optimization,
394 	 * no locking, no memory barrier.
395 	 */
396 	if (!sma->use_global_lock) {
397 		/*
398 		 * It appears that no complex operation is around.
399 		 * Acquire the per-semaphore lock.
400 		 */
401 		spin_lock(&sem->lock);
402 
403 		/* pairs with smp_store_release() */
404 		if (!smp_load_acquire(&sma->use_global_lock)) {
405 			/* fast path successful! */
406 			return sops->sem_num;
407 		}
408 		spin_unlock(&sem->lock);
409 	}
410 
411 	/* slow path: acquire the full lock */
412 	ipc_lock_object(&sma->sem_perm);
413 
414 	if (sma->use_global_lock == 0) {
415 		/*
416 		 * The use_global_lock mode ended while we waited for
417 		 * sma->sem_perm.lock. Thus we must switch to locking
418 		 * with sem->lock.
419 		 * Unlike in the fast path, there is no need to recheck
420 		 * sma->use_global_lock after we have acquired sem->lock:
421 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
422 		 * change.
423 		 */
424 		spin_lock(&sem->lock);
425 
426 		ipc_unlock_object(&sma->sem_perm);
427 		return sops->sem_num;
428 	} else {
429 		/*
430 		 * Not a false alarm, thus continue to use the global lock
431 		 * mode. No need for complexmode_enter(), this was done by
432 		 * the caller that has set use_global_mode to non-zero.
433 		 */
434 		return SEM_GLOBAL_LOCK;
435 	}
436 }
437 
438 static inline void sem_unlock(struct sem_array *sma, int locknum)
439 {
440 	if (locknum == SEM_GLOBAL_LOCK) {
441 		unmerge_queues(sma);
442 		complexmode_tryleave(sma);
443 		ipc_unlock_object(&sma->sem_perm);
444 	} else {
445 		struct sem *sem = &sma->sems[locknum];
446 		spin_unlock(&sem->lock);
447 	}
448 }
449 
450 /*
451  * sem_lock_(check_) routines are called in the paths where the rwsem
452  * is not held.
453  *
454  * The caller holds the RCU read lock.
455  */
456 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
457 {
458 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
459 
460 	if (IS_ERR(ipcp))
461 		return ERR_CAST(ipcp);
462 
463 	return container_of(ipcp, struct sem_array, sem_perm);
464 }
465 
466 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
467 							int id)
468 {
469 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
470 
471 	if (IS_ERR(ipcp))
472 		return ERR_CAST(ipcp);
473 
474 	return container_of(ipcp, struct sem_array, sem_perm);
475 }
476 
477 static inline void sem_lock_and_putref(struct sem_array *sma)
478 {
479 	sem_lock(sma, NULL, -1);
480 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
481 }
482 
483 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
484 {
485 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
486 }
487 
488 static struct sem_array *sem_alloc(size_t nsems)
489 {
490 	struct sem_array *sma;
491 	size_t size;
492 
493 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
494 		return NULL;
495 
496 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
497 	sma = kvmalloc(size, GFP_KERNEL);
498 	if (unlikely(!sma))
499 		return NULL;
500 
501 	memset(sma, 0, size);
502 
503 	return sma;
504 }
505 
506 /**
507  * newary - Create a new semaphore set
508  * @ns: namespace
509  * @params: ptr to the structure that contains key, semflg and nsems
510  *
511  * Called with sem_ids.rwsem held (as a writer)
512  */
513 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
514 {
515 	int retval;
516 	struct sem_array *sma;
517 	key_t key = params->key;
518 	int nsems = params->u.nsems;
519 	int semflg = params->flg;
520 	int i;
521 
522 	if (!nsems)
523 		return -EINVAL;
524 	if (ns->used_sems + nsems > ns->sc_semmns)
525 		return -ENOSPC;
526 
527 	sma = sem_alloc(nsems);
528 	if (!sma)
529 		return -ENOMEM;
530 
531 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
532 	sma->sem_perm.key = key;
533 
534 	sma->sem_perm.security = NULL;
535 	retval = security_sem_alloc(&sma->sem_perm);
536 	if (retval) {
537 		kvfree(sma);
538 		return retval;
539 	}
540 
541 	for (i = 0; i < nsems; i++) {
542 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
543 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
544 		spin_lock_init(&sma->sems[i].lock);
545 	}
546 
547 	sma->complex_count = 0;
548 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
549 	INIT_LIST_HEAD(&sma->pending_alter);
550 	INIT_LIST_HEAD(&sma->pending_const);
551 	INIT_LIST_HEAD(&sma->list_id);
552 	sma->sem_nsems = nsems;
553 	sma->sem_ctime = ktime_get_real_seconds();
554 
555 	/* ipc_addid() locks sma upon success. */
556 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
557 	if (retval < 0) {
558 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
559 		return retval;
560 	}
561 	ns->used_sems += nsems;
562 
563 	sem_unlock(sma, -1);
564 	rcu_read_unlock();
565 
566 	return sma->sem_perm.id;
567 }
568 
569 
570 /*
571  * Called with sem_ids.rwsem and ipcp locked.
572  */
573 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
574 				struct ipc_params *params)
575 {
576 	struct sem_array *sma;
577 
578 	sma = container_of(ipcp, struct sem_array, sem_perm);
579 	if (params->u.nsems > sma->sem_nsems)
580 		return -EINVAL;
581 
582 	return 0;
583 }
584 
585 long ksys_semget(key_t key, int nsems, int semflg)
586 {
587 	struct ipc_namespace *ns;
588 	static const struct ipc_ops sem_ops = {
589 		.getnew = newary,
590 		.associate = security_sem_associate,
591 		.more_checks = sem_more_checks,
592 	};
593 	struct ipc_params sem_params;
594 
595 	ns = current->nsproxy->ipc_ns;
596 
597 	if (nsems < 0 || nsems > ns->sc_semmsl)
598 		return -EINVAL;
599 
600 	sem_params.key = key;
601 	sem_params.flg = semflg;
602 	sem_params.u.nsems = nsems;
603 
604 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
605 }
606 
607 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
608 {
609 	return ksys_semget(key, nsems, semflg);
610 }
611 
612 /**
613  * perform_atomic_semop[_slow] - Attempt to perform semaphore
614  *                               operations on a given array.
615  * @sma: semaphore array
616  * @q: struct sem_queue that describes the operation
617  *
618  * Caller blocking are as follows, based the value
619  * indicated by the semaphore operation (sem_op):
620  *
621  *  (1) >0 never blocks.
622  *  (2)  0 (wait-for-zero operation): semval is non-zero.
623  *  (3) <0 attempting to decrement semval to a value smaller than zero.
624  *
625  * Returns 0 if the operation was possible.
626  * Returns 1 if the operation is impossible, the caller must sleep.
627  * Returns <0 for error codes.
628  */
629 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
630 {
631 	int result, sem_op, nsops;
632 	struct pid *pid;
633 	struct sembuf *sop;
634 	struct sem *curr;
635 	struct sembuf *sops;
636 	struct sem_undo *un;
637 
638 	sops = q->sops;
639 	nsops = q->nsops;
640 	un = q->undo;
641 
642 	for (sop = sops; sop < sops + nsops; sop++) {
643 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
644 		curr = &sma->sems[idx];
645 		sem_op = sop->sem_op;
646 		result = curr->semval;
647 
648 		if (!sem_op && result)
649 			goto would_block;
650 
651 		result += sem_op;
652 		if (result < 0)
653 			goto would_block;
654 		if (result > SEMVMX)
655 			goto out_of_range;
656 
657 		if (sop->sem_flg & SEM_UNDO) {
658 			int undo = un->semadj[sop->sem_num] - sem_op;
659 			/* Exceeding the undo range is an error. */
660 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
661 				goto out_of_range;
662 			un->semadj[sop->sem_num] = undo;
663 		}
664 
665 		curr->semval = result;
666 	}
667 
668 	sop--;
669 	pid = q->pid;
670 	while (sop >= sops) {
671 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
672 		sop--;
673 	}
674 
675 	return 0;
676 
677 out_of_range:
678 	result = -ERANGE;
679 	goto undo;
680 
681 would_block:
682 	q->blocking = sop;
683 
684 	if (sop->sem_flg & IPC_NOWAIT)
685 		result = -EAGAIN;
686 	else
687 		result = 1;
688 
689 undo:
690 	sop--;
691 	while (sop >= sops) {
692 		sem_op = sop->sem_op;
693 		sma->sems[sop->sem_num].semval -= sem_op;
694 		if (sop->sem_flg & SEM_UNDO)
695 			un->semadj[sop->sem_num] += sem_op;
696 		sop--;
697 	}
698 
699 	return result;
700 }
701 
702 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
703 {
704 	int result, sem_op, nsops;
705 	struct sembuf *sop;
706 	struct sem *curr;
707 	struct sembuf *sops;
708 	struct sem_undo *un;
709 
710 	sops = q->sops;
711 	nsops = q->nsops;
712 	un = q->undo;
713 
714 	if (unlikely(q->dupsop))
715 		return perform_atomic_semop_slow(sma, q);
716 
717 	/*
718 	 * We scan the semaphore set twice, first to ensure that the entire
719 	 * operation can succeed, therefore avoiding any pointless writes
720 	 * to shared memory and having to undo such changes in order to block
721 	 * until the operations can go through.
