xref: /linux/ipc/sem.c (revision 5c35a02c545a7bbe77f3a1ae337d9e29beed079b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 
90 #include <linux/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	/*
97 	 * PID of the process that last modified the semaphore. For
98 	 * Linux, specifically these are:
99 	 *  - semop
100 	 *  - semctl, via SETVAL and SETALL.
101 	 *  - at task exit when performing undo adjustments (see exit_sem).
102 	 */
103 	struct pid *sempid;
104 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
105 	struct list_head pending_alter; /* pending single-sop operations */
106 					/* that alter the semaphore */
107 	struct list_head pending_const; /* pending single-sop operations */
108 					/* that do not alter the semaphore*/
109 	time64_t	 sem_otime;	/* candidate for sem_otime */
110 } ____cacheline_aligned_in_smp;
111 
112 /* One sem_array data structure for each set of semaphores in the system. */
113 struct sem_array {
114 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
115 	time64_t		sem_ctime;	/* create/last semctl() time */
116 	struct list_head	pending_alter;	/* pending operations */
117 						/* that alter the array */
118 	struct list_head	pending_const;	/* pending complex operations */
119 						/* that do not alter semvals */
120 	struct list_head	list_id;	/* undo requests on this array */
121 	int			sem_nsems;	/* no. of semaphores in array */
122 	int			complex_count;	/* pending complex operations */
123 	unsigned int		use_global_lock;/* >0: global lock required */
124 
125 	struct sem		sems[];
126 } __randomize_layout;
127 
128 /* One queue for each sleeping process in the system. */
129 struct sem_queue {
130 	struct list_head	list;	 /* queue of pending operations */
131 	struct task_struct	*sleeper; /* this process */
132 	struct sem_undo		*undo;	 /* undo structure */
133 	struct pid		*pid;	 /* process id of requesting process */
134 	int			status;	 /* completion status of operation */
135 	struct sembuf		*sops;	 /* array of pending operations */
136 	struct sembuf		*blocking; /* the operation that blocked */
137 	int			nsops;	 /* number of operations */
138 	bool			alter;	 /* does *sops alter the array? */
139 	bool                    dupsop;	 /* sops on more than one sem_num */
140 };
141 
142 /* Each task has a list of undo requests. They are executed automatically
143  * when the process exits.
144  */
145 struct sem_undo {
146 	struct list_head	list_proc;	/* per-process list: *
147 						 * all undos from one process
148 						 * rcu protected */
149 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
150 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
151 	struct list_head	list_id;	/* per semaphore array list:
152 						 * all undos for one array */
153 	int			semid;		/* semaphore set identifier */
154 	short			*semadj;	/* array of adjustments */
155 						/* one per semaphore */
156 };
157 
158 /* sem_undo_list controls shared access to the list of sem_undo structures
159  * that may be shared among all a CLONE_SYSVSEM task group.
160  */
161 struct sem_undo_list {
162 	refcount_t		refcnt;
163 	spinlock_t		lock;
164 	struct list_head	list_proc;
165 };
166 
167 
168 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
169 
170 static int newary(struct ipc_namespace *, struct ipc_params *);
171 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
172 #ifdef CONFIG_PROC_FS
173 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
174 #endif
175 
176 #define SEMMSL_FAST	256 /* 512 bytes on stack */
177 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
178 
179 /*
180  * Switching from the mode suitable for simple ops
181  * to the mode for complex ops is costly. Therefore:
182  * use some hysteresis
183  */
184 #define USE_GLOBAL_LOCK_HYSTERESIS	10
185 
186 /*
187  * Locking:
188  * a) global sem_lock() for read/write
189  *	sem_undo.id_next,
190  *	sem_array.complex_count,
191  *	sem_array.pending{_alter,_const},
192  *	sem_array.sem_undo
193  *
194  * b) global or semaphore sem_lock() for read/write:
195  *	sem_array.sems[i].pending_{const,alter}:
196  *
197  * c) special:
198  *	sem_undo_list.list_proc:
199  *	* undo_list->lock for write
200  *	* rcu for read
201  *	use_global_lock:
202  *	* global sem_lock() for write
203  *	* either local or global sem_lock() for read.
204  *
205  * Memory ordering:
206  * Most ordering is enforced by using spin_lock() and spin_unlock().
207  * The special case is use_global_lock:
208  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
209  * using smp_store_release().
210  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
211  * smp_load_acquire().
212  * Setting it from 0 to non-zero must be ordered with regards to
213  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
214  * is inside a spin_lock() and after a write from 0 to non-zero a
215  * spin_lock()+spin_unlock() is done.
