xref: /linux/ipc/sem.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  *
65  * support for audit of ipc object properties and permission changes
66  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67  *
68  * namespaces support
69  * OpenVZ, SWsoft Inc.
70  * Pavel Emelianov <xemul@openvz.org>
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 
86 #include <asm/uaccess.h>
87 #include "util.h"
88 
89 #define sem_ids(ns)	(*((ns)->ids[IPC_SEM_IDS]))
90 
91 #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm)
92 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
93 #define sem_buildid(id, seq)	ipc_buildid(id, seq)
94 
95 static struct ipc_ids init_sem_ids;
96 
97 static int newary(struct ipc_namespace *, struct ipc_params *);
98 static void freeary(struct ipc_namespace *, struct sem_array *);
99 #ifdef CONFIG_PROC_FS
100 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
101 #endif
102 
103 #define SEMMSL_FAST	256 /* 512 bytes on stack */
104 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
105 
106 /*
107  * linked list protection:
108  *	sem_undo.id_next,
109  *	sem_array.sem_pending{,last},
110  *	sem_array.sem_undo: sem_lock() for read/write
111  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
112  *
113  */
114 
115 #define sc_semmsl	sem_ctls[0]
116 #define sc_semmns	sem_ctls[1]
117 #define sc_semopm	sem_ctls[2]
118 #define sc_semmni	sem_ctls[3]
119 
120 static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
121 {
122 	ns->ids[IPC_SEM_IDS] = ids;
123 	ns->sc_semmsl = SEMMSL;
124 	ns->sc_semmns = SEMMNS;
125 	ns->sc_semopm = SEMOPM;
126 	ns->sc_semmni = SEMMNI;
127 	ns->used_sems = 0;
128 	ipc_init_ids(ids);
129 }
130 
131 int sem_init_ns(struct ipc_namespace *ns)
132 {
133 	struct ipc_ids *ids;
134 
135 	ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
136 	if (ids == NULL)
137 		return -ENOMEM;
138 
139 	__sem_init_ns(ns, ids);
140 	return 0;
141 }
142 
143 void sem_exit_ns(struct ipc_namespace *ns)
144 {
145 	struct sem_array *sma;
146 	int next_id;
147 	int total, in_use;
148 
149 	down_write(&sem_ids(ns).rw_mutex);
150 
151 	in_use = sem_ids(ns).in_use;
152 
153 	for (total = 0, next_id = 0; total < in_use; next_id++) {
154 		sma = idr_find(&sem_ids(ns).ipcs_idr, next_id);
155 		if (sma == NULL)
156 			continue;
157 		ipc_lock_by_ptr(&sma->sem_perm);
158 		freeary(ns, sma);
159 		total++;
160 	}
161 	up_write(&sem_ids(ns).rw_mutex);
162 
163 	kfree(ns->ids[IPC_SEM_IDS]);
164 	ns->ids[IPC_SEM_IDS] = NULL;
165 }
166 
167 void __init sem_init (void)
168 {
169 	__sem_init_ns(&init_ipc_ns, &init_sem_ids);
170 	ipc_init_proc_interface("sysvipc/sem",
171 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
172 				IPC_SEM_IDS, sysvipc_sem_proc_show);
173 }
174 
175 /*
176  * This routine is called in the paths where the rw_mutex is held to protect
177  * access to the idr tree.
178  */
179 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
180 						int id)
181 {
182 	struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
183 
184 	return container_of(ipcp, struct sem_array, sem_perm);
185 }
186 
187 /*
188  * sem_lock_(check_) routines are called in the paths where the rw_mutex
189  * is not held.
190  */
191 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
192 {
193 	struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
194 
195 	return container_of(ipcp, struct sem_array, sem_perm);
196 }
197 
198 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
199 						int id)
200 {
201 	struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
202 
203 	return container_of(ipcp, struct sem_array, sem_perm);
204 }
205 
206 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
207 {
208 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
209 }
210 
211 /*
212  * Lockless wakeup algorithm:
213  * Without the check/retry algorithm a lockless wakeup is possible:
214  * - queue.status is initialized to -EINTR before blocking.
215  * - wakeup is performed by
216  *	* unlinking the queue entry from sma->sem_pending
217  *	* setting queue.status to IN_WAKEUP
218  *	  This is the notification for the blocked thread that a
219  *	  result value is imminent.
220  *	* call wake_up_process
221  *	* set queue.status to the final value.
222  * - the previously blocked thread checks queue.status:
223  *   	* if it's IN_WAKEUP, then it must wait until the value changes
224  *   	* if it's not -EINTR, then the operation was completed by
225  *   	  update_queue. semtimedop can return queue.status without
226  *   	  performing any operation on the sem array.
227  *   	* otherwise it must acquire the spinlock and check what's up.
228  *
229  * The two-stage algorithm is necessary to protect against the following
230  * races:
231  * - if queue.status is set after wake_up_process, then the woken up idle
232  *   thread could race forward and try (and fail) to acquire sma->lock
233  *   before update_queue had a chance to set queue.status
234  * - if queue.status is written before wake_up_process and if the
235  *   blocked process is woken up by a signal between writing
236  *   queue.status and the wake_up_process, then the woken up
237  *   process could return from semtimedop and die by calling
238  *   sys_exit before wake_up_process is called. Then wake_up_process
239  *   will oops, because the task structure is already invalid.