722 	 */
723 	for (sop = sops; sop < sops + nsops; sop++) {
724 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
725 
726 		curr = &sma->sems[idx];
727 		sem_op = sop->sem_op;
728 		result = curr->semval;
729 
730 		if (!sem_op && result)
731 			goto would_block; /* wait-for-zero */
732 
733 		result += sem_op;
734 		if (result < 0)
735 			goto would_block;
736 
737 		if (result > SEMVMX)
738 			return -ERANGE;
739 
740 		if (sop->sem_flg & SEM_UNDO) {
741 			int undo = un->semadj[sop->sem_num] - sem_op;
742 
743 			/* Exceeding the undo range is an error. */
744 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
745 				return -ERANGE;
746 		}
747 	}
748 
749 	for (sop = sops; sop < sops + nsops; sop++) {
750 		curr = &sma->sems[sop->sem_num];
751 		sem_op = sop->sem_op;
752 		result = curr->semval;
753 
754 		if (sop->sem_flg & SEM_UNDO) {
755 			int undo = un->semadj[sop->sem_num] - sem_op;
756 
757 			un->semadj[sop->sem_num] = undo;
758 		}
759 		curr->semval += sem_op;
760 		ipc_update_pid(&curr->sempid, q->pid);
761 	}
762 
763 	return 0;
764 
765 would_block:
766 	q->blocking = sop;
767 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
768 }
769 
770 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
771 					     struct wake_q_head *wake_q)
772 {
773 	wake_q_add(wake_q, q->sleeper);
774 	/*
775 	 * Rely on the above implicit barrier, such that we can
776 	 * ensure that we hold reference to the task before setting
777 	 * q->status. Otherwise we could race with do_exit if the
778 	 * task is awoken by an external event before calling
779 	 * wake_up_process().
780 	 */
781 	WRITE_ONCE(q->status, error);
782 }
783 
784 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
785 {
786 	list_del(&q->list);
787 	if (q->nsops > 1)
788 		sma->complex_count--;
789 }
790 
791 /** check_restart(sma, q)
792  * @sma: semaphore array
793  * @q: the operation that just completed
794  *
795  * update_queue is O(N^2) when it restarts scanning the whole queue of
796  * waiting operations. Therefore this function checks if the restart is
797  * really necessary. It is called after a previously waiting operation
798  * modified the array.
799  * Note that wait-for-zero operations are handled without restart.
800  */
801 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
802 {
803 	/* pending complex alter operations are too difficult to analyse */
804 	if (!list_empty(&sma->pending_alter))
805 		return 1;
806 
807 	/* we were a sleeping complex operation. Too difficult */
808 	if (q->nsops > 1)
809 		return 1;
810 
811 	/* It is impossible that someone waits for the new value:
812 	 * - complex operations always restart.
813 	 * - wait-for-zero are handled seperately.
814 	 * - q is a previously sleeping simple operation that
815 	 *   altered the array. It must be a decrement, because
816 	 *   simple increments never sleep.
817 	 * - If there are older (higher priority) decrements
818 	 *   in the queue, then they have observed the original
819 	 *   semval value and couldn't proceed. The operation
820 	 *   decremented to value - thus they won't proceed either.
821 	 */
822 	return 0;
823 }
824 
825 /**
826  * wake_const_ops - wake up non-alter tasks
827  * @sma: semaphore array.
828  * @semnum: semaphore that was modified.
829  * @wake_q: lockless wake-queue head.
830  *
831  * wake_const_ops must be called after a semaphore in a semaphore array
832  * was set to 0. If complex const operations are pending, wake_const_ops must
833  * be called with semnum = -1, as well as with the number of each modified
834  * semaphore.
835  * The tasks that must be woken up are added to @wake_q. The return code
836  * is stored in q->pid.
837  * The function returns 1 if at least one operation was completed successfully.
838  */
839 static int wake_const_ops(struct sem_array *sma, int semnum,
840 			  struct wake_q_head *wake_q)
841 {
842 	struct sem_queue *q, *tmp;
843 	struct list_head *pending_list;
844 	int semop_completed = 0;
845 
846 	if (semnum == -1)
847 		pending_list = &sma->pending_const;
848 	else
849 		pending_list = &sma->sems[semnum].pending_const;
850 
851 	list_for_each_entry_safe(q, tmp, pending_list, list) {
852 		int error = perform_atomic_semop(sma, q);
853 
854 		if (error > 0)
855 			continue;
856 		/* operation completed, remove from queue & wakeup */
857 		unlink_queue(sma, q);
858 
859 		wake_up_sem_queue_prepare(q, error, wake_q);
860 		if (error == 0)
861 			semop_completed = 1;
862 	}
863 
864 	return semop_completed;
865 }
866 
867 /**
868  * do_smart_wakeup_zero - wakeup all wait for zero tasks
869  * @sma: semaphore array
870  * @sops: operations that were performed
871  * @nsops: number of operations
872  * @wake_q: lockless wake-queue head
873  *
874  * Checks all required queue for wait-for-zero operations, based
875  * on the actual changes that were performed on the semaphore array.
876  * The function returns 1 if at least one operation was completed successfully.
877  */
878 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
879 				int nsops, struct wake_q_head *wake_q)
880 {
881 	int i;
882 	int semop_completed = 0;
883 	int got_zero = 0;
884 
885 	/* first: the per-semaphore queues, if known */
886 	if (sops) {
887 		for (i = 0; i < nsops; i++) {
888 			int num = sops[i].sem_num;
889 
890 			if (sma->sems[num].semval == 0) {
891 				got_zero = 1;
892 				semop_completed |= wake_const_ops(sma, num, wake_q);
893 			}
894 		}
895 	} else {
896 		/*
897 		 * No sops means modified semaphores not known.
898 		 * Assume all were changed.
899 		 */
900 		for (i = 0; i < sma->sem_nsems; i++) {
901 			if (sma->sems[i].semval == 0) {
902 				got_zero = 1;
903 				semop_completed |= wake_const_ops(sma, i, wake_q);
904 			}
905 		}
906 	}
907 	/*
908 	 * If one of the modified semaphores got 0,
909 	 * then check the global queue, too.
910 	 */
911 	if (got_zero)
912 		semop_completed |= wake_const_ops(sma, -1, wake_q);
913 
914 	return semop_completed;
915 }
916 
917 
918 /**
919  * update_queue - look for tasks that can be completed.
920  * @sma: semaphore array.
921  * @semnum: semaphore that was modified.
922  * @wake_q: lockless wake-queue head.
923  *
924  * update_queue must be called after a semaphore in a semaphore array
925  * was modified. If multiple semaphores were modified, update_queue must
926  * be called with semnum = -1, as well as with the number of each modified
927  * semaphore.
928  * The tasks that must be woken up are added to @wake_q. The return code
929  * is stored in q->pid.
930  * The function internally checks if const operations can now succeed.
931  *
932  * The function return 1 if at least one semop was completed successfully.
