1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 15 * Further wakeup optimizations, documentation 16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 17 * 18 * support for audit of ipc object properties and permission changes 19 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 20 * 21 * namespaces support 22 * OpenVZ, SWsoft Inc. 23 * Pavel Emelianov <xemul@openvz.org> 24 * 25 * Implementation notes: (May 2010) 26 * This file implements System V semaphores. 27 * 28 * User space visible behavior: 29 * - FIFO ordering for semop() operations (just FIFO, not starvation 30 * protection) 31 * - multiple semaphore operations that alter the same semaphore in 32 * one semop() are handled. 33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 34 * SETALL calls. 35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 36 * - undo adjustments at process exit are limited to 0..SEMVMX. 37 * - namespace are supported. 38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 39 * to /proc/sys/kernel/sem. 40 * - statistics about the usage are reported in /proc/sysvipc/sem. 41 * 42 * Internals: 43 * - scalability: 44 * - all global variables are read-mostly. 45 * - semop() calls and semctl(RMID) are synchronized by RCU. 46 * - most operations do write operations (actually: spin_lock calls) to 47 * the per-semaphore array structure. 48 * Thus: Perfect SMP scaling between independent semaphore arrays. 49 * If multiple semaphores in one array are used, then cache line 50 * trashing on the semaphore array spinlock will limit the scaling. 51 * - semncnt and semzcnt are calculated on demand in count_semcnt() 52 * - the task that performs a successful semop() scans the list of all 53 * sleeping tasks and completes any pending operations that can be fulfilled. 54 * Semaphores are actively given to waiting tasks (necessary for FIFO). 55 * (see update_queue()) 56 * - To improve the scalability, the actual wake-up calls are performed after 57 * dropping all locks. (see wake_up_sem_queue_prepare()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - UNDO values are stored in an array (one per process and per 63 * semaphore array, lazily allocated). For backwards compatibility, multiple 64 * modes for the UNDO variables are supported (per process, per thread) 65 * (see copy_semundo, CLONE_SYSVSEM) 66 * - There are two lists of the pending operations: a per-array list 67 * and per-semaphore list (stored in the array). This allows to achieve FIFO 68 * ordering without always scanning all pending operations. 69 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 70 */ 71 72 #include <linux/slab.h> 73 #include <linux/spinlock.h> 74 #include <linux/init.h> 75 #include <linux/proc_fs.h> 76 #include <linux/time.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/audit.h> 80 #include <linux/capability.h> 81 #include <linux/seq_file.h> 82 #include <linux/rwsem.h> 83 #include <linux/nsproxy.h> 84 #include <linux/ipc_namespace.h> 85 #include <linux/sched/wake_q.h> 86 87 #include <linux/uaccess.h> 88 #include "util.h" 89 90 91 /* One queue for each sleeping process in the system. */ 92 struct sem_queue { 93 struct list_head list; /* queue of pending operations */ 94 struct task_struct *sleeper; /* this process */ 95 struct sem_undo *undo; /* undo structure */ 96 int pid; /* process id of requesting process */ 97 int status; /* completion status of operation */ 98 struct sembuf *sops; /* array of pending operations */ 99 struct sembuf *blocking; /* the operation that blocked */ 100 int nsops; /* number of operations */ 101 bool alter; /* does *sops alter the array? */ 102 bool dupsop; /* sops on more than one sem_num */ 103 }; 104 105 /* Each task has a list of undo requests. They are executed automatically 106 * when the process exits. 107 */ 108 struct sem_undo { 109 struct list_head list_proc; /* per-process list: * 110 * all undos from one process 111 * rcu protected */ 112 struct rcu_head rcu; /* rcu struct for sem_undo */ 113 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 114 struct list_head list_id; /* per semaphore array list: 115 * all undos for one array */ 116 int semid; /* semaphore set identifier */ 117 short *semadj; /* array of adjustments */ 118 /* one per semaphore */ 119 }; 120 121 /* sem_undo_list controls shared access to the list of sem_undo structures 122 * that may be shared among all a CLONE_SYSVSEM task group. 123 */ 124 struct sem_undo_list { 125 refcount_t refcnt; 126 spinlock_t lock; 127 struct list_head list_proc; 128 }; 129 130 131 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 132 133 static int newary(struct ipc_namespace *, struct ipc_params *); 134 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 135 #ifdef CONFIG_PROC_FS 136 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 137 #endif 138 139 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 140 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 141 142 /* 143 * Switching from the mode suitable for simple ops 144 * to the mode for complex ops is costly. Therefore: 145 * use some hysteresis 146 */ 147 #define USE_GLOBAL_LOCK_HYSTERESIS 10 148 149 /* 150 * Locking: 151 * a) global sem_lock() for read/write 152 * sem_undo.id_next, 153 * sem_array.complex_count, 154 * sem_array.pending{_alter,_const}, 155 * sem_array.sem_undo 156 * 157 * b) global or semaphore sem_lock() for read/write: 158 * sem_array.sems[i].pending_{const,alter}: 159 * 160 * c) special: 161 * sem_undo_list.list_proc: 162 * * undo_list->lock for write 163 * * rcu for read 164 * use_global_lock: 165 * * global sem_lock() for write 166 * * either local or global sem_lock() for read. 167 * 168 * Memory ordering: 169 * Most ordering is enforced by using spin_lock() and spin_unlock(). 170 * The special case is use_global_lock: 171 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 172 * using smp_store_release(). 173 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 174 * smp_load_acquire(). 175 * Setting it from 0 to non-zero must be ordered with regards to 176 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 177 * is inside a spin_lock() and after a write from 0 to non-zero a 178 * spin_lock()+spin_unlock() is done. 179 */ 180 181 #define sc_semmsl sem_ctls[0] 182 #define sc_semmns sem_ctls[1] 183 #define sc_semopm sem_ctls[2] 184 #define sc_semmni sem_ctls[3] 185 186 int sem_init_ns(struct ipc_namespace *ns) 187 { 188 ns->sc_semmsl = SEMMSL; 189 ns->sc_semmns = SEMMNS; 190 ns->sc_semopm = SEMOPM; 191 ns->sc_semmni = SEMMNI; 192 ns->used_sems = 0; 193 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 194 } 195 196 #ifdef CONFIG_IPC_NS 197 void sem_exit_ns(struct ipc_namespace *ns) 198 { 199 free_ipcs(ns, &sem_ids(ns), freeary); 200 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 201 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 202 } 203 #endif 204 205 int __init sem_init(void) 206 { 207 const int err = sem_init_ns(&init_ipc_ns); 208 209 ipc_init_proc_interface("sysvipc/sem", 210 " key semid perms nsems uid gid cuid cgid otime ctime\n", 211 IPC_SEM_IDS, sysvipc_sem_proc_show); 212 return err; 213 } 214 215 /** 216 * unmerge_queues - unmerge queues, if possible. 217 * @sma: semaphore array 218 * 219 * The function unmerges the wait queues if complex_count is 0. 220 * It must be called prior to dropping the global semaphore array lock. 221 */ 222 static void unmerge_queues(struct sem_array *sma) 223 { 224 struct sem_queue *q, *tq; 225 226 /* complex operations still around? */ 227 if (sma->complex_count) 228 return; 229 /* 230 * We will switch back to simple mode. 231 * Move all pending operation back into the per-semaphore 232 * queues. 