216  */
217 
218 #define sc_semmsl	sem_ctls[0]
219 #define sc_semmns	sem_ctls[1]
220 #define sc_semopm	sem_ctls[2]
221 #define sc_semmni	sem_ctls[3]
222 
223 int sem_init_ns(struct ipc_namespace *ns)
224 {
225 	ns->sc_semmsl = SEMMSL;
226 	ns->sc_semmns = SEMMNS;
227 	ns->sc_semopm = SEMOPM;
228 	ns->sc_semmni = SEMMNI;
229 	ns->used_sems = 0;
230 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
231 }
232 
233 #ifdef CONFIG_IPC_NS
234 void sem_exit_ns(struct ipc_namespace *ns)
235 {
236 	free_ipcs(ns, &sem_ids(ns), freeary);
237 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
238 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
239 }
240 #endif
241 
242 int __init sem_init(void)
243 {
244 	const int err = sem_init_ns(&init_ipc_ns);
245 
246 	ipc_init_proc_interface("sysvipc/sem",
247 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
248 				IPC_SEM_IDS, sysvipc_sem_proc_show);
249 	return err;
250 }
251 
252 /**
253  * unmerge_queues - unmerge queues, if possible.
254  * @sma: semaphore array
255  *
256  * The function unmerges the wait queues if complex_count is 0.
257  * It must be called prior to dropping the global semaphore array lock.
258  */
259 static void unmerge_queues(struct sem_array *sma)
260 {
261 	struct sem_queue *q, *tq;
262 
263 	/* complex operations still around? */
264 	if (sma->complex_count)
265 		return;
266 	/*
267 	 * We will switch back to simple mode.
268 	 * Move all pending operation back into the per-semaphore
269 	 * queues.
270 	 */
271 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
272 		struct sem *curr;
273 		curr = &sma->sems[q->sops[0].sem_num];
274 
275 		list_add_tail(&q->list, &curr->pending_alter);
276 	}
277 	INIT_LIST_HEAD(&sma->pending_alter);
278 }
279 
280 /**
281  * merge_queues - merge single semop queues into global queue
282  * @sma: semaphore array
283  *
284  * This function merges all per-semaphore queues into the global queue.
285  * It is necessary to achieve FIFO ordering for the pending single-sop
286  * operations when a multi-semop operation must sleep.
287  * Only the alter operations must be moved, the const operations can stay.
288  */
289 static void merge_queues(struct sem_array *sma)
290 {
291 	int i;
292 	for (i = 0; i < sma->sem_nsems; i++) {
293 		struct sem *sem = &sma->sems[i];
294 
295 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
296 	}
297 }
298 
299 static void sem_rcu_free(struct rcu_head *head)
300 {
301 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
302 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
303 
304 	security_sem_free(&sma->sem_perm);
305 	kvfree(sma);
306 }
307 
308 /*
309  * Enter the mode suitable for non-simple operations:
310  * Caller must own sem_perm.lock.
311  */
312 static void complexmode_enter(struct sem_array *sma)
313 {
314 	int i;
315 	struct sem *sem;
316 
317 	if (sma->use_global_lock > 0)  {
318 		/*
319 		 * We are already in global lock mode.
320 		 * Nothing to do, just reset the
321 		 * counter until we return to simple mode.
322 		 */
323 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
324 		return;
325 	}
326 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
327 
328 	for (i = 0; i < sma->sem_nsems; i++) {
329 		sem = &sma->sems[i];
330 		spin_lock(&sem->lock);
331 		spin_unlock(&sem->lock);
332 	}
333 }
334 
335 /*
336  * Try to leave the mode that disallows simple operations:
337  * Caller must own sem_perm.lock.
338  */
339 static void complexmode_tryleave(struct sem_array *sma)
340 {
341 	if (sma->complex_count)  {
342 		/* Complex ops are sleeping.
343 		 * We must stay in complex mode
344 		 */
345 		return;
346 	}
347 	if (sma->use_global_lock == 1) {
348 		/*
349 		 * Immediately after setting use_global_lock to 0,
350 		 * a simple op can start. Thus: all memory writes
351 		 * performed by the current operation must be visible
352 		 * before we set use_global_lock to 0.
353 		 */
354 		smp_store_release(&sma->use_global_lock, 0);
355 	} else {
356 		sma->use_global_lock--;
357 	}
358 }
359 
360 #define SEM_GLOBAL_LOCK	(-1)
361 /*
362  * If the request contains only one semaphore operation, and there are
363  * no complex transactions pending, lock only the semaphore involved.
364  * Otherwise, lock the entire semaphore array, since we either have
365  * multiple semaphores in our own semops, or we need to look at
366  * semaphores from other pending complex operations.
367  */
368 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
369 			      int nsops)
370 {
371 	struct sem *sem;
372 	int idx;
373 
374 	if (nsops != 1) {
375 		/* Complex operation - acquire a full lock */
376 		ipc_lock_object(&sma->sem_perm);
377 
378 		/* Prevent parallel simple ops */
379 		complexmode_enter(sma);
380 		return SEM_GLOBAL_LOCK;
381 	}
382 
383 	/*
384 	 * Only one semaphore affected - try to optimize locking.
385 	 * Optimized locking is possible if no complex operation
386 	 * is either enqueued or processed right now.
387 	 *
388 	 * Both facts are tracked by use_global_mode.
389 	 */
390 	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
391 	sem = &sma->sems[idx];
392 
393 	/*
394 	 * Initial check for use_global_lock. Just an optimization,
395 	 * no locking, no memory barrier.
396 	 */
397 	if (!sma->use_global_lock) {
398 		/*
399 		 * It appears that no complex operation is around.