933  */
934 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
935 {
936 	struct sem_queue *q, *tmp;
937 	struct list_head *pending_list;
938 	int semop_completed = 0;
939 
940 	if (semnum == -1)
941 		pending_list = &sma->pending_alter;
942 	else
943 		pending_list = &sma->sems[semnum].pending_alter;
944 
945 again:
946 	list_for_each_entry_safe(q, tmp, pending_list, list) {
947 		int error, restart;
948 
949 		/* If we are scanning the single sop, per-semaphore list of
950 		 * one semaphore and that semaphore is 0, then it is not
951 		 * necessary to scan further: simple increments
952 		 * that affect only one entry succeed immediately and cannot
953 		 * be in the  per semaphore pending queue, and decrements
954 		 * cannot be successful if the value is already 0.
955 		 */
956 		if (semnum != -1 && sma->sems[semnum].semval == 0)
957 			break;
958 
959 		error = perform_atomic_semop(sma, q);
960 
961 		/* Does q->sleeper still need to sleep? */
962 		if (error > 0)
963 			continue;
964 
965 		unlink_queue(sma, q);
966 
967 		if (error) {
968 			restart = 0;
969 		} else {
970 			semop_completed = 1;
971 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
972 			restart = check_restart(sma, q);
973 		}
974 
975 		wake_up_sem_queue_prepare(q, error, wake_q);
976 		if (restart)
977 			goto again;
978 	}
979 	return semop_completed;
980 }
981 
982 /**
983  * set_semotime - set sem_otime
984  * @sma: semaphore array
985  * @sops: operations that modified the array, may be NULL
986  *
987  * sem_otime is replicated to avoid cache line trashing.
988  * This function sets one instance to the current time.
989  */
990 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
991 {
992 	if (sops == NULL) {
993 		sma->sems[0].sem_otime = ktime_get_real_seconds();
994 	} else {
995 		sma->sems[sops[0].sem_num].sem_otime =
996 						ktime_get_real_seconds();
997 	}
998 }
999 
1000 /**
1001  * do_smart_update - optimized update_queue
1002  * @sma: semaphore array
1003  * @sops: operations that were performed
1004  * @nsops: number of operations
1005  * @otime: force setting otime
1006  * @wake_q: lockless wake-queue head
1007  *
1008  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1009  * based on the actual changes that were performed on the semaphore array.
1010  * Note that the function does not do the actual wake-up: the caller is
1011  * responsible for calling wake_up_q().
1012  * It is safe to perform this call after dropping all locks.
1013  */
1014 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1015 			    int otime, struct wake_q_head *wake_q)
1016 {
1017 	int i;
1018 
1019 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1020 
1021 	if (!list_empty(&sma->pending_alter)) {
1022 		/* semaphore array uses the global queue - just process it. */
1023 		otime |= update_queue(sma, -1, wake_q);
1024 	} else {
1025 		if (!sops) {
1026 			/*
1027 			 * No sops, thus the modified semaphores are not
1028 			 * known. Check all.
1029 			 */
1030 			for (i = 0; i < sma->sem_nsems; i++)
1031 				otime |= update_queue(sma, i, wake_q);
1032 		} else {
1033 			/*
1034 			 * Check the semaphores that were increased:
1035 			 * - No complex ops, thus all sleeping ops are
1036 			 *   decrease.
1037 			 * - if we decreased the value, then any sleeping
1038 			 *   semaphore ops wont be able to run: If the
1039 			 *   previous value was too small, then the new
1040 			 *   value will be too small, too.
1041 			 */
1042 			for (i = 0; i < nsops; i++) {
1043 				if (sops[i].sem_op > 0) {
1044 					otime |= update_queue(sma,
1045 							      sops[i].sem_num, wake_q);
1046 				}
1047 			}
1048 		}
1049 	}
1050 	if (otime)
1051 		set_semotime(sma, sops);
1052 }
1053 
1054 /*
1055  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1056  */
1057 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1058 			bool count_zero)
1059 {
1060 	struct sembuf *sop = q->blocking;
1061 
1062 	/*
1063 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1064 	 * semaphores. This violates SUS, therefore it was changed to the
1065 	 * standard compliant behavior.
1066 	 * Give the administrators a chance to notice that an application
1067 	 * might misbehave because it relies on the Linux behavior.
1068 	 */
1069 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1070 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1071 			current->comm, task_pid_nr(current));
1072 
1073 	if (sop->sem_num != semnum)
1074 		return 0;
1075 
1076 	if (count_zero && sop->sem_op == 0)
1077 		return 1;
1078 	if (!count_zero && sop->sem_op < 0)
1079 		return 1;
1080 
1081 	return 0;
1082 }
1083 
1084 /* The following counts are associated to each semaphore:
1085  *   semncnt        number of tasks waiting on semval being nonzero
1086  *   semzcnt        number of tasks waiting on semval being zero
1087  *
1088  * Per definition, a task waits only on the semaphore of the first semop
1089  * that cannot proceed, even if additional operation would block, too.
1090  */
1091 static int count_semcnt(struct sem_array *sma, ushort semnum,
1092 			bool count_zero)
1093 {
1094 	struct list_head *l;
1095 	struct sem_queue *q;
1096 	int semcnt;
1097 
1098 	semcnt = 0;
1099 	/* First: check the simple operations. They are easy to evaluate */
1100 	if (count_zero)
1101 		l = &sma->sems[semnum].pending_const;
1102 	else
1103 		l = &sma->sems[semnum].pending_alter;
1104 
1105 	list_for_each_entry(q, l, list) {
1106 		/* all task on a per-semaphore list sleep on exactly
1107 		 * that semaphore
1108 		 */
1109 		semcnt++;
1110 	}
1111 
1112 	/* Then: check the complex operations. */
1113 	list_for_each_entry(q, &sma->pending_alter, list) {
1114 		semcnt += check_qop(sma, semnum, q, count_zero);
1115 	}
1116 	if (count_zero) {
1117 		list_for_each_entry(q, &sma->pending_const, list) {
1118 			semcnt += check_qop(sma, semnum, q, count_zero);
1119 		}
1120 	}
1121 	return semcnt;
1122 }
1123 
1124 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1125  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1126  * remains locked on exit.