233 */ 234 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 235 struct sem *curr; 236 curr = &sma->sems[q->sops[0].sem_num]; 237 238 list_add_tail(&q->list, &curr->pending_alter); 239 } 240 INIT_LIST_HEAD(&sma->pending_alter); 241 } 242 243 /** 244 * merge_queues - merge single semop queues into global queue 245 * @sma: semaphore array 246 * 247 * This function merges all per-semaphore queues into the global queue. 248 * It is necessary to achieve FIFO ordering for the pending single-sop 249 * operations when a multi-semop operation must sleep. 250 * Only the alter operations must be moved, the const operations can stay. 251 */ 252 static void merge_queues(struct sem_array *sma) 253 { 254 int i; 255 for (i = 0; i < sma->sem_nsems; i++) { 256 struct sem *sem = &sma->sems[i]; 257 258 list_splice_init(&sem->pending_alter, &sma->pending_alter); 259 } 260 } 261 262 static void sem_rcu_free(struct rcu_head *head) 263 { 264 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 265 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 266 267 security_sem_free(sma); 268 kvfree(sma); 269 } 270 271 /* 272 * Enter the mode suitable for non-simple operations: 273 * Caller must own sem_perm.lock. 274 */ 275 static void complexmode_enter(struct sem_array *sma) 276 { 277 int i; 278 struct sem *sem; 279 280 if (sma->use_global_lock > 0) { 281 /* 282 * We are already in global lock mode. 283 * Nothing to do, just reset the 284 * counter until we return to simple mode. 285 */ 286 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 287 return; 288 } 289 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 290 291 for (i = 0; i < sma->sem_nsems; i++) { 292 sem = &sma->sems[i]; 293 spin_lock(&sem->lock); 294 spin_unlock(&sem->lock); 295 } 296 } 297 298 /* 299 * Try to leave the mode that disallows simple operations: 300 * Caller must own sem_perm.lock. 301 */ 302 static void complexmode_tryleave(struct sem_array *sma) 303 { 304 if (sma->complex_count) { 305 /* Complex ops are sleeping. 306 * We must stay in complex mode 307 */ 308 return; 309 } 310 if (sma->use_global_lock == 1) { 311 /* 312 * Immediately after setting use_global_lock to 0, 313 * a simple op can start. Thus: all memory writes 314 * performed by the current operation must be visible 315 * before we set use_global_lock to 0. 316 */ 317 smp_store_release(&sma->use_global_lock, 0); 318 } else { 319 sma->use_global_lock--; 320 } 321 } 322 323 #define SEM_GLOBAL_LOCK (-1) 324 /* 325 * If the request contains only one semaphore operation, and there are 326 * no complex transactions pending, lock only the semaphore involved. 327 * Otherwise, lock the entire semaphore array, since we either have 328 * multiple semaphores in our own semops, or we need to look at 329 * semaphores from other pending complex operations. 330 */ 331 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 332 int nsops) 333 { 334 struct sem *sem; 335 336 if (nsops != 1) { 337 /* Complex operation - acquire a full lock */ 338 ipc_lock_object(&sma->sem_perm); 339 340 /* Prevent parallel simple ops */ 341 complexmode_enter(sma); 342 return SEM_GLOBAL_LOCK; 343 } 344 345 /* 346 * Only one semaphore affected - try to optimize locking. 347 * Optimized locking is possible if no complex operation 348 * is either enqueued or processed right now. 349 * 350 * Both facts are tracked by use_global_mode. 351 */ 352 sem = &sma->sems[sops->sem_num]; 353 354 /* 355 * Initial check for use_global_lock. Just an optimization, 356 * no locking, no memory barrier. 357 */ 358 if (!sma->use_global_lock) { 359 /* 360 * It appears that no complex operation is around. 361 * Acquire the per-semaphore lock. 362 */ 363 spin_lock(&sem->lock); 364 365 /* pairs with smp_store_release() */ 366 if (!smp_load_acquire(&sma->use_global_lock)) { 367 /* fast path successful! */ 368 return sops->sem_num; 369 } 370 spin_unlock(&sem->lock); 371 } 372 373 /* slow path: acquire the full lock */ 374 ipc_lock_object(&sma->sem_perm); 375 376 if (sma->use_global_lock == 0) { 377 /* 378 * The use_global_lock mode ended while we waited for 379 * sma->sem_perm.lock. Thus we must switch to locking 380 * with sem->lock. 381 * Unlike in the fast path, there is no need to recheck 382 * sma->use_global_lock after we have acquired sem->lock: 383 * We own sma->sem_perm.lock, thus use_global_lock cannot 384 * change. 385 */ 386 spin_lock(&sem->lock); 387 388 ipc_unlock_object(&sma->sem_perm); 389 return sops->sem_num; 390 } else { 391 /* 392 * Not a false alarm, thus continue to use the global lock 393 * mode. No need for complexmode_enter(), this was done by 394 * the caller that has set use_global_mode to non-zero. 395 */ 396 return SEM_GLOBAL_LOCK; 397 } 398 } 399 400 static inline void sem_unlock(struct sem_array *sma, int locknum) 401 { 402 if (locknum == SEM_GLOBAL_LOCK) { 403 unmerge_queues(sma); 404 complexmode_tryleave(sma); 405 ipc_unlock_object(&sma->sem_perm); 406 } else { 407 struct sem *sem = &sma->sems[locknum]; 408 spin_unlock(&sem->lock); 409 } 410 } 411 412 /* 413 * sem_lock_(check_) routines are called in the paths where the rwsem 414 * is not held. 415 * 416 * The caller holds the RCU read lock. 417 */ 418 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 419 { 420 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 421 422 if (IS_ERR(ipcp)) 423 return ERR_CAST(ipcp); 424 425 return container_of(ipcp, struct sem_array, sem_perm); 426 } 427 428 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 429 int id) 430 { 431 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 432 433 if (IS_ERR(ipcp)) 434 return ERR_CAST(ipcp); 435 436 return container_of(ipcp, struct sem_array, sem_perm); 437 } 438 439 static inline void sem_lock_and_putref(struct sem_array *sma) 440 { 441 sem_lock(sma, NULL, -1); 442 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 443 } 444 445 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 446 { 447 ipc_rmid(&sem_ids(ns), &s->sem_perm); 448 } 449 450 static struct sem_array *sem_alloc(size_t nsems) 451 { 452 struct sem_array *sma; 453 size_t size; 454 455 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 456 return NULL; 457 458 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); 459 sma = kvmalloc(size, GFP_KERNEL); 460 if (unlikely(!sma)) 461 return NULL; 462 463 memset(sma, 0, size); 464 465 return sma; 466 } 467 468 /** 469 * newary - Create a new semaphore set 470 * @ns: namespace 471 * @params: ptr to the structure that contains key, semflg and nsems 472 * 473 * Called with sem_ids.rwsem held (as a writer) 474 */ 475 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 476 { 477 int retval; 478 struct sem_array *sma; 479 key_t key = params->key; 480 int nsems = params->u.nsems; 481 int semflg = params->flg; 482 int i; 483 484 if (!nsems) 485 return -EINVAL; 486 if (ns->used_sems + nsems > ns->sc_semmns) 487 return -ENOSPC; 488 489 sma = sem_alloc(nsems); 490 if (!sma) 491 return -ENOMEM; 492 493 sma->sem_perm.mode = (semflg & S_IRWXUGO); 494 sma->sem_perm.key = key; 495 496 sma->sem_perm.security = NULL; 497 retval = security_sem_alloc(sma); 498 if (retval) { 499 kvfree(sma); 500 return retval; 501 } 502 503 for (i = 0; i < nsems; i++) { 504 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 505 INIT_LIST_HEAD(&sma->sems[i].pending_const); 506 spin_lock_init(&sma->sems[i].lock); 507 } 508 509 sma->complex_count = 0; 510 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 511 INIT_LIST_HEAD(&sma->pending_alter); 512 INIT_LIST_HEAD(&sma->pending_const); 513 INIT_LIST_HEAD(&sma->list_id); 514 sma->sem_nsems = nsems; 515 sma->sem_ctime = get_seconds(); 516 517 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 518 if (retval < 0) { 519 call_rcu(&sma->sem_perm.rcu, sem_rcu_free); 520 return retval; 521 } 522 ns->used_sems += nsems; 523 524 sem_unlock(sma, -1); 525 rcu_read_unlock(); 526 527 return sma->sem_perm.id; 528 } 529 530 531 /* 532 * Called with sem_ids.rwsem and ipcp locked. 