240  *   (yes, this happened on s390 with sysv msg).
241  *
242  */
243 #define IN_WAKEUP	1
244 
245 /**
246  * newary - Create a new semaphore set
247  * @ns: namespace
248  * @params: ptr to the structure that contains key, semflg and nsems
249  *
250  * Called with sem_ids.rw_mutex held (as a writer)
251  */
252 
253 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
254 {
255 	int id;
256 	int retval;
257 	struct sem_array *sma;
258 	int size;
259 	key_t key = params->key;
260 	int nsems = params->u.nsems;
261 	int semflg = params->flg;
262 
263 	if (!nsems)
264 		return -EINVAL;
265 	if (ns->used_sems + nsems > ns->sc_semmns)
266 		return -ENOSPC;
267 
268 	size = sizeof (*sma) + nsems * sizeof (struct sem);
269 	sma = ipc_rcu_alloc(size);
270 	if (!sma) {
271 		return -ENOMEM;
272 	}
273 	memset (sma, 0, size);
274 
275 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
276 	sma->sem_perm.key = key;
277 
278 	sma->sem_perm.security = NULL;
279 	retval = security_sem_alloc(sma);
280 	if (retval) {
281 		ipc_rcu_putref(sma);
282 		return retval;
283 	}
284 
285 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
286 	if (id < 0) {
287 		security_sem_free(sma);
288 		ipc_rcu_putref(sma);
289 		return id;
290 	}
291 	ns->used_sems += nsems;
292 
293 	sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
294 	sma->sem_base = (struct sem *) &sma[1];
295 	/* sma->sem_pending = NULL; */
296 	sma->sem_pending_last = &sma->sem_pending;
297 	/* sma->undo = NULL; */
298 	sma->sem_nsems = nsems;
299 	sma->sem_ctime = get_seconds();
300 	sem_unlock(sma);
301 
302 	return sma->sem_perm.id;
303 }
304 
305 
306 /*
307  * Called with sem_ids.rw_mutex and ipcp locked.
308  */
309 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
310 {
311 	struct sem_array *sma;
312 
313 	sma = container_of(ipcp, struct sem_array, sem_perm);
314 	return security_sem_associate(sma, semflg);
315 }
316 
317 /*
318  * Called with sem_ids.rw_mutex and ipcp locked.
319  */
320 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
321 				struct ipc_params *params)
322 {
323 	struct sem_array *sma;
324 
325 	sma = container_of(ipcp, struct sem_array, sem_perm);
326 	if (params->u.nsems > sma->sem_nsems)
327 		return -EINVAL;
328 
329 	return 0;
330 }
331 
332 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
333 {
334 	struct ipc_namespace *ns;
335 	struct ipc_ops sem_ops;
336 	struct ipc_params sem_params;
337 
338 	ns = current->nsproxy->ipc_ns;
339 
340 	if (nsems < 0 || nsems > ns->sc_semmsl)
341 		return -EINVAL;
342 
343 	sem_ops.getnew = newary;
344 	sem_ops.associate = sem_security;
345 	sem_ops.more_checks = sem_more_checks;
346 
347 	sem_params.key = key;
348 	sem_params.flg = semflg;
349 	sem_params.u.nsems = nsems;
350 
351 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
352 }
353 
354 /* Manage the doubly linked list sma->sem_pending as a FIFO:
355  * insert new queue elements at the tail sma->sem_pending_last.
356  */
357 static inline void append_to_queue (struct sem_array * sma,
358 				    struct sem_queue * q)
359 {
360 	*(q->prev = sma->sem_pending_last) = q;
361 	*(sma->sem_pending_last = &q->next) = NULL;
362 }
363 
364 static inline void prepend_to_queue (struct sem_array * sma,
365 				     struct sem_queue * q)
366 {
367 	q->next = sma->sem_pending;
368 	*(q->prev = &sma->sem_pending) = q;
369 	if (q->next)
370 		q->next->prev = &q->next;
371 	else /* sma->sem_pending_last == &sma->sem_pending */
372 		sma->sem_pending_last = &q->next;
373 }
374 
375 static inline void remove_from_queue (struct sem_array * sma,
376 				      struct sem_queue * q)
377 {
378 	*(q->prev) = q->next;
379 	if (q->next)
380 		q->next->prev = q->prev;
381 	else /* sma->sem_pending_last == &q->next */
382 		sma->sem_pending_last = q->prev;
383 	q->prev = NULL; /* mark as removed */
384 }
385 
386 /*
387  * Determine whether a sequence of semaphore operations would succeed
388  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
389  */
390 
391 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
392 			     int nsops, struct sem_undo *un, int pid)
393 {
394 	int result, sem_op;
395 	struct sembuf *sop;
396 	struct sem * curr;
397 
398 	for (sop = sops; sop < sops + nsops; sop++) {
399 		curr = sma->sem_base + sop->sem_num;
400 		sem_op = sop->sem_op;
401 		result = curr->semval;
402 
403 		if (!sem_op && result)
404 			goto would_block;
405 
406 		result += sem_op;
407 		if (result < 0)
408 			goto would_block;
409 		if (result > SEMVMX)
410 			goto out_of_range;
411 		if (sop->sem_flg & SEM_UNDO) {
412 			int undo = un->semadj[sop->sem_num] - sem_op;
413 			/*
414 	 		 *	Exceeding the undo range is an error.