1127  */
1128 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1129 {
1130 	struct sem_undo *un, *tu;
1131 	struct sem_queue *q, *tq;
1132 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1133 	int i;
1134 	DEFINE_WAKE_Q(wake_q);
1135 
1136 	/* Free the existing undo structures for this semaphore set.  */
1137 	ipc_assert_locked_object(&sma->sem_perm);
1138 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1139 		list_del(&un->list_id);
1140 		spin_lock(&un->ulp->lock);
1141 		un->semid = -1;
1142 		list_del_rcu(&un->list_proc);
1143 		spin_unlock(&un->ulp->lock);
1144 		kfree_rcu(un, rcu);
1145 	}
1146 
1147 	/* Wake up all pending processes and let them fail with EIDRM. */
1148 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1149 		unlink_queue(sma, q);
1150 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1151 	}
1152 
1153 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1154 		unlink_queue(sma, q);
1155 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1156 	}
1157 	for (i = 0; i < sma->sem_nsems; i++) {
1158 		struct sem *sem = &sma->sems[i];
1159 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1160 			unlink_queue(sma, q);
1161 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1162 		}
1163 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1164 			unlink_queue(sma, q);
1165 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1166 		}
1167 		ipc_update_pid(&sem->sempid, NULL);
1168 	}
1169 
1170 	/* Remove the semaphore set from the IDR */
1171 	sem_rmid(ns, sma);
1172 	sem_unlock(sma, -1);
1173 	rcu_read_unlock();
1174 
1175 	wake_up_q(&wake_q);
1176 	ns->used_sems -= sma->sem_nsems;
1177 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1178 }
1179 
1180 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1181 {
1182 	switch (version) {
1183 	case IPC_64:
1184 		return copy_to_user(buf, in, sizeof(*in));
1185 	case IPC_OLD:
1186 	    {
1187 		struct semid_ds out;
1188 
1189 		memset(&out, 0, sizeof(out));
1190 
1191 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1192 
1193 		out.sem_otime	= in->sem_otime;
1194 		out.sem_ctime	= in->sem_ctime;
1195 		out.sem_nsems	= in->sem_nsems;
1196 
1197 		return copy_to_user(buf, &out, sizeof(out));
1198 	    }
1199 	default:
1200 		return -EINVAL;
1201 	}
1202 }
1203 
1204 static time64_t get_semotime(struct sem_array *sma)
1205 {
1206 	int i;
1207 	time64_t res;
1208 
1209 	res = sma->sems[0].sem_otime;
1210 	for (i = 1; i < sma->sem_nsems; i++) {
1211 		time64_t to = sma->sems[i].sem_otime;
1212 
1213 		if (to > res)
1214 			res = to;
1215 	}
1216 	return res;
1217 }
1218 
1219 static int semctl_stat(struct ipc_namespace *ns, int semid,
1220 			 int cmd, struct semid64_ds *semid64)
1221 {
1222 	struct sem_array *sma;
1223 	time64_t semotime;
1224 	int err;
1225 
1226 	memset(semid64, 0, sizeof(*semid64));
1227 
1228 	rcu_read_lock();
1229 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1230 		sma = sem_obtain_object(ns, semid);
1231 		if (IS_ERR(sma)) {
1232 			err = PTR_ERR(sma);
1233 			goto out_unlock;
1234 		}
1235 	} else { /* IPC_STAT */
1236 		sma = sem_obtain_object_check(ns, semid);
1237 		if (IS_ERR(sma)) {
1238 			err = PTR_ERR(sma);
1239 			goto out_unlock;
1240 		}
1241 	}
1242 
1243 	/* see comment for SHM_STAT_ANY */
1244 	if (cmd == SEM_STAT_ANY)
1245 		audit_ipc_obj(&sma->sem_perm);
1246 	else {
1247 		err = -EACCES;
1248 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1249 			goto out_unlock;
1250 	}
1251 
1252 	err = security_sem_semctl(&sma->sem_perm, cmd);
1253 	if (err)
1254 		goto out_unlock;
1255 
1256 	ipc_lock_object(&sma->sem_perm);
1257 
1258 	if (!ipc_valid_object(&sma->sem_perm)) {
1259 		ipc_unlock_object(&sma->sem_perm);
1260 		err = -EIDRM;
1261 		goto out_unlock;
1262 	}
1263 
1264 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1265 	semotime = get_semotime(sma);
1266 	semid64->sem_otime = semotime;
1267 	semid64->sem_ctime = sma->sem_ctime;
1268 #ifndef CONFIG_64BIT
1269 	semid64->sem_otime_high = semotime >> 32;
1270 	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1271 #endif
1272 	semid64->sem_nsems = sma->sem_nsems;
1273 
1274 	if (cmd == IPC_STAT) {
1275 		/*
1276 		 * As defined in SUS:
1277 		 * Return 0 on success
1278 		 */
1279 		err = 0;
1280 	} else {
1281 		/*
1282 		 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1283 		 * Return the full id, including the sequence number
1284 		 */
1285 		err = sma->sem_perm.id;
1286 	}
1287 	ipc_unlock_object(&sma->sem_perm);
1288 out_unlock:
1289 	rcu_read_unlock();
1290 	return err;
1291 }
1292 
1293 static int semctl_info(struct ipc_namespace *ns, int semid,
1294 			 int cmd, void __user *p)
1295 {
1296 	struct seminfo seminfo;
1297 	int max_idx;
1298 	int err;
1299 
1300 	err = security_sem_semctl(NULL, cmd);
1301 	if (err)
1302 		return err;
1303 
1304 	memset(&seminfo, 0, sizeof(seminfo));
1305 	seminfo.semmni = ns->sc_semmni;
1306 	seminfo.semmns = ns->sc_semmns;
1307 	seminfo.semmsl = ns->sc_semmsl;
1308 	seminfo.semopm = ns->sc_semopm;
1309 	seminfo.semvmx = SEMVMX;
1310 	seminfo.semmnu = SEMMNU;
1311 	seminfo.semmap = SEMMAP;
1312 	seminfo.semume = SEMUME;
1313 	down_read(&sem_ids(ns).rwsem);
1314 	if (cmd == SEM_INFO) {
1315 		seminfo.semusz = sem_ids(ns).in_use;
1316 		seminfo.semaem = ns->used_sems;
1317 	} else {
1318 		seminfo.semusz = SEMUSZ;
1319 		seminfo.semaem = SEMAEM;
1320 	}
1321 	max_idx = ipc_get_maxidx(&sem_ids(ns));
1322 	up_read(&sem_ids(ns).rwsem);
1323 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1324 		return -EFAULT;
1325 	return (max_idx < 0) ? 0 : max_idx;
1326 }
1327 
1328 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1329 		int val)
1330 {
1331 	struct sem_undo *un;
1332 	struct sem_array *sma;
1333 	struct sem *curr;
1334 	int err;
1335 	DEFINE_WAKE_Q(wake_q);
1336 
1337 	if (val > SEMVMX || val < 0)
1338 		return -ERANGE;
1339 
1340 	rcu_read_lock();
1341 	sma = sem_obtain_object_check(ns, semid);
1342 	if (IS_ERR(sma)) {
1343 		rcu_read_unlock();
1344 		return PTR_ERR(sma);
1345 	}
1346 
1347 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1348 		rcu_read_unlock();
1349 		return -EINVAL;
1350 	}
1351 
1352 
1353 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1354 		rcu_read_unlock();
1355 		return -EACCES;
1356 	}
1357 
1358 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1359 	if (err) {
1360 		rcu_read_unlock();
1361 		return -EACCES;
1362 	}
1363 
1364 	sem_lock(sma, NULL, -1);
1365 
1366 	if (!ipc_valid_object(&sma->sem_perm)) {
1367 		sem_unlock(sma, -1);
1368 		rcu_read_unlock();
1369 		return -EIDRM;
1370 	}
1371 
1372 	semnum = array_index_nospec(semnum, sma->sem_nsems);
1373 	curr = &sma->sems[semnum];
1374 
1375 	ipc_assert_locked_object(&sma->sem_perm);
1376 	list_for_each_entry(un, &sma->list_id, list_id)
1377 		un->semadj[semnum] = 0;
1378 
1379 	curr->semval = val;
1380 	ipc_update_pid(&curr->sempid, task_tgid(current));
1381 	sma->sem_ctime = ktime_get_real_seconds();
1382 	/* maybe some queued-up processes were waiting for this */
1383 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1384 	sem_unlock(sma, -1);
1385 	rcu_read_unlock();
1386 	wake_up_q(&wake_q);
1387 	return 0;
1388 }
1389 
1390 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1391 		int cmd, void __user *p)
1392 {
1393 	struct sem_array *sma;
1394 	struct sem *curr;
1395 	int err, nsems;
1396 	ushort fast_sem_io[SEMMSL_FAST];
1397 	ushort *sem_io = fast_sem_io;
1398 	DEFINE_WAKE_Q(wake_q);
1399 
1400 	rcu_read_lock();