533 */ 534 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 535 { 536 struct sem_array *sma; 537 538 sma = container_of(ipcp, struct sem_array, sem_perm); 539 return security_sem_associate(sma, semflg); 540 } 541 542 /* 543 * Called with sem_ids.rwsem and ipcp locked. 544 */ 545 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 546 struct ipc_params *params) 547 { 548 struct sem_array *sma; 549 550 sma = container_of(ipcp, struct sem_array, sem_perm); 551 if (params->u.nsems > sma->sem_nsems) 552 return -EINVAL; 553 554 return 0; 555 } 556 557 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 558 { 559 struct ipc_namespace *ns; 560 static const struct ipc_ops sem_ops = { 561 .getnew = newary, 562 .associate = sem_security, 563 .more_checks = sem_more_checks, 564 }; 565 struct ipc_params sem_params; 566 567 ns = current->nsproxy->ipc_ns; 568 569 if (nsems < 0 || nsems > ns->sc_semmsl) 570 return -EINVAL; 571 572 sem_params.key = key; 573 sem_params.flg = semflg; 574 sem_params.u.nsems = nsems; 575 576 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 577 } 578 579 /** 580 * perform_atomic_semop[_slow] - Attempt to perform semaphore 581 * operations on a given array. 582 * @sma: semaphore array 583 * @q: struct sem_queue that describes the operation 584 * 585 * Caller blocking are as follows, based the value 586 * indicated by the semaphore operation (sem_op): 587 * 588 * (1) >0 never blocks. 589 * (2) 0 (wait-for-zero operation): semval is non-zero. 590 * (3) <0 attempting to decrement semval to a value smaller than zero. 591 * 592 * Returns 0 if the operation was possible. 593 * Returns 1 if the operation is impossible, the caller must sleep. 594 * Returns <0 for error codes. 595 */ 596 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 597 { 598 int result, sem_op, nsops, pid; 599 struct sembuf *sop; 600 struct sem *curr; 601 struct sembuf *sops; 602 struct sem_undo *un; 603 604 sops = q->sops; 605 nsops = q->nsops; 606 un = q->undo; 607 608 for (sop = sops; sop < sops + nsops; sop++) { 609 curr = &sma->sems[sop->sem_num]; 610 sem_op = sop->sem_op; 611 result = curr->semval; 612 613 if (!sem_op && result) 614 goto would_block; 615 616 result += sem_op; 617 if (result < 0) 618 goto would_block; 619 if (result > SEMVMX) 620 goto out_of_range; 621 622 if (sop->sem_flg & SEM_UNDO) { 623 int undo = un->semadj[sop->sem_num] - sem_op; 624 /* Exceeding the undo range is an error. */ 625 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 626 goto out_of_range; 627 un->semadj[sop->sem_num] = undo; 628 } 629 630 curr->semval = result; 631 } 632 633 sop--; 634 pid = q->pid; 635 while (sop >= sops) { 636 sma->sems[sop->sem_num].sempid = pid; 637 sop--; 638 } 639 640 return 0; 641 642 out_of_range: 643 result = -ERANGE; 644 goto undo; 645 646 would_block: 647 q->blocking = sop; 648 649 if (sop->sem_flg & IPC_NOWAIT) 650 result = -EAGAIN; 651 else 652 result = 1; 653 654 undo: 655 sop--; 656 while (sop >= sops) { 657 sem_op = sop->sem_op; 658 sma->sems[sop->sem_num].semval -= sem_op; 659 if (sop->sem_flg & SEM_UNDO) 660 un->semadj[sop->sem_num] += sem_op; 661 sop--; 662 } 663 664 return result; 665 } 666 667 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 668 { 669 int result, sem_op, nsops; 670 struct sembuf *sop; 671 struct sem *curr; 672 struct sembuf *sops; 673 struct sem_undo *un; 674 675 sops = q->sops; 676 nsops = q->nsops; 677 un = q->undo; 678 679 if (unlikely(q->dupsop)) 680 return perform_atomic_semop_slow(sma, q); 681 682 /* 683 * We scan the semaphore set twice, first to ensure that the entire 684 * operation can succeed, therefore avoiding any pointless writes 685 * to shared memory and having to undo such changes in order to block 686 * until the operations can go through. 687 */ 688 for (sop = sops; sop < sops + nsops; sop++) { 689 curr = &sma->sems[sop->sem_num]; 690 sem_op = sop->sem_op; 691 result = curr->semval; 692 693 if (!sem_op && result) 694 goto would_block; /* wait-for-zero */ 695 696 result += sem_op; 697 if (result < 0) 698 goto would_block; 699 700 if (result > SEMVMX) 701 return -ERANGE; 702 703 if (sop->sem_flg & SEM_UNDO) { 704 int undo = un->semadj[sop->sem_num] - sem_op; 705 706 /* Exceeding the undo range is an error. */ 707 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 708 return -ERANGE; 709 } 710 } 711 712 for (sop = sops; sop < sops + nsops; sop++) { 713 curr = &sma->sems[sop->sem_num]; 714 sem_op = sop->sem_op; 715 result = curr->semval; 716 717 if (sop->sem_flg & SEM_UNDO) { 718 int undo = un->semadj[sop->sem_num] - sem_op; 719 720 un->semadj[sop->sem_num] = undo; 721 } 722 curr->semval += sem_op; 723 curr->sempid = q->pid; 724 } 725 726 return 0; 727 728 would_block: 729 q->blocking = sop; 730 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 731 } 732 733 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 734 struct wake_q_head *wake_q) 735 { 736 wake_q_add(wake_q, q->sleeper); 737 /* 738 * Rely on the above implicit barrier, such that we can 739 * ensure that we hold reference to the task before setting 740 * q->status. Otherwise we could race with do_exit if the 741 * task is awoken by an external event before calling 742 * wake_up_process(). 743 */ 744 WRITE_ONCE(q->status, error); 745 } 746 747 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 748 { 749 list_del(&q->list); 750 if (q->nsops > 1) 751 sma->complex_count--; 752 } 753 754 /** check_restart(sma, q) 755 * @sma: semaphore array 756 * @q: the operation that just completed 757 * 758 * update_queue is O(N^2) when it restarts scanning the whole queue of 759 * waiting operations. Therefore this function checks if the restart is 760 * really necessary. It is called after a previously waiting operation 761 * modified the array. 762 * Note that wait-for-zero operations are handled without restart. 763 */ 764 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 765 { 766 /* pending complex alter operations are too difficult to analyse */ 767 if (!list_empty(&sma->pending_alter)) 768 return 1; 769 770 /* we were a sleeping complex operation. Too difficult */ 771 if (q->nsops > 1) 772 return 1; 773 774 /* It is impossible that someone waits for the new value: 775 * - complex operations always restart. 776 * - wait-for-zero are handled seperately. 777 * - q is a previously sleeping simple operation that 778 * altered the array. It must be a decrement, because 779 * simple increments never sleep. 780 * - If there are older (higher priority) decrements 781 * in the queue, then they have observed the original 782 * semval value and couldn't proceed. The operation 783 * decremented to value - thus they won't proceed either. 784 */ 785 return 0; 786 } 787 788 /** 789 * wake_const_ops - wake up non-alter tasks 790 * @sma: semaphore array. 791 * @semnum: semaphore that was modified. 792 * @wake_q: lockless wake-queue head. 793 * 794 * wake_const_ops must be called after a semaphore in a semaphore array 795 * was set to 0. If complex const operations are pending, wake_const_ops must 796 * be called with semnum = -1, as well as with the number of each modified 797 * semaphore. 798 * The tasks that must be woken up are added to @wake_q. The return code 799 * is stored in q->pid. 800 * The function returns 1 if at least one operation was completed successfully. 