415 			 */
416 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
417 				goto out_of_range;
418 		}
419 		curr->semval = result;
420 	}
421 
422 	sop--;
423 	while (sop >= sops) {
424 		sma->sem_base[sop->sem_num].sempid = pid;
425 		if (sop->sem_flg & SEM_UNDO)
426 			un->semadj[sop->sem_num] -= sop->sem_op;
427 		sop--;
428 	}
429 
430 	sma->sem_otime = get_seconds();
431 	return 0;
432 
433 out_of_range:
434 	result = -ERANGE;
435 	goto undo;
436 
437 would_block:
438 	if (sop->sem_flg & IPC_NOWAIT)
439 		result = -EAGAIN;
440 	else
441 		result = 1;
442 
443 undo:
444 	sop--;
445 	while (sop >= sops) {
446 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
447 		sop--;
448 	}
449 
450 	return result;
451 }
452 
453 /* Go through the pending queue for the indicated semaphore
454  * looking for tasks that can be completed.
455  */
456 static void update_queue (struct sem_array * sma)
457 {
458 	int error;
459 	struct sem_queue * q;
460 
461 	q = sma->sem_pending;
462 	while(q) {
463 		error = try_atomic_semop(sma, q->sops, q->nsops,
464 					 q->undo, q->pid);
465 
466 		/* Does q->sleeper still need to sleep? */
467 		if (error <= 0) {
468 			struct sem_queue *n;
469 			remove_from_queue(sma,q);
470 			q->status = IN_WAKEUP;
471 			/*
472 			 * Continue scanning. The next operation
473 			 * that must be checked depends on the type of the
474 			 * completed operation:
475 			 * - if the operation modified the array, then
476 			 *   restart from the head of the queue and
477 			 *   check for threads that might be waiting
478 			 *   for semaphore values to become 0.
479 			 * - if the operation didn't modify the array,
480 			 *   then just continue.
481 			 */
482 			if (q->alter)
483 				n = sma->sem_pending;
484 			else
485 				n = q->next;
486 			wake_up_process(q->sleeper);
487 			/* hands-off: q will disappear immediately after
488 			 * writing q->status.
489 			 */
490 			smp_wmb();
491 			q->status = error;
492 			q = n;
493 		} else {
494 			q = q->next;
495 		}
496 	}
497 }
498 
499 /* The following counts are associated to each semaphore:
500  *   semncnt        number of tasks waiting on semval being nonzero
501  *   semzcnt        number of tasks waiting on semval being zero
502  * This model assumes that a task waits on exactly one semaphore.
503  * Since semaphore operations are to be performed atomically, tasks actually
504  * wait on a whole sequence of semaphores simultaneously.
505  * The counts we return here are a rough approximation, but still
506  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
507  */
508 static int count_semncnt (struct sem_array * sma, ushort semnum)
509 {
510 	int semncnt;
511 	struct sem_queue * q;
512 
513 	semncnt = 0;
514 	for (q = sma->sem_pending; q; q = q->next) {
515 		struct sembuf * sops = q->sops;
516 		int nsops = q->nsops;
517 		int i;
518 		for (i = 0; i < nsops; i++)
519 			if (sops[i].sem_num == semnum
520 			    && (sops[i].sem_op < 0)
521 			    && !(sops[i].sem_flg & IPC_NOWAIT))
522 				semncnt++;
523 	}
524 	return semncnt;
525 }
526 static int count_semzcnt (struct sem_array * sma, ushort semnum)
527 {
528 	int semzcnt;
529 	struct sem_queue * q;
530 
531 	semzcnt = 0;
532 	for (q = sma->sem_pending; q; q = q->next) {
533 		struct sembuf * sops = q->sops;
534 		int nsops = q->nsops;
535 		int i;
536 		for (i = 0; i < nsops; i++)
537 			if (sops[i].sem_num == semnum
538 			    && (sops[i].sem_op == 0)
539 			    && !(sops[i].sem_flg & IPC_NOWAIT))
540 				semzcnt++;
541 	}
542 	return semzcnt;
543 }
544 
545 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
546  * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
547  * remains locked on exit.
548  */
549 static void freeary(struct ipc_namespace *ns, struct sem_array *sma)
550 {
551 	struct sem_undo *un;
552 	struct sem_queue *q;
553 
554 	/* Invalidate the existing undo structures for this semaphore set.
555 	 * (They will be freed without any further action in exit_sem()
556 	 * or during the next semop.)