1401 	sma = sem_obtain_object_check(ns, semid);
1402 	if (IS_ERR(sma)) {
1403 		rcu_read_unlock();
1404 		return PTR_ERR(sma);
1405 	}
1406 
1407 	nsems = sma->sem_nsems;
1408 
1409 	err = -EACCES;
1410 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1411 		goto out_rcu_wakeup;
1412 
1413 	err = security_sem_semctl(&sma->sem_perm, cmd);
1414 	if (err)
1415 		goto out_rcu_wakeup;
1416 
1417 	err = -EACCES;
1418 	switch (cmd) {
1419 	case GETALL:
1420 	{
1421 		ushort __user *array = p;
1422 		int i;
1423 
1424 		sem_lock(sma, NULL, -1);
1425 		if (!ipc_valid_object(&sma->sem_perm)) {
1426 			err = -EIDRM;
1427 			goto out_unlock;
1428 		}
1429 		if (nsems > SEMMSL_FAST) {
1430 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1431 				err = -EIDRM;
1432 				goto out_unlock;
1433 			}
1434 			sem_unlock(sma, -1);
1435 			rcu_read_unlock();
1436 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1437 						GFP_KERNEL);
1438 			if (sem_io == NULL) {
1439 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1440 				return -ENOMEM;
1441 			}
1442 
1443 			rcu_read_lock();
1444 			sem_lock_and_putref(sma);
1445 			if (!ipc_valid_object(&sma->sem_perm)) {
1446 				err = -EIDRM;
1447 				goto out_unlock;
1448 			}
1449 		}
1450 		for (i = 0; i < sma->sem_nsems; i++)
1451 			sem_io[i] = sma->sems[i].semval;
1452 		sem_unlock(sma, -1);
1453 		rcu_read_unlock();
1454 		err = 0;
1455 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1456 			err = -EFAULT;
1457 		goto out_free;
1458 	}
1459 	case SETALL:
1460 	{
1461 		int i;
1462 		struct sem_undo *un;
1463 
1464 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1465 			err = -EIDRM;
1466 			goto out_rcu_wakeup;
1467 		}
1468 		rcu_read_unlock();
1469 
1470 		if (nsems > SEMMSL_FAST) {
1471 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1472 						GFP_KERNEL);
1473 			if (sem_io == NULL) {
1474 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1475 				return -ENOMEM;
1476 			}
1477 		}
1478 
1479 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1480 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1481 			err = -EFAULT;
1482 			goto out_free;
1483 		}
1484 
1485 		for (i = 0; i < nsems; i++) {
1486 			if (sem_io[i] > SEMVMX) {
1487 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1488 				err = -ERANGE;
1489 				goto out_free;
1490 			}
1491 		}
1492 		rcu_read_lock();
1493 		sem_lock_and_putref(sma);
1494 		if (!ipc_valid_object(&sma->sem_perm)) {
1495 			err = -EIDRM;
1496 			goto out_unlock;
1497 		}
1498 
1499 		for (i = 0; i < nsems; i++) {
1500 			sma->sems[i].semval = sem_io[i];
1501 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1502 		}
1503 
1504 		ipc_assert_locked_object(&sma->sem_perm);
1505 		list_for_each_entry(un, &sma->list_id, list_id) {
1506 			for (i = 0; i < nsems; i++)
1507 				un->semadj[i] = 0;
1508 		}
1509 		sma->sem_ctime = ktime_get_real_seconds();
1510 		/* maybe some queued-up processes were waiting for this */
1511 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1512 		err = 0;
1513 		goto out_unlock;
1514 	}
1515 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1516 	}
1517 	err = -EINVAL;
1518 	if (semnum < 0 || semnum >= nsems)
1519 		goto out_rcu_wakeup;
1520 
1521 	sem_lock(sma, NULL, -1);
1522 	if (!ipc_valid_object(&sma->sem_perm)) {
1523 		err = -EIDRM;
1524 		goto out_unlock;
1525 	}
1526 
1527 	semnum = array_index_nospec(semnum, nsems);
1528 	curr = &sma->sems[semnum];
1529 
1530 	switch (cmd) {
1531 	case GETVAL:
1532 		err = curr->semval;
1533 		goto out_unlock;
1534 	case GETPID:
1535 		err = pid_vnr(curr->sempid);
1536 		goto out_unlock;
1537 	case GETNCNT:
1538 		err = count_semcnt(sma, semnum, 0);
1539 		goto out_unlock;
1540 	case GETZCNT:
1541 		err = count_semcnt(sma, semnum, 1);
1542 		goto out_unlock;
1543 	}
1544 
1545 out_unlock:
1546 	sem_unlock(sma, -1);
1547 out_rcu_wakeup:
1548 	rcu_read_unlock();
1549 	wake_up_q(&wake_q);
1550 out_free:
1551 	if (sem_io != fast_sem_io)
1552 		kvfree(sem_io);
1553 	return err;
1554 }
1555 
1556 static inline unsigned long
1557 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1558 {
1559 	switch (version) {
1560 	case IPC_64:
1561 		if (copy_from_user(out, buf, sizeof(*out)))
1562 			return -EFAULT;
1563 		return 0;
1564 	case IPC_OLD:
1565 	    {
1566 		struct semid_ds tbuf_old;
1567 
1568 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1569 			return -EFAULT;
1570 
1571 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1572 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1573 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1574 
1575 		return 0;
1576 	    }
1577 	default:
1578 		return -EINVAL;
1579 	}
1580 }
1581 
1582 /*
1583  * This function handles some semctl commands which require the rwsem
1584  * to be held in write mode.
1585  * NOTE: no locks must be held, the rwsem is taken inside this function.
1586  */
1587 static int semctl_down(struct ipc_namespace *ns, int semid,
1588 		       int cmd, struct semid64_ds *semid64)
1589 {
1590 	struct sem_array *sma;
1591 	int err;
1592 	struct kern_ipc_perm *ipcp;
1593 
1594 	down_write(&sem_ids(ns).rwsem);
1595 	rcu_read_lock();
1596 
1597 	ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1598 				      &semid64->sem_perm, 0);
1599 	if (IS_ERR(ipcp)) {
1600 		err = PTR_ERR(ipcp);
1601 		goto out_unlock1;
1602 	}
1603 
1604 	sma = container_of(ipcp, struct sem_array, sem_perm);
1605 
1606 	err = security_sem_semctl(&sma->sem_perm, cmd);
1607 	if (err)
1608 		goto out_unlock1;
1609 
1610 	switch (cmd) {
1611 	case IPC_RMID:
1612 		sem_lock(sma, NULL, -1);
1613 		/* freeary unlocks the ipc object and rcu */
1614 		freeary(ns, ipcp);
1615 		goto out_up;
1616 	case IPC_SET:
1617 		sem_lock(sma, NULL, -1);
1618 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1619 		if (err)
1620 			goto out_unlock0;
1621 		sma->sem_ctime = ktime_get_real_seconds();
1622 		break;
1623 	default:
1624 		err = -EINVAL;
1625 		goto out_unlock1;
1626 	}
1627 
1628 out_unlock0:
1629 	sem_unlock(sma, -1);
1630 out_unlock1:
1631 	rcu_read_unlock();
1632 out_up:
1633 	up_write(&sem_ids(ns).rwsem);
1634 	return err;
1635 }
1636 
1637 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1638 {
1639 	struct ipc_namespace *ns;
1640 	void __user *p = (void __user *)arg;
1641 	struct semid64_ds semid64;
1642 	int err;
1643 
1644 	if (semid < 0)
1645 		return -EINVAL;
1646 
1647 	ns = current->nsproxy->ipc_ns;
1648 
1649 	switch (cmd) {
1650 	case IPC_INFO:
1651 	case SEM_INFO:
1652 		return semctl_info(ns, semid, cmd, p);
1653 	case IPC_STAT:
1654 	case SEM_STAT:
1655 	case SEM_STAT_ANY:
1656 		err = semctl_stat(ns, semid, cmd, &semid64);
1657 		if (err < 0)
1658 			return err;
1659 		if (copy_semid_to_user(p, &semid64, version))
1660 			err = -EFAULT;
1661 		return err;
1662 	case GETALL:
1663 	case GETVAL:
1664 	case GETPID:
1665 	case GETNCNT:
1666 	case GETZCNT:
1667 	case SETALL:
1668 		return semctl_main(ns, semid, semnum, cmd, p);
1669 	case SETVAL: {
1670 		int val;
1671 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1672 		/* big-endian 64bit */
1673 		val = arg >> 32;
1674 #else
1675 		/* 32bit or little-endian 64bit */
1676 		val = arg;
1677 #endif
1678 		return semctl_setval(ns, semid, semnum, val);
1679 	}
1680 	case IPC_SET:
1681 		if (copy_semid_from_user(&semid64, p, version))
1682 			return -EFAULT;
1683 	case IPC_RMID:
1684 		return semctl_down(ns, semid, cmd, &semid64);
1685 	default:
1686 		return -EINVAL;
1687 	}
1688 }