801 */ 802 static int wake_const_ops(struct sem_array *sma, int semnum, 803 struct wake_q_head *wake_q) 804 { 805 struct sem_queue *q, *tmp; 806 struct list_head *pending_list; 807 int semop_completed = 0; 808 809 if (semnum == -1) 810 pending_list = &sma->pending_const; 811 else 812 pending_list = &sma->sems[semnum].pending_const; 813 814 list_for_each_entry_safe(q, tmp, pending_list, list) { 815 int error = perform_atomic_semop(sma, q); 816 817 if (error > 0) 818 continue; 819 /* operation completed, remove from queue & wakeup */ 820 unlink_queue(sma, q); 821 822 wake_up_sem_queue_prepare(q, error, wake_q); 823 if (error == 0) 824 semop_completed = 1; 825 } 826 827 return semop_completed; 828 } 829 830 /** 831 * do_smart_wakeup_zero - wakeup all wait for zero tasks 832 * @sma: semaphore array 833 * @sops: operations that were performed 834 * @nsops: number of operations 835 * @wake_q: lockless wake-queue head 836 * 837 * Checks all required queue for wait-for-zero operations, based 838 * on the actual changes that were performed on the semaphore array. 839 * The function returns 1 if at least one operation was completed successfully. 840 */ 841 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 842 int nsops, struct wake_q_head *wake_q) 843 { 844 int i; 845 int semop_completed = 0; 846 int got_zero = 0; 847 848 /* first: the per-semaphore queues, if known */ 849 if (sops) { 850 for (i = 0; i < nsops; i++) { 851 int num = sops[i].sem_num; 852 853 if (sma->sems[num].semval == 0) { 854 got_zero = 1; 855 semop_completed |= wake_const_ops(sma, num, wake_q); 856 } 857 } 858 } else { 859 /* 860 * No sops means modified semaphores not known. 861 * Assume all were changed. 862 */ 863 for (i = 0; i < sma->sem_nsems; i++) { 864 if (sma->sems[i].semval == 0) { 865 got_zero = 1; 866 semop_completed |= wake_const_ops(sma, i, wake_q); 867 } 868 } 869 } 870 /* 871 * If one of the modified semaphores got 0, 872 * then check the global queue, too. 873 */ 874 if (got_zero) 875 semop_completed |= wake_const_ops(sma, -1, wake_q); 876 877 return semop_completed; 878 } 879 880 881 /** 882 * update_queue - look for tasks that can be completed. 883 * @sma: semaphore array. 884 * @semnum: semaphore that was modified. 885 * @wake_q: lockless wake-queue head. 886 * 887 * update_queue must be called after a semaphore in a semaphore array 888 * was modified. If multiple semaphores were modified, update_queue must 889 * be called with semnum = -1, as well as with the number of each modified 890 * semaphore. 891 * The tasks that must be woken up are added to @wake_q. The return code 892 * is stored in q->pid. 893 * The function internally checks if const operations can now succeed. 894 * 895 * The function return 1 if at least one semop was completed successfully. 896 */ 897 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 898 { 899 struct sem_queue *q, *tmp; 900 struct list_head *pending_list; 901 int semop_completed = 0; 902 903 if (semnum == -1) 904 pending_list = &sma->pending_alter; 905 else 906 pending_list = &sma->sems[semnum].pending_alter; 907 908 again: 909 list_for_each_entry_safe(q, tmp, pending_list, list) { 910 int error, restart; 911 912 /* If we are scanning the single sop, per-semaphore list of 913 * one semaphore and that semaphore is 0, then it is not 914 * necessary to scan further: simple increments 915 * that affect only one entry succeed immediately and cannot 916 * be in the per semaphore pending queue, and decrements 917 * cannot be successful if the value is already 0. 918 */ 919 if (semnum != -1 && sma->sems[semnum].semval == 0) 920 break; 921 922 error = perform_atomic_semop(sma, q); 923 924 /* Does q->sleeper still need to sleep? */ 925 if (error > 0) 926 continue; 927 928 unlink_queue(sma, q); 929 930 if (error) { 931 restart = 0; 932 } else { 933 semop_completed = 1; 934 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 935 restart = check_restart(sma, q); 936 } 937 938 wake_up_sem_queue_prepare(q, error, wake_q); 939 if (restart) 940 goto again; 941 } 942 return semop_completed; 943 } 944 945 /** 946 * set_semotime - set sem_otime 947 * @sma: semaphore array 948 * @sops: operations that modified the array, may be NULL 949 * 950 * sem_otime is replicated to avoid cache line trashing. 951 * This function sets one instance to the current time. 952 */ 953 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 954 { 955 if (sops == NULL) { 956 sma->sems[0].sem_otime = get_seconds(); 957 } else { 958 sma->sems[sops[0].sem_num].sem_otime = 959 get_seconds(); 960 } 961 } 962 963 /** 964 * do_smart_update - optimized update_queue 965 * @sma: semaphore array 966 * @sops: operations that were performed 967 * @nsops: number of operations 968 * @otime: force setting otime 969 * @wake_q: lockless wake-queue head 970 * 971 * do_smart_update() does the required calls to update_queue and wakeup_zero, 972 * based on the actual changes that were performed on the semaphore array. 973 * Note that the function does not do the actual wake-up: the caller is 974 * responsible for calling wake_up_q(). 975 * It is safe to perform this call after dropping all locks. 976 */ 977 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 978 int otime, struct wake_q_head *wake_q) 979 { 980 int i; 981 982 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 983 984 if (!list_empty(&sma->pending_alter)) { 985 /* semaphore array uses the global queue - just process it. */ 986 otime |= update_queue(sma, -1, wake_q); 987 } else { 988 if (!sops) { 989 /* 990 * No sops, thus the modified semaphores are not 991 * known. Check all. 992 */ 993 for (i = 0; i < sma->sem_nsems; i++) 994 otime |= update_queue(sma, i, wake_q); 995 } else { 996 /* 997 * Check the semaphores that were increased: 998 * - No complex ops, thus all sleeping ops are 999 * decrease. 1000 * - if we decreased the value, then any sleeping 1001 * semaphore ops wont be able to run: If the 1002 * previous value was too small, then the new 1003 * value will be too small, too. 1004 */ 1005 for (i = 0; i < nsops; i++) { 1006 if (sops[i].sem_op > 0) { 1007 otime |= update_queue(sma, 1008 sops[i].sem_num, wake_q); 1009 } 1010 } 1011 } 1012 } 1013 if (otime) 1014 set_semotime(sma, sops); 1015 } 1016 1017 /* 1018 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1019 */ 1020 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1021 bool count_zero) 1022 { 1023 struct sembuf *sop = q->blocking; 1024 1025 /* 1026 * Linux always (since 0.99.10) reported a task as sleeping on all 1027 * semaphores. This violates SUS, therefore it was changed to the 1028 * standard compliant behavior. 1029 * Give the administrators a chance to notice that an application 1030 * might misbehave because it relies on the Linux behavior. 