557 	 */
558 	for (un = sma->undo; un; un = un->id_next)
559 		un->semid = -1;
560 
561 	/* Wake up all pending processes and let them fail with EIDRM. */
562 	q = sma->sem_pending;
563 	while(q) {
564 		struct sem_queue *n;
565 		/* lazy remove_from_queue: we are killing the whole queue */
566 		q->prev = NULL;
567 		n = q->next;
568 		q->status = IN_WAKEUP;
569 		wake_up_process(q->sleeper); /* doesn't sleep */
570 		smp_wmb();
571 		q->status = -EIDRM;	/* hands-off q */
572 		q = n;
573 	}
574 
575 	/* Remove the semaphore set from the IDR */
576 	sem_rmid(ns, sma);
577 	sem_unlock(sma);
578 
579 	ns->used_sems -= sma->sem_nsems;
580 	security_sem_free(sma);
581 	ipc_rcu_putref(sma);
582 }
583 
584 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
585 {
586 	switch(version) {
587 	case IPC_64:
588 		return copy_to_user(buf, in, sizeof(*in));
589 	case IPC_OLD:
590 	    {
591 		struct semid_ds out;
592 
593 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
594 
595 		out.sem_otime	= in->sem_otime;
596 		out.sem_ctime	= in->sem_ctime;
597 		out.sem_nsems	= in->sem_nsems;
598 
599 		return copy_to_user(buf, &out, sizeof(out));
600 	    }
601 	default:
602 		return -EINVAL;
603 	}
604 }
605 
606 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
607 		int cmd, int version, union semun arg)
608 {
609 	int err = -EINVAL;
610 	struct sem_array *sma;
611 
612 	switch(cmd) {
613 	case IPC_INFO:
614 	case SEM_INFO:
615 	{
616 		struct seminfo seminfo;
617 		int max_id;
618 
619 		err = security_sem_semctl(NULL, cmd);
620 		if (err)
621 			return err;
622 
623 		memset(&seminfo,0,sizeof(seminfo));
624 		seminfo.semmni = ns->sc_semmni;
625 		seminfo.semmns = ns->sc_semmns;
626 		seminfo.semmsl = ns->sc_semmsl;
627 		seminfo.semopm = ns->sc_semopm;
628 		seminfo.semvmx = SEMVMX;
629 		seminfo.semmnu = SEMMNU;
630 		seminfo.semmap = SEMMAP;
631 		seminfo.semume = SEMUME;
632 		down_read(&sem_ids(ns).rw_mutex);
633 		if (cmd == SEM_INFO) {
634 			seminfo.semusz = sem_ids(ns).in_use;
635 			seminfo.semaem = ns->used_sems;
636 		} else {
637 			seminfo.semusz = SEMUSZ;
638 			seminfo.semaem = SEMAEM;
639 		}
640 		max_id = ipc_get_maxid(&sem_ids(ns));
641 		up_read(&sem_ids(ns).rw_mutex);
642 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
643 			return -EFAULT;
644 		return (max_id < 0) ? 0: max_id;
645 	}
646 	case SEM_STAT:
647 	{
648 		struct semid64_ds tbuf;
649 		int id;
650 
651 		sma = sem_lock(ns, semid);
652 		if (IS_ERR(sma))
653 			return PTR_ERR(sma);
654 
655 		err = -EACCES;
656 		if (ipcperms (&sma->sem_perm, S_IRUGO))
657 			goto out_unlock;
658 
659 		err = security_sem_semctl(sma, cmd);
660 		if (err)
661 			goto out_unlock;
662 
663 		id = sma->sem_perm.id;
664 
665 		memset(&tbuf, 0, sizeof(tbuf));
666 
667 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
668 		tbuf.sem_otime  = sma->sem_otime;
669 		tbuf.sem_ctime  = sma->sem_ctime;
670 		tbuf.sem_nsems  = sma->sem_nsems;
671 		sem_unlock(sma);
672 		if (copy_semid_to_user (arg.buf, &tbuf, version))
673 			return -EFAULT;
674 		return id;
675 	}
676 	default:
677 		return -EINVAL;
678 	}
679 	return err;
680 out_unlock:
681 	sem_unlock(sma);
682 	return err;
683 }
684 
685 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
686 		int cmd, int version, union semun arg)
687 {
688 	struct sem_array *sma;
689 	struct sem* curr;
690 	int err;
691 	ushort fast_sem_io[SEMMSL_FAST];
692 	ushort* sem_io = fast_sem_io;
693 	int nsems;
694 
695 	sma = sem_lock_check(ns, semid);
696 	if (IS_ERR(sma))
697 		return PTR_ERR(sma);
698 
699 	nsems = sma->sem_nsems;
700 
701 	err = -EACCES;
702 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
703 		goto out_unlock;
704 
705 	err = security_sem_semctl(sma, cmd);
706 	if (err)
707 		goto out_unlock;
708 
709 	err = -EACCES;
710 	switch (cmd) {
711 	case GETALL:
712 	{
713 		ushort __user *array = arg.array;
714 		int i;
715 
716 		if(nsems > SEMMSL_FAST) {
717 			ipc_rcu_getref(sma);
718 			sem_unlock(sma);
719 
720 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
721 			if(sem_io == NULL) {
722 				ipc_lock_by_ptr(&sma->sem_perm);
723 				ipc_rcu_putref(sma);
724 				sem_unlock(sma);
725 				return -ENOMEM;
726 			}
727 
728 			ipc_lock_by_ptr(&sma->sem_perm);
729 			ipc_rcu_putref(sma);
730 			if (sma->sem_perm.deleted) {
731 				sem_unlock(sma);
732 				err = -EIDRM;
733 				goto out_free;
734 			}
735 		}
736 
737 		for (i = 0; i < sma->sem_nsems; i++)
738 			sem_io[i] = sma->sem_base[i].semval;
739 		sem_unlock(sma);
740 		err = 0;
741 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