1689 
1690 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1691 {
1692 	return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1693 }
1694 
1695 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1696 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1697 {
1698 	int version = ipc_parse_version(&cmd);
1699 
1700 	return ksys_semctl(semid, semnum, cmd, arg, version);
1701 }
1702 
1703 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1704 {
1705 	return ksys_old_semctl(semid, semnum, cmd, arg);
1706 }
1707 #endif
1708 
1709 #ifdef CONFIG_COMPAT
1710 
1711 struct compat_semid_ds {
1712 	struct compat_ipc_perm sem_perm;
1713 	old_time32_t sem_otime;
1714 	old_time32_t sem_ctime;
1715 	compat_uptr_t sem_base;
1716 	compat_uptr_t sem_pending;
1717 	compat_uptr_t sem_pending_last;
1718 	compat_uptr_t undo;
1719 	unsigned short sem_nsems;
1720 };
1721 
1722 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1723 					int version)
1724 {
1725 	memset(out, 0, sizeof(*out));
1726 	if (version == IPC_64) {
1727 		struct compat_semid64_ds __user *p = buf;
1728 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1729 	} else {
1730 		struct compat_semid_ds __user *p = buf;
1731 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1732 	}
1733 }
1734 
1735 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1736 					int version)
1737 {
1738 	if (version == IPC_64) {
1739 		struct compat_semid64_ds v;
1740 		memset(&v, 0, sizeof(v));
1741 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1742 		v.sem_otime	 = lower_32_bits(in->sem_otime);
1743 		v.sem_otime_high = upper_32_bits(in->sem_otime);
1744 		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1745 		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1746 		v.sem_nsems = in->sem_nsems;
1747 		return copy_to_user(buf, &v, sizeof(v));
1748 	} else {
1749 		struct compat_semid_ds v;
1750 		memset(&v, 0, sizeof(v));
1751 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1752 		v.sem_otime = in->sem_otime;
1753 		v.sem_ctime = in->sem_ctime;
1754 		v.sem_nsems = in->sem_nsems;
1755 		return copy_to_user(buf, &v, sizeof(v));
1756 	}
1757 }
1758 
1759 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1760 {
1761 	void __user *p = compat_ptr(arg);
1762 	struct ipc_namespace *ns;
1763 	struct semid64_ds semid64;
1764 	int err;
1765 
1766 	ns = current->nsproxy->ipc_ns;
1767 
1768 	if (semid < 0)
1769 		return -EINVAL;
1770 
1771 	switch (cmd & (~IPC_64)) {
1772 	case IPC_INFO:
1773 	case SEM_INFO:
1774 		return semctl_info(ns, semid, cmd, p);
1775 	case IPC_STAT:
1776 	case SEM_STAT:
1777 	case SEM_STAT_ANY:
1778 		err = semctl_stat(ns, semid, cmd, &semid64);
1779 		if (err < 0)
1780 			return err;
1781 		if (copy_compat_semid_to_user(p, &semid64, version))
1782 			err = -EFAULT;
1783 		return err;
1784 	case GETVAL:
1785 	case GETPID:
1786 	case GETNCNT:
1787 	case GETZCNT:
1788 	case GETALL:
1789 	case SETALL:
1790 		return semctl_main(ns, semid, semnum, cmd, p);
1791 	case SETVAL:
1792 		return semctl_setval(ns, semid, semnum, arg);
1793 	case IPC_SET:
1794 		if (copy_compat_semid_from_user(&semid64, p, version))
1795 			return -EFAULT;
1796 		/* fallthru */
1797 	case IPC_RMID:
1798 		return semctl_down(ns, semid, cmd, &semid64);
1799 	default:
1800 		return -EINVAL;
1801 	}
1802 }
1803 
1804 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1805 {
1806 	return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1807 }
1808 
1809 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1810 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1811 {
1812 	int version = compat_ipc_parse_version(&cmd);
1813 
1814 	return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1815 }
1816 
1817 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1818 {
1819 	return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1820 }
1821 #endif
1822 #endif
1823 
1824 /* If the task doesn't already have a undo_list, then allocate one
1825  * here.  We guarantee there is only one thread using this undo list,
1826  * and current is THE ONE
1827  *
1828  * If this allocation and assignment succeeds, but later
1829  * portions of this code fail, there is no need to free the sem_undo_list.
1830  * Just let it stay associated with the task, and it'll be freed later
1831  * at exit time.
1832  *
1833  * This can block, so callers must hold no locks.
1834  */
1835 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1836 {
1837 	struct sem_undo_list *undo_list;
1838 
1839 	undo_list = current->sysvsem.undo_list;
1840 	if (!undo_list) {
1841 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1842 		if (undo_list == NULL)
1843 			return -ENOMEM;
1844 		spin_lock_init(&undo_list->lock);
1845 		refcount_set(&undo_list->refcnt, 1);
1846 		INIT_LIST_HEAD(&undo_list->list_proc);
1847 
1848 		current->sysvsem.undo_list = undo_list;
1849 	}
1850 	*undo_listp = undo_list;
1851 	return 0;
1852 }
1853 
1854 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1855 {
1856 	struct sem_undo *un;
1857 
1858 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1859 		if (un->semid == semid)
1860 			return un;
1861 	}
1862 	return NULL;
1863 }
1864 
1865 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1866 {
1867 	struct sem_undo *un;
1868 
1869 	assert_spin_locked(&ulp->lock);
1870 
1871 	un = __lookup_undo(ulp, semid);
1872 	if (un) {
1873 		list_del_rcu(&un->list_proc);
1874 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1875 	}
1876 	return un;
1877 }
1878 
1879 /**
1880  * find_alloc_undo - lookup (and if not present create) undo array
1881  * @ns: namespace
1882  * @semid: semaphore array id
1883  *
1884  * The function looks up (and if not present creates) the undo structure.
1885  * The size of the undo structure depends on the size of the semaphore
1886  * array, thus the alloc path is not that straightforward.
1887  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1888  * performs a rcu_read_lock().
1889  */
1890 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1891 {
1892 	struct sem_array *sma;
1893 	struct sem_undo_list *ulp;
1894 	struct sem_undo *un, *new;
1895 	int nsems, error;
1896 
1897 	error = get_undo_list(&ulp);
1898 	if (error)
1899 		return ERR_PTR(error);
1900 
1901 	rcu_read_lock();
1902 	spin_lock(&ulp->lock);
1903 	un = lookup_undo(ulp, semid);
1904 	spin_unlock(&ulp->lock);
1905 	if (likely(un != NULL))
1906 		goto out;
1907 
1908 	/* no undo structure around - allocate one. */
1909 	/* step 1: figure out the size of the semaphore array */
1910 	sma = sem_obtain_object_check(ns, semid);
1911 	if (IS_ERR(sma)) {
1912 		rcu_read_unlock();
1913 		return ERR_CAST(sma);
1914 	}
1915 
1916 	nsems = sma->sem_nsems;
1917 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1918 		rcu_read_unlock();
1919 		un = ERR_PTR(-EIDRM);
1920 		goto out;
1921 	}
1922 	rcu_read_unlock();
1923 
1924 	/* step 2: allocate new undo structure */
1925 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1926 	if (!new) {
1927 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1928 		return ERR_PTR(-ENOMEM);
1929 	}
1930 
1931 	/* step 3: Acquire the lock on semaphore array */
1932 	rcu_read_lock();
1933 	sem_lock_and_putref(sma);
1934 	if (!ipc_valid_object(&sma->sem_perm)) {
1935 		sem_unlock(sma, -1);
1936 		rcu_read_unlock();
1937 		kfree(new);
1938 		un = ERR_PTR(-EIDRM);
1939 		goto out;
1940 	}
1941 	spin_lock(&ulp->lock);
1942 
1943 	/*
1944 	 * step 4: check for races: did someone else allocate the undo struct?