1031 */ 1032 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1033 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1034 current->comm, task_pid_nr(current)); 1035 1036 if (sop->sem_num != semnum) 1037 return 0; 1038 1039 if (count_zero && sop->sem_op == 0) 1040 return 1; 1041 if (!count_zero && sop->sem_op < 0) 1042 return 1; 1043 1044 return 0; 1045 } 1046 1047 /* The following counts are associated to each semaphore: 1048 * semncnt number of tasks waiting on semval being nonzero 1049 * semzcnt number of tasks waiting on semval being zero 1050 * 1051 * Per definition, a task waits only on the semaphore of the first semop 1052 * that cannot proceed, even if additional operation would block, too. 1053 */ 1054 static int count_semcnt(struct sem_array *sma, ushort semnum, 1055 bool count_zero) 1056 { 1057 struct list_head *l; 1058 struct sem_queue *q; 1059 int semcnt; 1060 1061 semcnt = 0; 1062 /* First: check the simple operations. They are easy to evaluate */ 1063 if (count_zero) 1064 l = &sma->sems[semnum].pending_const; 1065 else 1066 l = &sma->sems[semnum].pending_alter; 1067 1068 list_for_each_entry(q, l, list) { 1069 /* all task on a per-semaphore list sleep on exactly 1070 * that semaphore 1071 */ 1072 semcnt++; 1073 } 1074 1075 /* Then: check the complex operations. */ 1076 list_for_each_entry(q, &sma->pending_alter, list) { 1077 semcnt += check_qop(sma, semnum, q, count_zero); 1078 } 1079 if (count_zero) { 1080 list_for_each_entry(q, &sma->pending_const, list) { 1081 semcnt += check_qop(sma, semnum, q, count_zero); 1082 } 1083 } 1084 return semcnt; 1085 } 1086 1087 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1088 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1089 * remains locked on exit. 1090 */ 1091 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1092 { 1093 struct sem_undo *un, *tu; 1094 struct sem_queue *q, *tq; 1095 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1096 int i; 1097 DEFINE_WAKE_Q(wake_q); 1098 1099 /* Free the existing undo structures for this semaphore set. */ 1100 ipc_assert_locked_object(&sma->sem_perm); 1101 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1102 list_del(&un->list_id); 1103 spin_lock(&un->ulp->lock); 1104 un->semid = -1; 1105 list_del_rcu(&un->list_proc); 1106 spin_unlock(&un->ulp->lock); 1107 kfree_rcu(un, rcu); 1108 } 1109 1110 /* Wake up all pending processes and let them fail with EIDRM. */ 1111 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1112 unlink_queue(sma, q); 1113 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1114 } 1115 1116 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1117 unlink_queue(sma, q); 1118 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1119 } 1120 for (i = 0; i < sma->sem_nsems; i++) { 1121 struct sem *sem = &sma->sems[i]; 1122 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1123 unlink_queue(sma, q); 1124 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1125 } 1126 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1127 unlink_queue(sma, q); 1128 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1129 } 1130 } 1131 1132 /* Remove the semaphore set from the IDR */ 1133 sem_rmid(ns, sma); 1134 sem_unlock(sma, -1); 1135 rcu_read_unlock(); 1136 1137 wake_up_q(&wake_q); 1138 ns->used_sems -= sma->sem_nsems; 1139 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1140 } 1141 1142 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1143 { 1144 switch (version) { 1145 case IPC_64: 1146 return copy_to_user(buf, in, sizeof(*in)); 1147 case IPC_OLD: 1148 { 1149 struct semid_ds out; 1150 1151 memset(&out, 0, sizeof(out)); 1152 1153 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1154 1155 out.sem_otime = in->sem_otime; 1156 out.sem_ctime = in->sem_ctime; 1157 out.sem_nsems = in->sem_nsems; 1158 1159 return copy_to_user(buf, &out, sizeof(out)); 1160 } 1161 default: 1162 return -EINVAL; 1163 } 1164 } 1165 1166 static time_t get_semotime(struct sem_array *sma) 1167 { 1168 int i; 1169 time_t res; 1170 1171 res = sma->sems[0].sem_otime; 1172 for (i = 1; i < sma->sem_nsems; i++) { 1173 time_t to = sma->sems[i].sem_otime; 1174 1175 if (to > res) 1176 res = to; 1177 } 1178 return res; 1179 } 1180 1181 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1182 int cmd, int version, void __user *p) 1183 { 1184 int err; 1185 struct sem_array *sma; 1186 1187 switch (cmd) { 1188 case IPC_INFO: 1189 case SEM_INFO: 1190 { 1191 struct seminfo seminfo; 1192 int max_id; 1193 1194 err = security_sem_semctl(NULL, cmd); 1195 if (err) 1196 return err; 1197 1198 memset(&seminfo, 0, sizeof(seminfo)); 1199 seminfo.semmni = ns->sc_semmni; 1200 seminfo.semmns = ns->sc_semmns; 1201 seminfo.semmsl = ns->sc_semmsl; 1202 seminfo.semopm = ns->sc_semopm; 1203 seminfo.semvmx = SEMVMX; 1204 seminfo.semmnu = SEMMNU; 1205 seminfo.semmap = SEMMAP; 1206 seminfo.semume = SEMUME; 1207 down_read(&sem_ids(ns).rwsem); 1208 if (cmd == SEM_INFO) { 1209 seminfo.semusz = sem_ids(ns).in_use; 1210 seminfo.semaem = ns->used_sems; 1211 } else { 1212 seminfo.semusz = SEMUSZ; 1213 seminfo.semaem = SEMAEM; 1214 } 1215 max_id = ipc_get_maxid(&sem_ids(ns)); 1216 up_read(&sem_ids(ns).rwsem); 1217 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1218 return -EFAULT; 1219 return (max_id < 0) ? 0 : max_id; 1220 } 1221 case IPC_STAT: 1222 case SEM_STAT: 1223 { 1224 struct semid64_ds tbuf; 1225 int id = 0; 1226 1227 memset(&tbuf, 0, sizeof(tbuf)); 1228 1229 rcu_read_lock(); 1230 if (cmd == SEM_STAT) { 1231 sma = sem_obtain_object(ns, semid); 1232 if (IS_ERR(sma)) { 1233 err = PTR_ERR(sma); 1234 goto out_unlock; 1235 } 1236 id = sma->sem_perm.id; 1237 } else { 1238 sma = sem_obtain_object_check(ns, semid); 1239 if (IS_ERR(sma)) { 1240 err = PTR_ERR(sma); 1241 goto out_unlock; 1242 } 1243 } 1244 1245 err = -EACCES; 1246 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1247 goto out_unlock; 1248 1249 err = security_sem_semctl(sma, cmd); 1250 if (err) 1251 goto out_unlock; 1252 1253 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1254 tbuf.sem_otime = get_semotime(sma); 1255 tbuf.sem_ctime = sma->sem_ctime; 1256 tbuf.sem_nsems = sma->sem_nsems; 1257 rcu_read_unlock(); 1258 if (copy_semid_to_user(p, &tbuf, version)) 1259 return -EFAULT; 1260 return id; 1261 } 1262 default: 1263 return -EINVAL; 1264 } 1265 out_unlock: 1266 rcu_read_unlock(); 1267 return err; 1268 } 1269 1270 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1271 unsigned long arg) 1272 { 1273 struct sem_undo *un; 1274 struct sem_array *sma; 1275 struct sem *curr; 1276 int err, val; 1277 DEFINE_WAKE_Q(wake_q); 1278 1279 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1280 /* big-endian 64bit */ 1281 val = arg >> 32; 1282 #else 1283 /* 32bit or little-endian 64bit */ 1284 val = arg; 1285 #endif 1286 1287 if (val > SEMVMX || val < 0) 1288 return -ERANGE; 1289 1290 rcu_read_lock(); 1291 sma = sem_obtain_object_check(ns, semid); 1292 if (IS_ERR(sma)) { 1293 rcu_read_unlock(); 1294 return PTR_ERR(sma); 1295 } 1296 1297 if (semnum < 0 || semnum >= sma->sem_nsems) { 1298 rcu_read_unlock(); 1299 return -EINVAL; 1300 } 1301 1302 1303 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1304 rcu_read_unlock(); 1305 return -EACCES; 1306 } 1307 1308 err = security_sem_semctl(sma, SETVAL); 1309 if (err) { 1310 rcu_read_unlock(); 1311 return -EACCES; 1312 } 1313 1314 sem_lock(sma, NULL, -1); 1315 1316 if (!ipc_valid_object(&sma->sem_perm)) { 1317 sem_unlock(sma, -1); 1318 rcu_read_unlock(); 1319 return -EIDRM; 1320 } 1321 1322 curr = &sma->sems[semnum]; 1323 1324 ipc_assert_locked_object(&sma->sem_perm); 1325 list_for_each_entry(un, &sma->list_id, list_id) 1326 un->semadj[semnum] = 0; 1327 1328 curr->semval = val; 1329 curr->sempid = task_tgid_vnr(current); 1330 sma->sem_ctime = get_seconds(); 1331 /* maybe some queued-up processes were waiting for this */ 1332 do_smart_update(sma, NULL, 0, 0, &wake_q); 1333 sem_unlock(sma, -1); 1334 rcu_read_unlock(); 1335 wake_up_q(&wake_q); 1336 return 0; 1337 } 1338 1339 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1340 int cmd, void __user *p) 1341 { 1342 struct sem_array *sma; 1343 struct sem *curr; 1344 int err, nsems; 1345 ushort fast_sem_io[SEMMSL_FAST]; 1346 ushort *sem_io = fast_sem_io; 1347 DEFINE_WAKE_Q(wake_q); 1348 1349 rcu_read_lock(); 1350 sma = sem_obtain_object_check(ns, semid); 1351 if (IS_ERR(sma)) { 1352 rcu_read_unlock(); 1353 return PTR_ERR(sma); 1354 } 1355 1356 nsems = sma->sem_nsems; 1357 1358 err = -EACCES; 1359 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1360 goto