742 			err = -EFAULT;
743 		goto out_free;
744 	}
745 	case SETALL:
746 	{
747 		int i;
748 		struct sem_undo *un;
749 
750 		ipc_rcu_getref(sma);
751 		sem_unlock(sma);
752 
753 		if(nsems > SEMMSL_FAST) {
754 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
755 			if(sem_io == NULL) {
756 				ipc_lock_by_ptr(&sma->sem_perm);
757 				ipc_rcu_putref(sma);
758 				sem_unlock(sma);
759 				return -ENOMEM;
760 			}
761 		}
762 
763 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
764 			ipc_lock_by_ptr(&sma->sem_perm);
765 			ipc_rcu_putref(sma);
766 			sem_unlock(sma);
767 			err = -EFAULT;
768 			goto out_free;
769 		}
770 
771 		for (i = 0; i < nsems; i++) {
772 			if (sem_io[i] > SEMVMX) {
773 				ipc_lock_by_ptr(&sma->sem_perm);
774 				ipc_rcu_putref(sma);
775 				sem_unlock(sma);
776 				err = -ERANGE;
777 				goto out_free;
778 			}
779 		}
780 		ipc_lock_by_ptr(&sma->sem_perm);
781 		ipc_rcu_putref(sma);
782 		if (sma->sem_perm.deleted) {
783 			sem_unlock(sma);
784 			err = -EIDRM;
785 			goto out_free;
786 		}
787 
788 		for (i = 0; i < nsems; i++)
789 			sma->sem_base[i].semval = sem_io[i];
790 		for (un = sma->undo; un; un = un->id_next)
791 			for (i = 0; i < nsems; i++)
792 				un->semadj[i] = 0;
793 		sma->sem_ctime = get_seconds();
794 		/* maybe some queued-up processes were waiting for this */
795 		update_queue(sma);
796 		err = 0;
797 		goto out_unlock;
798 	}
799 	case IPC_STAT:
800 	{
801 		struct semid64_ds tbuf;
802 		memset(&tbuf,0,sizeof(tbuf));
803 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
804 		tbuf.sem_otime  = sma->sem_otime;
805 		tbuf.sem_ctime  = sma->sem_ctime;
806 		tbuf.sem_nsems  = sma->sem_nsems;
807 		sem_unlock(sma);
808 		if (copy_semid_to_user (arg.buf, &tbuf, version))
809 			return -EFAULT;
810 		return 0;
811 	}
812 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
813 	}
814 	err = -EINVAL;
815 	if(semnum < 0 || semnum >= nsems)
816 		goto out_unlock;
817 
818 	curr = &sma->sem_base[semnum];
819 
820 	switch (cmd) {
821 	case GETVAL:
822 		err = curr->semval;
823 		goto out_unlock;
824 	case GETPID:
825 		err = curr->sempid;
826 		goto out_unlock;
827 	case GETNCNT:
828 		err = count_semncnt(sma,semnum);
829 		goto out_unlock;
830 	case GETZCNT:
831 		err = count_semzcnt(sma,semnum);
832 		goto out_unlock;
833 	case SETVAL:
834 	{
835 		int val = arg.val;
836 		struct sem_undo *un;
837 		err = -ERANGE;
838 		if (val > SEMVMX || val < 0)
839 			goto out_unlock;
840 
841 		for (un = sma->undo; un; un = un->id_next)
842 			un->semadj[semnum] = 0;
843 		curr->semval = val;
844 		curr->sempid = task_tgid_vnr(current);
845 		sma->sem_ctime = get_seconds();
846 		/* maybe some queued-up processes were waiting for this */
847 		update_queue(sma);
848 		err = 0;
849 		goto out_unlock;
850 	}
851 	}
852 out_unlock:
853 	sem_unlock(sma);
854 out_free:
855 	if(sem_io != fast_sem_io)
856 		ipc_free(sem_io, sizeof(ushort)*nsems);
857 	return err;
858 }
859 
860 struct sem_setbuf {
861 	uid_t	uid;
862 	gid_t	gid;
863 	mode_t	mode;
864 };
865 
866 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
867 {
868 	switch(version) {
869 	case IPC_64:
870 	    {
871 		struct semid64_ds tbuf;
872 
873 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
874 			return -EFAULT;
875 
876 		out->uid	= tbuf.sem_perm.uid;
877 		out->gid	= tbuf.sem_perm.gid;
878 		out->mode	= tbuf.sem_perm.mode;
879 
880 		return 0;
881 	    }
882 	case IPC_OLD:
883 	    {
884 		struct semid_ds tbuf_old;
885 
886 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
887 			return -EFAULT;
888 
889 		out->uid	= tbuf_old.sem_perm.uid;
890 		out->gid	= tbuf_old.sem_perm.gid;
891 		out->mode	= tbuf_old.sem_perm.mode;
892 
893 		return 0;
894 	    }
895 	default:
896 		return -EINVAL;
897 	}
898 }
899 
900 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
901 		int cmd, int version, union semun arg)
902 {
903 	struct sem_array *sma;
904 	int err;
905 	struct sem_setbuf uninitialized_var(setbuf);
906 	struct kern_ipc_perm *ipcp;
907 
908 	if(cmd == IPC_SET) {
909 		if(copy_semid_from_user (&setbuf, arg.buf, version))
910 			return -EFAULT;
911 	}
912 	sma = sem_lock_check_down(ns, semid);
913 	if (IS_ERR(sma))
914 		return PTR_ERR(sma);
915 
916 	ipcp = &sma->sem_perm;
917 
918 	err = audit_ipc_obj(ipcp);
919 	if (err)
920 		goto out_unlock;
921 
922 	if (cmd == IPC_SET) {
923 		err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
924 		if (err)
925 			goto out_unlock;
926 	}
927 	if (current->euid != ipcp->cuid &&
928 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