1945 	 */
1946 	un = lookup_undo(ulp, semid);
1947 	if (un) {
1948 		kfree(new);
1949 		goto success;
1950 	}
1951 	/* step 5: initialize & link new undo structure */
1952 	new->semadj = (short *) &new[1];
1953 	new->ulp = ulp;
1954 	new->semid = semid;
1955 	assert_spin_locked(&ulp->lock);
1956 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1957 	ipc_assert_locked_object(&sma->sem_perm);
1958 	list_add(&new->list_id, &sma->list_id);
1959 	un = new;
1960 
1961 success:
1962 	spin_unlock(&ulp->lock);
1963 	sem_unlock(sma, -1);
1964 out:
1965 	return un;
1966 }
1967 
1968 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1969 		unsigned nsops, const struct timespec64 *timeout)
1970 {
1971 	int error = -EINVAL;
1972 	struct sem_array *sma;
1973 	struct sembuf fast_sops[SEMOPM_FAST];
1974 	struct sembuf *sops = fast_sops, *sop;
1975 	struct sem_undo *un;
1976 	int max, locknum;
1977 	bool undos = false, alter = false, dupsop = false;
1978 	struct sem_queue queue;
1979 	unsigned long dup = 0, jiffies_left = 0;
1980 	struct ipc_namespace *ns;
1981 
1982 	ns = current->nsproxy->ipc_ns;
1983 
1984 	if (nsops < 1 || semid < 0)
1985 		return -EINVAL;
1986 	if (nsops > ns->sc_semopm)
1987 		return -E2BIG;
1988 	if (nsops > SEMOPM_FAST) {
1989 		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1990 		if (sops == NULL)
1991 			return -ENOMEM;
1992 	}
1993 
1994 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1995 		error =  -EFAULT;
1996 		goto out_free;
1997 	}
1998 
1999 	if (timeout) {
2000 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2001 			timeout->tv_nsec >= 1000000000L) {
2002 			error = -EINVAL;
2003 			goto out_free;
2004 		}
2005 		jiffies_left = timespec64_to_jiffies(timeout);
2006 	}
2007 
2008 	max = 0;
2009 	for (sop = sops; sop < sops + nsops; sop++) {
2010 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2011 
2012 		if (sop->sem_num >= max)
2013 			max = sop->sem_num;
2014 		if (sop->sem_flg & SEM_UNDO)
2015 			undos = true;
2016 		if (dup & mask) {
2017 			/*
2018 			 * There was a previous alter access that appears
2019 			 * to have accessed the same semaphore, thus use
2020 			 * the dupsop logic. "appears", because the detection
2021 			 * can only check % BITS_PER_LONG.
2022 			 */
2023 			dupsop = true;
2024 		}
2025 		if (sop->sem_op != 0) {
2026 			alter = true;
2027 			dup |= mask;
2028 		}
2029 	}
2030 
2031 	if (undos) {
2032 		/* On success, find_alloc_undo takes the rcu_read_lock */
2033 		un = find_alloc_undo(ns, semid);
2034 		if (IS_ERR(un)) {
2035 			error = PTR_ERR(un);
2036 			goto out_free;
2037 		}
2038 	} else {
2039 		un = NULL;
2040 		rcu_read_lock();
2041 	}
2042 
2043 	sma = sem_obtain_object_check(ns, semid);
2044 	if (IS_ERR(sma)) {
2045 		rcu_read_unlock();
2046 		error = PTR_ERR(sma);
2047 		goto out_free;
2048 	}
2049 
2050 	error = -EFBIG;
2051 	if (max >= sma->sem_nsems) {
2052 		rcu_read_unlock();
2053 		goto out_free;
2054 	}
2055 
2056 	error = -EACCES;
2057 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2058 		rcu_read_unlock();
2059 		goto out_free;
2060 	}
2061 
2062 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2063 	if (error) {
2064 		rcu_read_unlock();
2065 		goto out_free;
2066 	}
2067 
2068 	error = -EIDRM;
2069 	locknum = sem_lock(sma, sops, nsops);
2070 	/*
2071 	 * We eventually might perform the following check in a lockless
2072 	 * fashion, considering ipc_valid_object() locking constraints.
2073 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2074 	 * only a per-semaphore lock is held and it's OK to proceed with the
2075 	 * check below. More details on the fine grained locking scheme
2076 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2077 	 */
2078 	if (!ipc_valid_object(&sma->sem_perm))
2079 		goto out_unlock_free;
2080 	/*
2081 	 * semid identifiers are not unique - find_alloc_undo may have
2082 	 * allocated an undo structure, it was invalidated by an RMID
2083 	 * and now a new array with received the same id. Check and fail.
2084 	 * This case can be detected checking un->semid. The existence of
2085 	 * "un" itself is guaranteed by rcu.
2086 	 */
2087 	if (un && un->semid == -1)
2088 		goto out_unlock_free;
2089 
2090 	queue.sops = sops;
2091 	queue.nsops = nsops;
2092 	queue.undo = un;
2093 	queue.pid = task_tgid(current);
2094 	queue.alter = alter;
2095 	queue.dupsop = dupsop;
2096 
2097 	error = perform_atomic_semop(sma, &queue);
2098 	if (error == 0) { /* non-blocking succesfull path */
2099 		DEFINE_WAKE_Q(wake_q);
2100 
2101 		/*
2102 		 * If the operation was successful, then do
2103 		 * the required updates.
2104 		 */
2105 		if (alter)
2106 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2107 		else
2108 			set_semotime(sma, sops);
2109 
2110 		sem_unlock(sma, locknum);
2111 		rcu_read_unlock();
2112 		wake_up_q(&wake_q);
2113 
2114 		goto out_free;
2115 	}
2116 	if (error < 0) /* non-blocking error path */
2117 		goto out_unlock_free;
2118 
2119 	/*
2120 	 * We need to sleep on this operation, so we put the current
2121 	 * task into the pending queue and go to sleep.
2122 	 */
2123 	if (nsops == 1) {
2124 		struct sem *curr;
2125 		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2126 		curr = &sma->sems[idx];
2127 
2128 		if (alter) {
2129 			if (sma->complex_count) {
2130 				list_add_tail(&queue.list,
2131 						&sma->pending_alter);
2132 			} else {
2133 
2134 				list_add_tail(&queue.list,
2135 						&curr->pending_alter);
2136 			}
2137 		} else {
2138 			list_add_tail(&queue.list, &curr->pending_const);
2139 		}
2140 	} else {
2141 		if (!sma->complex_count)
2142 			merge_queues(sma);
2143 
2144 		if (alter)
2145 			list_add_tail(&queue.list, &sma->pending_alter);
2146 		else
2147 			list_add_tail(&queue.list, &sma->pending_const);
2148 
2149 		sma->complex_count++;
2150 	}
2151 
2152 	do {
2153 		WRITE_ONCE(queue.status, -EINTR);
2154 		queue.sleeper = current;
2155 
2156 		__set_current_state(TASK_INTERRUPTIBLE);
2157 		sem_unlock(sma, locknum);
2158 		rcu_read_unlock();
2159 
2160 		if (timeout)
2161 			jiffies_left = schedule_timeout(jiffies_left);
2162 		else
2163 			schedule();
2164 
2165 		/*
2166 		 * fastpath: the semop has completed, either successfully or
2167 		 * not, from the syscall pov, is quite irrelevant to us at this
2168 		 * point; we're done.
2169 		 *
2170 		 * We _do_ care, nonetheless, about being awoken by a signal or
2171 		 * spuriously.  The queue.status is checked again in the
2172 		 * slowpath (aka after taking sem_lock), such that we can detect
2173 		 * scenarios where we were awakened externally, during the
2174 		 * window between wake_q_add() and wake_up_q().
2175 		 */
2176 		error = READ_ONCE(queue.status);
2177 		if (error != -EINTR) {
2178 			/*
2179 			 * User space could assume that semop() is a memory
2180 			 * barrier: Without the mb(), the cpu could
2181 			 * speculatively read in userspace stale data that was
2182 			 * overwritten by the previous owner of the semaphore.
2183 			 */
2184 			smp_mb();
2185 			goto out_free;
2186 		}
2187 
2188 		rcu_read_lock();
2189 		locknum = sem_lock(sma, sops, nsops);
2190 
2191 		if (!ipc_valid_object(&sma->sem_perm))
2192 			goto out_unlock_free;
2193 
2194 		error = READ_ONCE(queue.status);
2195 
2196 		/*
2197 		 * If queue.status != -EINTR we are woken up by another process.
2198 		 * Leave without unlink_queue(), but with sem_unlock().
2199 		 */
2200 		if (error != -EINTR)
2201 			goto out_unlock_free;
2202 
2203 		/*
2204 		 * If an interrupt occurred we have to clean up the queue.