out_rcu_wakeup; 1361 1362 err = security_sem_semctl(sma, cmd); 1363 if (err) 1364 goto out_rcu_wakeup; 1365 1366 err = -EACCES; 1367 switch (cmd) { 1368 case GETALL: 1369 { 1370 ushort __user *array = p; 1371 int i; 1372 1373 sem_lock(sma, NULL, -1); 1374 if (!ipc_valid_object(&sma->sem_perm)) { 1375 err = -EIDRM; 1376 goto out_unlock; 1377 } 1378 if (nsems > SEMMSL_FAST) { 1379 if (!ipc_rcu_getref(&sma->sem_perm)) { 1380 err = -EIDRM; 1381 goto out_unlock; 1382 } 1383 sem_unlock(sma, -1); 1384 rcu_read_unlock(); 1385 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1386 GFP_KERNEL); 1387 if (sem_io == NULL) { 1388 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1389 return -ENOMEM; 1390 } 1391 1392 rcu_read_lock(); 1393 sem_lock_and_putref(sma); 1394 if (!ipc_valid_object(&sma->sem_perm)) { 1395 err = -EIDRM; 1396 goto out_unlock; 1397 } 1398 } 1399 for (i = 0; i < sma->sem_nsems; i++) 1400 sem_io[i] = sma->sems[i].semval; 1401 sem_unlock(sma, -1); 1402 rcu_read_unlock(); 1403 err = 0; 1404 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1405 err = -EFAULT; 1406 goto out_free; 1407 } 1408 case SETALL: 1409 { 1410 int i; 1411 struct sem_undo *un; 1412 1413 if (!ipc_rcu_getref(&sma->sem_perm)) { 1414 err = -EIDRM; 1415 goto out_rcu_wakeup; 1416 } 1417 rcu_read_unlock(); 1418 1419 if (nsems > SEMMSL_FAST) { 1420 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1421 GFP_KERNEL); 1422 if (sem_io == NULL) { 1423 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1424 return -ENOMEM; 1425 } 1426 } 1427 1428 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1429 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1430 err = -EFAULT; 1431 goto out_free; 1432 } 1433 1434 for (i = 0; i < nsems; i++) { 1435 if (sem_io[i] > SEMVMX) { 1436 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1437 err = -ERANGE; 1438 goto out_free; 1439 } 1440 } 1441 rcu_read_lock(); 1442 sem_lock_and_putref(sma); 1443 if (!ipc_valid_object(&sma->sem_perm)) { 1444 err = -EIDRM; 1445 goto out_unlock; 1446 } 1447 1448 for (i = 0; i < nsems; i++) { 1449 sma->sems[i].semval = sem_io[i]; 1450 sma->sems[i].sempid = task_tgid_vnr(current); 1451 } 1452 1453 ipc_assert_locked_object(&sma->sem_perm); 1454 list_for_each_entry(un, &sma->list_id, list_id) { 1455 for (i = 0; i < nsems; i++) 1456 un->semadj[i] = 0; 1457 } 1458 sma->sem_ctime = get_seconds(); 1459 /* maybe some queued-up processes were waiting for this */ 1460 do_smart_update(sma, NULL, 0, 0, &wake_q); 1461 err = 0; 1462 goto out_unlock; 1463 } 1464 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1465 } 1466 err = -EINVAL; 1467 if (semnum < 0 || semnum >= nsems) 1468 goto out_rcu_wakeup; 1469 1470 sem_lock(sma, NULL, -1); 1471 if (!ipc_valid_object(&sma->sem_perm)) { 1472 err = -EIDRM; 1473 goto out_unlock; 1474 } 1475 curr = &sma->sems[semnum]; 1476 1477 switch (cmd) { 1478 case GETVAL: 1479 err = curr->semval; 1480 goto out_unlock; 1481 case GETPID: 1482 err = curr->sempid; 1483 goto out_unlock; 1484 case GETNCNT: 1485 err = count_semcnt(sma, semnum, 0); 1486 goto out_unlock; 1487 case GETZCNT: 1488 err = count_semcnt(sma, semnum, 1); 1489 goto out_unlock; 1490 } 1491 1492 out_unlock: 1493 sem_unlock(sma, -1); 1494 out_rcu_wakeup: 1495 rcu_read_unlock(); 1496 wake_up_q(&wake_q); 1497 out_free: 1498 if (sem_io != fast_sem_io) 1499 kvfree(sem_io); 1500 return err; 1501 } 1502 1503 static inline unsigned long 1504 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1505 { 1506 switch (version) { 1507 case IPC_64: 1508 if (copy_from_user(out, buf, sizeof(*out))) 1509 return -EFAULT; 1510 return 0; 1511 case IPC_OLD: 1512 { 1513 struct semid_ds tbuf_old; 1514 1515 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1516 return -EFAULT; 1517 1518 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1519 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1520 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1521 1522 return 0; 1523 } 1524 default: 1525 return -EINVAL; 1526 } 1527 } 1528 1529 /* 1530 * This function handles some semctl commands which require the rwsem 1531 * to be held in write mode. 1532 * NOTE: no locks must be held, the rwsem is taken inside this function. 1533 */ 1534 static int semctl_down(struct ipc_namespace *ns, int semid, 1535 int cmd, int version, void __user *p) 1536 { 1537 struct sem_array *sma; 1538 int err; 1539 struct semid64_ds semid64; 1540 struct kern_ipc_perm *ipcp; 1541 1542 if (cmd == IPC_SET) { 1543 if (copy_semid_from_user(&semid64, p, version)) 1544 return -EFAULT; 1545 } 1546 1547 down_write(&sem_ids(ns).rwsem); 1548 rcu_read_lock(); 1549 1550 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1551 &semid64.sem_perm, 0); 1552 if (IS_ERR(ipcp)) { 1553 err = PTR_ERR(ipcp); 1554 goto out_unlock1; 1555 } 1556 1557 sma = container_of(ipcp, struct sem_array, sem_perm); 1558 1559 err = security_sem_semctl(sma, cmd); 1560 if (err) 1561 goto out_unlock1; 1562 1563 switch (cmd) { 1564 case IPC_RMID: 1565 sem_lock(sma, NULL, -1); 1566 /* freeary unlocks the ipc object and rcu */ 1567 freeary(ns, ipcp); 1568 goto out_up; 1569 case IPC_SET: 1570 sem_lock(sma, NULL, -1); 1571 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1572 if (err) 1573 goto out_unlock0; 1574 sma->sem_ctime = get_seconds(); 1575 break; 1576 default: 1577 err = -EINVAL; 1578 goto out_unlock1; 1579 } 1580 1581 out_unlock0: 1582 sem_unlock(sma, -1); 1583 out_unlock1: 1584 rcu_read_unlock(); 1585 out_up: 1586 up_write(&sem_ids(ns).rwsem); 1587 return err; 1588 } 1589 1590 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1591 { 1592 int version; 1593 struct ipc_namespace *ns; 1594 void __user *p = (void __user *)arg; 1595 1596 if (semid < 0) 1597 return -EINVAL; 1598 1599 version = ipc_parse_version(&cmd); 1600 ns = current->nsproxy->ipc_ns; 1601 1602 switch (cmd) { 1603 case IPC_INFO: 1604 case SEM_INFO: 1605 case IPC_STAT: 1606 case SEM_STAT: 1607 return semctl_nolock(ns, semid, cmd, version, p); 1608 case GETALL: 1609 case GETVAL: 1610 case GETPID: 1611 case GETNCNT: 1612 case GETZCNT: 1613 case SETALL: 1614 return semctl_main(ns, semid, semnum, cmd, p); 1615 case SETVAL: 1616 return semctl_setval(ns, semid, semnum, arg); 1617 case IPC_RMID: 1618 case IPC_SET: 1619 return semctl_down(ns, semid, cmd, version, p); 1620 default: 1621 return -EINVAL; 1622 } 1623 } 1624 1625 /* If the task doesn't already have a undo_list, then allocate one 1626 * here. We guarantee there is only one thread using this undo list, 1627 * and current is THE ONE 1628 * 1629 * If this allocation and assignment succeeds, but later 1630 * portions of this code fail, there is no need to free the sem_undo_list. 1631 * Just let it stay associated with the task, and it'll be freed later 1632 * at exit time. 1633 * 1634 * This can block, so callers must hold no locks. 1635 */ 1636 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1637 { 1638 struct sem_undo_list *undo_list; 1639 1640 undo_list = current->sysvsem.undo_list; 1641 if (!undo_list) { 1642 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1643 if (undo_list == NULL) 1644 return -ENOMEM; 1645 spin_lock_init(&undo_list->lock); 1646 refcount_set(&undo_list->refcnt, 1); 1647 INIT_LIST_HEAD(&undo_list->list_proc); 1648 1649 current->sysvsem.undo_list = undo_list; 1650 } 1651 *undo_listp = undo_list; 1652 return 0; 1653 } 1654 1655 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1656 { 1657 struct sem_undo *un; 1658 1659 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1660 if (un->semid == semid) 1661 return un; 1662 } 1663 return NULL; 1664 } 1665 1666 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1667 { 1668 struct sem_undo *un; 1669 1670 assert_spin_locked(&ulp->lock); 1671 1672 un = __lookup_undo(ulp, semid); 1673 if (un) { 1674 list_del_rcu(&un->list_proc); 1675 list_add_rcu(&un->list_proc, &ulp->list_proc); 1676 } 1677 return un; 1678 } 1679 1680 /** 1681 * find_alloc_undo - lookup (and if not present create) undo array 1682 * @ns: namespace 1683 * @semid: semaphore array id 1684 * 1685 * The function looks up (and if not present creates) the undo structure. 