929 	    	err=-EPERM;
930 		goto out_unlock;
931 	}
932 
933 	err = security_sem_semctl(sma, cmd);
934 	if (err)
935 		goto out_unlock;
936 
937 	switch(cmd){
938 	case IPC_RMID:
939 		freeary(ns, sma);
940 		err = 0;
941 		break;
942 	case IPC_SET:
943 		ipcp->uid = setbuf.uid;
944 		ipcp->gid = setbuf.gid;
945 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
946 				| (setbuf.mode & S_IRWXUGO);
947 		sma->sem_ctime = get_seconds();
948 		sem_unlock(sma);
949 		err = 0;
950 		break;
951 	default:
952 		sem_unlock(sma);
953 		err = -EINVAL;
954 		break;
955 	}
956 	return err;
957 
958 out_unlock:
959 	sem_unlock(sma);
960 	return err;
961 }
962 
963 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
964 {
965 	int err = -EINVAL;
966 	int version;
967 	struct ipc_namespace *ns;
968 
969 	if (semid < 0)
970 		return -EINVAL;
971 
972 	version = ipc_parse_version(&cmd);
973 	ns = current->nsproxy->ipc_ns;
974 
975 	switch(cmd) {
976 	case IPC_INFO:
977 	case SEM_INFO:
978 	case SEM_STAT:
979 		err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
980 		return err;
981 	case GETALL:
982 	case GETVAL:
983 	case GETPID:
984 	case GETNCNT:
985 	case GETZCNT:
986 	case IPC_STAT:
987 	case SETVAL:
988 	case SETALL:
989 		err = semctl_main(ns,semid,semnum,cmd,version,arg);
990 		return err;
991 	case IPC_RMID:
992 	case IPC_SET:
993 		down_write(&sem_ids(ns).rw_mutex);
994 		err = semctl_down(ns,semid,semnum,cmd,version,arg);
995 		up_write(&sem_ids(ns).rw_mutex);
996 		return err;
997 	default:
998 		return -EINVAL;
999 	}
1000 }
1001 
1002 /* If the task doesn't already have a undo_list, then allocate one
1003  * here.  We guarantee there is only one thread using this undo list,
1004  * and current is THE ONE
1005  *
1006  * If this allocation and assignment succeeds, but later
1007  * portions of this code fail, there is no need to free the sem_undo_list.
1008  * Just let it stay associated with the task, and it'll be freed later
1009  * at exit time.
1010  *
1011  * This can block, so callers must hold no locks.
1012  */
1013 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1014 {
1015 	struct sem_undo_list *undo_list;
1016 
1017 	undo_list = current->sysvsem.undo_list;
1018 	if (!undo_list) {
1019 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1020 		if (undo_list == NULL)
1021 			return -ENOMEM;
1022 		spin_lock_init(&undo_list->lock);
1023 		atomic_set(&undo_list->refcnt, 1);
1024 		current->sysvsem.undo_list = undo_list;
1025 	}
1026 	*undo_listp = undo_list;
1027 	return 0;
1028 }
1029 
1030 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1031 {
1032 	struct sem_undo **last, *un;
1033 
1034 	last = &ulp->proc_list;
1035 	un = *last;
1036 	while(un != NULL) {
1037 		if(un->semid==semid)
1038 			break;
1039 		if(un->semid==-1) {
1040 			*last=un->proc_next;
1041 			kfree(un);
1042 		} else {
1043 			last=&un->proc_next;
1044 		}
1045 		un=*last;
1046 	}
1047 	return un;
1048 }
1049 
1050 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1051 {
1052 	struct sem_array *sma;
1053 	struct sem_undo_list *ulp;
1054 	struct sem_undo *un, *new;
1055 	int nsems;
1056 	int error;
1057 
1058 	error = get_undo_list(&ulp);
1059 	if (error)
1060 		return ERR_PTR(error);
1061 
1062 	spin_lock(&ulp->lock);
1063 	un = lookup_undo(ulp, semid);
1064 	spin_unlock(&ulp->lock);
1065 	if (likely(un!=NULL))
1066 		goto out;
1067 
1068 	/* no undo structure around - allocate one. */
1069 	sma = sem_lock_check(ns, semid);
1070 	if (IS_ERR(sma))
1071 		return ERR_PTR(PTR_ERR(sma));
1072 
1073 	nsems = sma->sem_nsems;
1074 	ipc_rcu_getref(sma);
1075 	sem_unlock(sma);
1076 
1077 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1078 	if (!new) {
1079 		ipc_lock_by_ptr(&sma->sem_perm);
1080 		ipc_rcu_putref(sma);
1081 		sem_unlock(sma);
1082 		return ERR_PTR(-ENOMEM);
1083 	}
1084 	new->semadj = (short *) &new[1];
1085 	new->semid = semid;
1086 
1087 	spin_lock(&ulp->lock);
1088 	un = lookup_undo(ulp, semid);
1089 	if (un) {
1090 		spin_unlock(&ulp->lock);
1091 		kfree(new);
1092 		ipc_lock_by_ptr(&sma->sem_perm);
1093 		ipc_rcu_putref(sma);
1094 		sem_unlock(sma);
1095 		goto out;
1096 	}
1097 	ipc_lock_by_ptr(&sma->sem_perm);
1098 	ipc_rcu_putref(sma);
1099 	if (sma->sem_perm.deleted) {
1100 		sem_unlock(sma);
1101 		spin_unlock(&ulp->lock);
1102 		kfree(new);
1103 		un = ERR_PTR(-EIDRM);
1104 		goto out;
1105 	}
1106 	new->proc_next = ulp->proc_list;
1107 	ulp->proc_list = new;
1108 	new->id_next = sma->undo;
1109 	sma->undo = new;
1110 	sem_unlock(sma);
1111 	un = new;