2205 		 */
2206 		if (timeout && jiffies_left == 0)
2207 			error = -EAGAIN;
2208 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2209 
2210 	unlink_queue(sma, &queue);
2211 
2212 out_unlock_free:
2213 	sem_unlock(sma, locknum);
2214 	rcu_read_unlock();
2215 out_free:
2216 	if (sops != fast_sops)
2217 		kvfree(sops);
2218 	return error;
2219 }
2220 
2221 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2222 		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2223 {
2224 	if (timeout) {
2225 		struct timespec64 ts;
2226 		if (get_timespec64(&ts, timeout))
2227 			return -EFAULT;
2228 		return do_semtimedop(semid, tsops, nsops, &ts);
2229 	}
2230 	return do_semtimedop(semid, tsops, nsops, NULL);
2231 }
2232 
2233 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2234 		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2235 {
2236 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2237 }
2238 
2239 #ifdef CONFIG_COMPAT_32BIT_TIME
2240 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2241 			    unsigned int nsops,
2242 			    const struct old_timespec32 __user *timeout)
2243 {
2244 	if (timeout) {
2245 		struct timespec64 ts;
2246 		if (get_old_timespec32(&ts, timeout))
2247 			return -EFAULT;
2248 		return do_semtimedop(semid, tsems, nsops, &ts);
2249 	}
2250 	return do_semtimedop(semid, tsems, nsops, NULL);
2251 }
2252 
2253 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2254 		       unsigned int, nsops,
2255 		       const struct old_timespec32 __user *, timeout)
2256 {
2257 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2258 }
2259 #endif
2260 
2261 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2262 		unsigned, nsops)
2263 {
2264 	return do_semtimedop(semid, tsops, nsops, NULL);
2265 }
2266 
2267 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2268  * parent and child tasks.
2269  */
2270 
2271 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2272 {
2273 	struct sem_undo_list *undo_list;
2274 	int error;
2275 
2276 	if (clone_flags & CLONE_SYSVSEM) {
2277 		error = get_undo_list(&undo_list);
2278 		if (error)
2279 			return error;
2280 		refcount_inc(&undo_list->refcnt);
2281 		tsk->sysvsem.undo_list = undo_list;
2282 	} else
2283 		tsk->sysvsem.undo_list = NULL;
2284 
2285 	return 0;
2286 }
2287 
2288 /*
2289  * add semadj values to semaphores, free undo structures.
2290  * undo structures are not freed when semaphore arrays are destroyed
2291  * so some of them may be out of date.
2292  * IMPLEMENTATION NOTE: There is some confusion over whether the
2293  * set of adjustments that needs to be done should be done in an atomic
2294  * manner or not. That is, if we are attempting to decrement the semval
2295  * should we queue up and wait until we can do so legally?
2296  * The original implementation attempted to do this (queue and wait).
2297  * The current implementation does not do so. The POSIX standard
2298  * and SVID should be consulted to determine what behavior is mandated.
2299  */
2300 void exit_sem(struct task_struct *tsk)
2301 {
2302 	struct sem_undo_list *ulp;
2303 
2304 	ulp = tsk->sysvsem.undo_list;
2305 	if (!ulp)
2306 		return;
2307 	tsk->sysvsem.undo_list = NULL;
2308 
2309 	if (!refcount_dec_and_test(&ulp->refcnt))
2310 		return;
2311 
2312 	for (;;) {
2313 		struct sem_array *sma;
2314 		struct sem_undo *un;
2315 		int semid, i;
2316 		DEFINE_WAKE_Q(wake_q);
2317 
2318 		cond_resched();
2319 
2320 		rcu_read_lock();
2321 		un = list_entry_rcu(ulp->list_proc.next,
2322 				    struct sem_undo, list_proc);
2323 		if (&un->list_proc == &ulp->list_proc) {
2324 			/*
2325 			 * We must wait for freeary() before freeing this ulp,
2326 			 * in case we raced with last sem_undo. There is a small
2327 			 * possibility where we exit while freeary() didn't
2328 			 * finish unlocking sem_undo_list.
2329 			 */
2330 			spin_lock(&ulp->lock);
2331 			spin_unlock(&ulp->lock);
2332 			rcu_read_unlock();
2333 			break;
2334 		}
2335 		spin_lock(&ulp->lock);
2336 		semid = un->semid;
2337 		spin_unlock(&ulp->lock);
2338 
2339 		/* exit_sem raced with IPC_RMID, nothing to do */
2340 		if (semid == -1) {
2341 			rcu_read_unlock();
2342 			continue;
2343 		}
2344 
2345 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2346 		/* exit_sem raced with IPC_RMID, nothing to do */
2347 		if (IS_ERR(sma)) {
2348 			rcu_read_unlock();
2349 			continue;
2350 		}
2351 
2352 		sem_lock(sma, NULL, -1);
2353 		/* exit_sem raced with IPC_RMID, nothing to do */
2354 		if (!ipc_valid_object(&sma->sem_perm)) {
2355 			sem_unlock(sma, -1);
2356 			rcu_read_unlock();
2357 			continue;
2358 		}
2359 		un = __lookup_undo(ulp, semid);
2360 		if (un == NULL) {
2361 			/* exit_sem raced with IPC_RMID+semget() that created
2362 			 * exactly the same semid. Nothing to do.
2363 			 */
2364 			sem_unlock(sma, -1);
2365 			rcu_read_unlock();
2366 			continue;
2367 		}
2368 
2369 		/* remove un from the linked lists */
2370 		ipc_assert_locked_object(&sma->sem_perm);
2371 		list_del(&un->list_id);
2372 
2373 		/* we are the last process using this ulp, acquiring ulp->lock
2374 		 * isn't required. Besides that, we are also protected against
2375 		 * IPC_RMID as we hold sma->sem_perm lock now
2376 		 */
2377 		list_del_rcu(&un->list_proc);
2378 
2379 		/* perform adjustments registered in un */
2380 		for (i = 0; i < sma->sem_nsems; i++) {
2381 			struct sem *semaphore = &sma->sems[i];
2382 			if (un->semadj[i]) {
2383 				semaphore->semval += un->semadj[i];
2384 				/*
2385 				 * Range checks of the new semaphore value,
2386 				 * not defined by sus:
2387 				 * - Some unices ignore the undo entirely
2388 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2389 				 * - some cap the value (e.g. FreeBSD caps
2390 				 *   at 0, but doesn't enforce SEMVMX)
2391 				 *
2392 				 * Linux caps the semaphore value, both at 0
2393 				 * and at SEMVMX.
2394 				 *
2395 				 *	Manfred <manfred@colorfullife.com>
2396 				 */
2397 				if (semaphore->semval < 0)
2398 					semaphore->semval = 0;
2399 				if (semaphore->semval > SEMVMX)
2400 					semaphore->semval = SEMVMX;
2401 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2402 			}
2403 		}
2404 		/* maybe some queued-up processes were waiting for this */
2405 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2406 		sem_unlock(sma, -1);
2407 		rcu_read_unlock();
2408 		wake_up_q(&wake_q);
2409 
2410 		kfree_rcu(un, rcu);
2411 	}
2412 	kfree(ulp);
2413 }
2414 
2415 #ifdef CONFIG_PROC_FS
2416 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2417 {
2418 	struct user_namespace *user_ns = seq_user_ns(s);
2419 	struct kern_ipc_perm *ipcp = it;
2420 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2421 	time64_t sem_otime;
2422 
2423 	/*
2424 	 * The proc interface isn't aware of sem_lock(), it calls
2425 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2426 	 * In order to stay compatible with sem_lock(), we must
2427 	 * enter / leave complex_mode.
2428 	 */
2429 	complexmode_enter(sma);
2430 
2431 	sem_otime = get_semotime(sma);
2432 
2433 	seq_printf(s,
2434 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2435 		   sma->sem_perm.key,
2436 		   sma->sem_perm.id,
2437 		   sma->sem_perm.mode,
2438 		   sma->sem_nsems,
2439 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2440 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2441 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2442 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2443 		   sem_otime,
2444 		   sma->sem_ctime);
2445 
2446 	complexmode_tryleave(sma);
2447 
2448 	return 0;
2449 }
2450 #endif
2451