1686 * The size of the undo structure depends on the size of the semaphore 1687 * array, thus the alloc path is not that straightforward. 1688 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1689 * performs a rcu_read_lock(). 1690 */ 1691 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1692 { 1693 struct sem_array *sma; 1694 struct sem_undo_list *ulp; 1695 struct sem_undo *un, *new; 1696 int nsems, error; 1697 1698 error = get_undo_list(&ulp); 1699 if (error) 1700 return ERR_PTR(error); 1701 1702 rcu_read_lock(); 1703 spin_lock(&ulp->lock); 1704 un = lookup_undo(ulp, semid); 1705 spin_unlock(&ulp->lock); 1706 if (likely(un != NULL)) 1707 goto out; 1708 1709 /* no undo structure around - allocate one. */ 1710 /* step 1: figure out the size of the semaphore array */ 1711 sma = sem_obtain_object_check(ns, semid); 1712 if (IS_ERR(sma)) { 1713 rcu_read_unlock(); 1714 return ERR_CAST(sma); 1715 } 1716 1717 nsems = sma->sem_nsems; 1718 if (!ipc_rcu_getref(&sma->sem_perm)) { 1719 rcu_read_unlock(); 1720 un = ERR_PTR(-EIDRM); 1721 goto out; 1722 } 1723 rcu_read_unlock(); 1724 1725 /* step 2: allocate new undo structure */ 1726 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1727 if (!new) { 1728 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1729 return ERR_PTR(-ENOMEM); 1730 } 1731 1732 /* step 3: Acquire the lock on semaphore array */ 1733 rcu_read_lock(); 1734 sem_lock_and_putref(sma); 1735 if (!ipc_valid_object(&sma->sem_perm)) { 1736 sem_unlock(sma, -1); 1737 rcu_read_unlock(); 1738 kfree(new); 1739 un = ERR_PTR(-EIDRM); 1740 goto out; 1741 } 1742 spin_lock(&ulp->lock); 1743 1744 /* 1745 * step 4: check for races: did someone else allocate the undo struct? 1746 */ 1747 un = lookup_undo(ulp, semid); 1748 if (un) { 1749 kfree(new); 1750 goto success; 1751 } 1752 /* step 5: initialize & link new undo structure */ 1753 new->semadj = (short *) &new[1]; 1754 new->ulp = ulp; 1755 new->semid = semid; 1756 assert_spin_locked(&ulp->lock); 1757 list_add_rcu(&new->list_proc, &ulp->list_proc); 1758 ipc_assert_locked_object(&sma->sem_perm); 1759 list_add(&new->list_id, &sma->list_id); 1760 un = new; 1761 1762 success: 1763 spin_unlock(&ulp->lock); 1764 sem_unlock(sma, -1); 1765 out: 1766 return un; 1767 } 1768 1769 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1770 unsigned, nsops, const struct timespec __user *, timeout) 1771 { 1772 int error = -EINVAL; 1773 struct sem_array *sma; 1774 struct sembuf fast_sops[SEMOPM_FAST]; 1775 struct sembuf *sops = fast_sops, *sop; 1776 struct sem_undo *un; 1777 int max, locknum; 1778 bool undos = false, alter = false, dupsop = false; 1779 struct sem_queue queue; 1780 unsigned long dup = 0, jiffies_left = 0; 1781 struct ipc_namespace *ns; 1782 1783 ns = current->nsproxy->ipc_ns; 1784 1785 if (nsops < 1 || semid < 0) 1786 return -EINVAL; 1787 if (nsops > ns->sc_semopm) 1788 return -E2BIG; 1789 if (nsops > SEMOPM_FAST) { 1790 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1791 if (sops == NULL) 1792 return -ENOMEM; 1793 } 1794 1795 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1796 error = -EFAULT; 1797 goto out_free; 1798 } 1799 1800 if (timeout) { 1801 struct timespec _timeout; 1802 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1803 error = -EFAULT; 1804 goto out_free; 1805 } 1806 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1807 _timeout.tv_nsec >= 1000000000L) { 1808 error = -EINVAL; 1809 goto out_free; 1810 } 1811 jiffies_left = timespec_to_jiffies(&_timeout); 1812 } 1813 1814 max = 0; 1815 for (sop = sops; sop < sops + nsops; sop++) { 1816 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 1817 1818 if (sop->sem_num >= max) 1819 max = sop->sem_num; 1820 if (sop->sem_flg & SEM_UNDO) 1821 undos = true; 1822 if (dup & mask) { 1823 /* 1824 * There was a previous alter access that appears 1825 * to have accessed the same semaphore, thus use 1826 * the dupsop logic. "appears", because the detection 1827 * can only check % BITS_PER_LONG. 1828 */ 1829 dupsop = true; 1830 } 1831 if (sop->sem_op != 0) { 1832 alter = true; 1833 dup |= mask; 1834 } 1835 } 1836 1837 if (undos) { 1838 /* On success, find_alloc_undo takes the rcu_read_lock */ 1839 un = find_alloc_undo(ns, semid); 1840 if (IS_ERR(un)) { 1841 error = PTR_ERR(un); 1842 goto out_free; 1843 } 1844 } else { 1845 un = NULL; 1846 rcu_read_lock(); 1847 } 1848 1849 sma = sem_obtain_object_check(ns, semid); 1850 if (IS_ERR(sma)) { 1851 rcu_read_unlock(); 1852 error = PTR_ERR(sma); 1853 goto out_free; 1854 } 1855 1856 error = -EFBIG; 1857 if (max >= sma->sem_nsems) { 1858 rcu_read_unlock(); 1859 goto out_free; 1860 } 1861 1862 error = -EACCES; 1863 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 1864 rcu_read_unlock(); 1865 goto out_free; 1866 } 1867 1868 error = security_sem_semop(sma, sops, nsops, alter); 1869 if (error) { 1870 rcu_read_unlock(); 1871 goto out_free; 1872 } 1873 1874 error = -EIDRM; 1875 locknum = sem_lock(sma, sops, nsops); 1876 /* 1877 * We eventually might perform the following check in a lockless 1878 * fashion, considering ipc_valid_object() locking constraints. 1879 * If nsops == 1 and there is no contention for sem_perm.lock, then 1880 * only a per-semaphore lock is held and it's OK to proceed with the 1881 * check below. More details on the fine grained locking scheme 1882 * entangled here and why it's RMID race safe on comments at sem_lock() 1883 */ 1884 if (!ipc_valid_object(&sma->sem_perm)) 1885 goto out_unlock_free; 1886 /* 1887 * semid identifiers are not unique - find_alloc_undo may have 1888 * allocated an undo structure, it was invalidated by an RMID 1889 * and now a new array with received the same id. Check and fail. 1890 * This case can be detected checking un->semid. The existence of 1891 * "un" itself is guaranteed by rcu. 1892 */ 1893 if (un && un->semid == -1) 1894 goto out_unlock_free; 1895 1896 queue.sops = sops; 1897 queue.nsops = nsops; 1898 queue.undo = un; 1899 queue.pid = task_tgid_vnr(current); 1900 queue.alter = alter; 1901 queue.dupsop = dupsop; 1902 1903 error = perform_atomic_semop(sma, &queue); 1904 if (error == 0) { /* non-blocking succesfull path */ 1905 DEFINE_WAKE_Q(wake_q); 1906 1907 /* 1908 * If the operation was successful, then do 1909 * the required updates. 1910 */ 1911 if (alter) 1912 do_smart_update(sma, sops, nsops, 1, &wake_q); 1913 else 1914 set_semotime(sma, sops); 1915 1916 sem_unlock(sma, locknum); 1917 rcu_read_unlock(); 1918 wake_up_q(&wake_q); 1919 1920 goto out_free; 1921 } 1922 if (error < 0) /* non-blocking error path */ 1923 goto out_unlock_free; 1924 1925 /* 1926 * We need to sleep on this operation, so we put the current 1927 * task into the pending queue and go to sleep. 