1112 	spin_unlock(&ulp->lock);
1113 out:
1114 	return un;
1115 }
1116 
1117 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1118 			unsigned nsops, const struct timespec __user *timeout)
1119 {
1120 	int error = -EINVAL;
1121 	struct sem_array *sma;
1122 	struct sembuf fast_sops[SEMOPM_FAST];
1123 	struct sembuf* sops = fast_sops, *sop;
1124 	struct sem_undo *un;
1125 	int undos = 0, alter = 0, max;
1126 	struct sem_queue queue;
1127 	unsigned long jiffies_left = 0;
1128 	struct ipc_namespace *ns;
1129 
1130 	ns = current->nsproxy->ipc_ns;
1131 
1132 	if (nsops < 1 || semid < 0)
1133 		return -EINVAL;
1134 	if (nsops > ns->sc_semopm)
1135 		return -E2BIG;
1136 	if(nsops > SEMOPM_FAST) {
1137 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1138 		if(sops==NULL)
1139 			return -ENOMEM;
1140 	}
1141 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1142 		error=-EFAULT;
1143 		goto out_free;
1144 	}
1145 	if (timeout) {
1146 		struct timespec _timeout;
1147 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1148 			error = -EFAULT;
1149 			goto out_free;
1150 		}
1151 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1152 			_timeout.tv_nsec >= 1000000000L) {
1153 			error = -EINVAL;
1154 			goto out_free;
1155 		}
1156 		jiffies_left = timespec_to_jiffies(&_timeout);
1157 	}
1158 	max = 0;
1159 	for (sop = sops; sop < sops + nsops; sop++) {
1160 		if (sop->sem_num >= max)
1161 			max = sop->sem_num;
1162 		if (sop->sem_flg & SEM_UNDO)
1163 			undos = 1;
1164 		if (sop->sem_op != 0)
1165 			alter = 1;
1166 	}
1167 
1168 retry_undos:
1169 	if (undos) {
1170 		un = find_undo(ns, semid);
1171 		if (IS_ERR(un)) {
1172 			error = PTR_ERR(un);
1173 			goto out_free;
1174 		}
1175 	} else
1176 		un = NULL;
1177 
1178 	sma = sem_lock_check(ns, semid);
1179 	if (IS_ERR(sma)) {
1180 		error = PTR_ERR(sma);
1181 		goto out_free;
1182 	}
1183 
1184 	/*
1185 	 * semid identifiers are not unique - find_undo may have
1186 	 * allocated an undo structure, it was invalidated by an RMID
1187 	 * and now a new array with received the same id. Check and retry.
1188 	 */
1189 	if (un && un->semid == -1) {
1190 		sem_unlock(sma);
1191 		goto retry_undos;
1192 	}
1193 	error = -EFBIG;
1194 	if (max >= sma->sem_nsems)
1195 		goto out_unlock_free;
1196 
1197 	error = -EACCES;
1198 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1199 		goto out_unlock_free;
1200 
1201 	error = security_sem_semop(sma, sops, nsops, alter);
1202 	if (error)
1203 		goto out_unlock_free;
1204 
1205 	error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1206 	if (error <= 0) {
1207 		if (alter && error == 0)
1208 			update_queue (sma);
1209 		goto out_unlock_free;
1210 	}
1211 
1212 	/* We need to sleep on this operation, so we put the current
1213 	 * task into the pending queue and go to sleep.
1214 	 */
1215 
1216 	queue.sma = sma;
1217 	queue.sops = sops;
1218 	queue.nsops = nsops;
1219 	queue.undo = un;
1220 	queue.pid = task_tgid_vnr(current);
1221 	queue.id = semid;
1222 	queue.alter = alter;
1223 	if (alter)
1224 		append_to_queue(sma ,&queue);
1225 	else
1226 		prepend_to_queue(sma ,&queue);
1227 
1228 	queue.status = -EINTR;
1229 	queue.sleeper = current;
1230 	current->state = TASK_INTERRUPTIBLE;
1231 	sem_unlock(sma);
1232 
1233 	if (timeout)
1234 		jiffies_left = schedule_timeout(jiffies_left);
1235 	else
1236 		schedule();
1237 
1238 	error = queue.status;
1239 	while(unlikely(error == IN_WAKEUP)) {
1240 		cpu_relax();
1241 		error = queue.status;
1242 	}
1243 
1244 	if (error != -EINTR) {
1245 		/* fast path: update_queue already obtained all requested
1246 		 * resources */
1247 		goto out_free;
1248 	}
1249 
1250 	sma = sem_lock(ns, semid);
1251 	if (IS_ERR(sma)) {
1252 		BUG_ON(queue.prev != NULL);
1253 		error = -EIDRM;
1254 		goto out_free;
1255 	}
1256 
1257 	/*
1258 	 * If queue.status != -EINTR we are woken up by another process
1259 	 */
1260 	error = queue.status;
1261 	if (error != -EINTR) {
1262 		goto out_unlock_free;
1263 	}
1264 
1265 	/*
1266 	 * If an interrupt occurred we have to clean up the queue
1267 	 */
1268 	if (timeout && jiffies_left == 0)
1269 		error = -EAGAIN;
1270 	remove_from_queue(sma,&queue);
1271 	goto out_unlock_free;
1272 
1273 out_unlock_free:
1274 	sem_unlock(sma);
1275 out_free:
1276 	if(sops != fast_sops)
1277 		kfree(sops);
1278 	return error;
1279 }
1280 
1281 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1282 {
1283 	return sys_semtimedop(semid, tsops, nsops, NULL);
1284 }
1285 
1286 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1287  * parent and child tasks.