1928 */ 1929 if (nsops == 1) { 1930 struct sem *curr; 1931 curr = &sma->sems[sops->sem_num]; 1932 1933 if (alter) { 1934 if (sma->complex_count) { 1935 list_add_tail(&queue.list, 1936 &sma->pending_alter); 1937 } else { 1938 1939 list_add_tail(&queue.list, 1940 &curr->pending_alter); 1941 } 1942 } else { 1943 list_add_tail(&queue.list, &curr->pending_const); 1944 } 1945 } else { 1946 if (!sma->complex_count) 1947 merge_queues(sma); 1948 1949 if (alter) 1950 list_add_tail(&queue.list, &sma->pending_alter); 1951 else 1952 list_add_tail(&queue.list, &sma->pending_const); 1953 1954 sma->complex_count++; 1955 } 1956 1957 do { 1958 queue.status = -EINTR; 1959 queue.sleeper = current; 1960 1961 __set_current_state(TASK_INTERRUPTIBLE); 1962 sem_unlock(sma, locknum); 1963 rcu_read_unlock(); 1964 1965 if (timeout) 1966 jiffies_left = schedule_timeout(jiffies_left); 1967 else 1968 schedule(); 1969 1970 /* 1971 * fastpath: the semop has completed, either successfully or 1972 * not, from the syscall pov, is quite irrelevant to us at this 1973 * point; we're done. 1974 * 1975 * We _do_ care, nonetheless, about being awoken by a signal or 1976 * spuriously. The queue.status is checked again in the 1977 * slowpath (aka after taking sem_lock), such that we can detect 1978 * scenarios where we were awakened externally, during the 1979 * window between wake_q_add() and wake_up_q(). 1980 */ 1981 error = READ_ONCE(queue.status); 1982 if (error != -EINTR) { 1983 /* 1984 * User space could assume that semop() is a memory 1985 * barrier: Without the mb(), the cpu could 1986 * speculatively read in userspace stale data that was 1987 * overwritten by the previous owner of the semaphore. 1988 */ 1989 smp_mb(); 1990 goto out_free; 1991 } 1992 1993 rcu_read_lock(); 1994 locknum = sem_lock(sma, sops, nsops); 1995 1996 if (!ipc_valid_object(&sma->sem_perm)) 1997 goto out_unlock_free; 1998 1999 error = READ_ONCE(queue.status); 2000 2001 /* 2002 * If queue.status != -EINTR we are woken up by another process. 2003 * Leave without unlink_queue(), but with sem_unlock(). 2004 */ 2005 if (error != -EINTR) 2006 goto out_unlock_free; 2007 2008 /* 2009 * If an interrupt occurred we have to clean up the queue. 2010 */ 2011 if (timeout && jiffies_left == 0) 2012 error = -EAGAIN; 2013 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2014 2015 unlink_queue(sma, &queue); 2016 2017 out_unlock_free: 2018 sem_unlock(sma, locknum); 2019 rcu_read_unlock(); 2020 out_free: 2021 if (sops != fast_sops) 2022 kvfree(sops); 2023 return error; 2024 } 2025 2026 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2027 unsigned, nsops) 2028 { 2029 return sys_semtimedop(semid, tsops, nsops, NULL); 2030 } 2031 2032 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2033 * parent and child tasks. 2034 */ 2035 2036 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2037 { 2038 struct sem_undo_list *undo_list; 2039 int error; 2040 2041 if (clone_flags & CLONE_SYSVSEM) { 2042 error = get_undo_list(&undo_list); 2043 if (error) 2044 return error; 2045 refcount_inc(&undo_list->refcnt); 2046 tsk->sysvsem.undo_list = undo_list; 2047 } else 2048 tsk->sysvsem.undo_list = NULL; 2049 2050 return 0; 2051 } 2052 2053 /* 2054 * add semadj values to semaphores, free undo structures. 2055 * undo structures are not freed when semaphore arrays are destroyed 2056 * so some of them may be out of date. 2057 * IMPLEMENTATION NOTE: There is some confusion over whether the 2058 * set of adjustments that needs to be done should be done in an atomic 2059 * manner or not. That is, if we are attempting to decrement the semval 2060 * should we queue up and wait until we can do so legally? 2061 * The original implementation attempted to do this (queue and wait). 2062 * The current implementation does not do so. The POSIX standard 2063 * and SVID should be consulted to determine what behavior is mandated. 2064 */ 2065 void exit_sem(struct task_struct *tsk) 2066 { 2067 struct sem_undo_list *ulp; 2068 2069 ulp = tsk->sysvsem.undo_list; 2070 if (!ulp) 2071 return; 2072 tsk->sysvsem.undo_list = NULL; 2073 2074 if (!refcount_dec_and_test(&ulp->refcnt)) 2075 return; 2076 2077 for (;;) { 2078 struct sem_array *sma; 2079 struct sem_undo *un; 2080 int semid, i; 2081 DEFINE_WAKE_Q(wake_q); 2082 2083 cond_resched(); 2084 2085 rcu_read_lock(); 2086 un = list_entry_rcu(ulp->list_proc.next, 2087 struct sem_undo, list_proc); 2088 if (&un->list_proc == &ulp->list_proc) { 2089 /* 2090 * We must wait for freeary() before freeing this ulp, 2091 * in case we raced with last sem_undo. There is a small 2092 * possibility where we exit while freeary() didn't 2093 * finish unlocking sem_undo_list. 2094 */ 2095 spin_lock(&ulp->lock); 2096 spin_unlock(&ulp->lock); 2097 rcu_read_unlock(); 2098 break; 2099 } 2100 spin_lock(&ulp->lock); 2101 semid = un->semid; 2102 spin_unlock(&ulp->lock); 2103 2104 /* exit_sem raced with IPC_RMID, nothing to do */ 2105 if (semid == -1) { 2106 rcu_read_unlock(); 2107 continue; 2108 } 2109 2110 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2111 /* exit_sem raced with IPC_RMID, nothing to do */ 2112 if (IS_ERR(sma)) { 2113 rcu_read_unlock(); 2114 continue; 2115 } 2116 2117 sem_lock(sma, NULL, -1); 2118 /* exit_sem raced with IPC_RMID, nothing to do */ 2119 if (!ipc_valid_object(&sma->sem_perm)) { 2120 sem_unlock(sma, -1); 2121 rcu_read_unlock(); 2122 continue; 2123 } 2124 un = __lookup_undo(ulp, semid); 2125 if (un == NULL) { 2126 /* exit_sem raced with IPC_RMID+semget() that created 2127 * exactly the same semid. Nothing to do. 2128 */ 2129 sem_unlock(sma, -1); 2130 rcu_read_unlock(); 2131 continue; 2132 } 2133 2134 /* remove un from the linked lists */ 2135 ipc_assert_locked_object(&sma->sem_perm); 2136 list_del(&un->list_id); 2137 2138 /* we are the last process using this ulp, acquiring ulp->lock 2139 * isn't required. Besides that, we are also protected against 2140 * IPC_RMID as we hold sma->sem_perm lock now 2141 */ 2142 list_del_rcu(&un->list_proc); 2143 2144 /* perform adjustments registered in un */ 2145 for (i = 0; i < sma->sem_nsems; i++) { 2146 struct sem *semaphore = &sma->sems[i]; 2147 if (un->semadj[i]) { 2148 semaphore->semval += un->semadj[i]; 2149 /* 2150 * Range checks of the new semaphore value, 2151 * not defined by sus: 2152 * - Some unices ignore the undo entirely 2153 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2154 * - some cap the value (e.g. FreeBSD caps 2155 * at 0, but doesn't enforce SEMVMX) 2156 * 2157 * Linux caps the semaphore value, both at 0 2158 * and at SEMVMX. 2159 * 2160 * Manfred <manfred@colorfullife.com> 2161 */ 2162 if (semaphore->semval < 0) 2163 semaphore->semval = 0; 2164 if (semaphore->semval > SEMVMX) 2165 semaphore->semval = SEMVMX; 2166 semaphore->sempid = task_tgid_vnr(current); 2167 } 2168 } 2169 /* maybe some queued-up processes were waiting for this */ 2170 do_smart_update(sma, NULL, 0, 1, &wake_q); 2171 sem_unlock(sma, -1); 2172 rcu_read_unlock(); 2173 wake_up_q(&wake_q); 2174 2175 kfree_rcu(un, rcu); 2176 } 2177 kfree(ulp); 2178 } 2179 2180 #ifdef CONFIG_PROC_FS 2181 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2182 { 2183 struct user_namespace *user_ns = seq_user_ns(s); 2184 struct kern_ipc_perm *ipcp = it; 2185 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2186 time_t sem_otime; 2187 2188 /* 2189 * The proc interface isn't aware of sem_lock(), it calls 2190 * ipc_lock_object() directly (in sysvipc_find_ipc). 2191 * In order to stay compatible with sem_lock(), we must 2192 * enter / leave complex_mode. 2193 */ 2194 complexmode_enter(sma); 2195 2196 sem_otime = get_semotime(sma); 2197 2198 seq_printf(s, 2199 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2200 sma->sem_perm.key, 2201 sma->sem_perm.id, 2202 sma->sem_perm.mode, 2203 sma->sem_nsems, 2204 from_kuid_munged(user_ns, sma->sem_perm.uid), 2205 from_kgid_munged(user_ns, sma->sem_perm.gid), 2206 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2207 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2208 sem_otime, 2209 sma->sem_ctime); 2210 2211 complexmode_tryleave(sma); 2212 2213 return 0; 2214 } 2215 #endif 2216