1288  */
1289 
1290 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 	struct sem_undo_list *undo_list;
1293 	int error;
1294 
1295 	if (clone_flags & CLONE_SYSVSEM) {
1296 		error = get_undo_list(&undo_list);
1297 		if (error)
1298 			return error;
1299 		atomic_inc(&undo_list->refcnt);
1300 		tsk->sysvsem.undo_list = undo_list;
1301 	} else
1302 		tsk->sysvsem.undo_list = NULL;
1303 
1304 	return 0;
1305 }
1306 
1307 /*
1308  * add semadj values to semaphores, free undo structures.
1309  * undo structures are not freed when semaphore arrays are destroyed
1310  * so some of them may be out of date.
1311  * IMPLEMENTATION NOTE: There is some confusion over whether the
1312  * set of adjustments that needs to be done should be done in an atomic
1313  * manner or not. That is, if we are attempting to decrement the semval
1314  * should we queue up and wait until we can do so legally?
1315  * The original implementation attempted to do this (queue and wait).
1316  * The current implementation does not do so. The POSIX standard
1317  * and SVID should be consulted to determine what behavior is mandated.
1318  */
1319 void exit_sem(struct task_struct *tsk)
1320 {
1321 	struct sem_undo_list *undo_list;
1322 	struct sem_undo *u, **up;
1323 	struct ipc_namespace *ns;
1324 
1325 	undo_list = tsk->sysvsem.undo_list;
1326 	if (!undo_list)
1327 		return;
1328 
1329 	if (!atomic_dec_and_test(&undo_list->refcnt))
1330 		return;
1331 
1332 	ns = tsk->nsproxy->ipc_ns;
1333 	/* There's no need to hold the semundo list lock, as current
1334          * is the last task exiting for this undo list.
1335 	 */
1336 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1337 		struct sem_array *sma;
1338 		int nsems, i;
1339 		struct sem_undo *un, **unp;
1340 		int semid;
1341 
1342 		semid = u->semid;
1343 
1344 		if(semid == -1)
1345 			continue;
1346 		sma = sem_lock(ns, semid);
1347 		if (IS_ERR(sma))
1348 			continue;
1349 
1350 		if (u->semid == -1)
1351 			goto next_entry;
1352 
1353 		BUG_ON(sem_checkid(sma, u->semid));
1354 
1355 		/* remove u from the sma->undo list */
1356 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1357 			if (u == un)
1358 				goto found;
1359 		}
1360 		printk ("exit_sem undo list error id=%d\n", u->semid);
1361 		goto next_entry;
1362 found:
1363 		*unp = un->id_next;
1364 		/* perform adjustments registered in u */
1365 		nsems = sma->sem_nsems;
1366 		for (i = 0; i < nsems; i++) {
1367 			struct sem * semaphore = &sma->sem_base[i];
1368 			if (u->semadj[i]) {
1369 				semaphore->semval += u->semadj[i];
1370 				/*
1371 				 * Range checks of the new semaphore value,
1372 				 * not defined by sus:
1373 				 * - Some unices ignore the undo entirely
1374 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1375 				 * - some cap the value (e.g. FreeBSD caps
1376 				 *   at 0, but doesn't enforce SEMVMX)
1377 				 *
1378 				 * Linux caps the semaphore value, both at 0
1379 				 * and at SEMVMX.
1380 				 *
1381 				 * 	Manfred <manfred@colorfullife.com>
1382 				 */
1383 				if (semaphore->semval < 0)
1384 					semaphore->semval = 0;
1385 				if (semaphore->semval > SEMVMX)
1386 					semaphore->semval = SEMVMX;
1387 				semaphore->sempid = task_tgid_vnr(current);
1388 			}
1389 		}
1390 		sma->sem_otime = get_seconds();
1391 		/* maybe some queued-up processes were waiting for this */
1392 		update_queue(sma);
1393 next_entry:
1394 		sem_unlock(sma);
1395 	}
1396 	kfree(undo_list);
1397 }
1398 
1399 #ifdef CONFIG_PROC_FS
1400 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1401 {
1402 	struct sem_array *sma = it;
1403 
1404 	return seq_printf(s,
1405 			  "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1406 			  sma->sem_perm.key,
1407 			  sma->sem_perm.id,
1408 			  sma->sem_perm.mode,
1409 			  sma->sem_nsems,
1410 			  sma->sem_perm.uid,
1411 			  sma->sem_perm.gid,
1412 			  sma->sem_perm.cuid,
1413 			  sma->sem_perm.cgid,
1414 			  sma->sem_otime,
1415 			  sma->sem_ctime);
1416 }
1417 #endif
1418