400 		 * Acquire the per-semaphore lock.
401 		 */
402 		spin_lock(&sem->lock);
403 
404 		/* pairs with smp_store_release() */
405 		if (!smp_load_acquire(&sma->use_global_lock)) {
406 			/* fast path successful! */
407 			return sops->sem_num;
408 		}
409 		spin_unlock(&sem->lock);
410 	}
411 
412 	/* slow path: acquire the full lock */
413 	ipc_lock_object(&sma->sem_perm);
414 
415 	if (sma->use_global_lock == 0) {
416 		/*
417 		 * The use_global_lock mode ended while we waited for
418 		 * sma->sem_perm.lock. Thus we must switch to locking
419 		 * with sem->lock.
420 		 * Unlike in the fast path, there is no need to recheck
421 		 * sma->use_global_lock after we have acquired sem->lock:
422 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
423 		 * change.
424 		 */
425 		spin_lock(&sem->lock);
426 
427 		ipc_unlock_object(&sma->sem_perm);
428 		return sops->sem_num;
429 	} else {
430 		/*
431 		 * Not a false alarm, thus continue to use the global lock
432 		 * mode. No need for complexmode_enter(), this was done by
433 		 * the caller that has set use_global_mode to non-zero.
434 		 */
435 		return SEM_GLOBAL_LOCK;
436 	}
437 }
438 
439 static inline void sem_unlock(struct sem_array *sma, int locknum)
440 {
441 	if (locknum == SEM_GLOBAL_LOCK) {
442 		unmerge_queues(sma);
443 		complexmode_tryleave(sma);
444 		ipc_unlock_object(&sma->sem_perm);
445 	} else {
446 		struct sem *sem = &sma->sems[locknum];
447 		spin_unlock(&sem->lock);
448 	}
449 }
450 
451 /*
452  * sem_lock_(check_) routines are called in the paths where the rwsem
453  * is not held.
454  *
455  * The caller holds the RCU read lock.
456  */
457 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
458 {
459 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
460 
461 	if (IS_ERR(ipcp))
462 		return ERR_CAST(ipcp);
463 
464 	return container_of(ipcp, struct sem_array, sem_perm);
465 }
466 
467 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
468 							int id)
469 {
470 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
471 
472 	if (IS_ERR(ipcp))
473 		return ERR_CAST(ipcp);
474 
475 	return container_of(ipcp, struct sem_array, sem_perm);
476 }
477 
478 static inline void sem_lock_and_putref(struct sem_array *sma)
479 {
480 	sem_lock(sma, NULL, -1);
481 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
482 }
483 
484 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
485 {
486 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
487 }
488 
489 static struct sem_array *sem_alloc(size_t nsems)
490 {
491 	struct sem_array *sma;
492 	size_t size;
493 
494 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
495 		return NULL;
496 
497 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
498 	sma = kvmalloc(size, GFP_KERNEL);
499 	if (unlikely(!sma))
500 		return NULL;
501 
502 	memset(sma, 0, size);
503 
504 	return sma;
505 }
506 
507 /**
508  * newary - Create a new semaphore set
509  * @ns: namespace
510  * @params: ptr to the structure that contains key, semflg and nsems
511  *
512  * Called with sem_ids.rwsem held (as a writer)
513  */
514 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
515 {
516 	int retval;
517 	struct sem_array *sma;
518 	key_t key = params->key;
519 	int nsems = params->u.nsems;
520 	int semflg = params->flg;
521 	int i;
522 
523 	if (!nsems)
524 		return -EINVAL;
525 	if (ns->used_sems + nsems > ns->sc_semmns)
526 		return -ENOSPC;
527 
528 	sma = sem_alloc(nsems);
529 	if (!sma)
530 		return -ENOMEM;
531 
532 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
533 	sma->sem_perm.key = key;
534 
535 	sma->sem_perm.security = NULL;
536 	retval = security_sem_alloc(&sma->sem_perm);
537 	if (retval) {
538 		kvfree(sma);
539 		return retval;
540 	}
541 
542 	for (i = 0; i < nsems; i++) {
543 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
544 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
545 		spin_lock_init(&sma->sems[i].lock);
546 	}
547 
548 	sma->complex_count = 0;
549 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
550 	INIT_LIST_HEAD(&sma->pending_alter);
551 	INIT_LIST_HEAD(&sma->pending_const);
552 	INIT_LIST_HEAD(&sma->list_id);
553 	sma->sem_nsems = nsems;
554 	sma->sem_ctime = ktime_get_real_seconds();
555 
556 	/* ipc_addid() locks sma upon success. */
557 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
558 	if (retval < 0) {
559 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
560 		return retval;
561 	}
562 	ns->used_sems += nsems;
563 
564 	sem_unlock(sma, -1);
565 	rcu_read_unlock();
566 
567 	return sma->sem_perm.id;
568 }
569 
570 
571 /*
572  * Called with sem_ids.rwsem and ipcp locked.
573  */
574 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
575 				struct ipc_params *params)
576 {
577 	struct sem_array *sma;
578 
579 	sma = container_of(ipcp, struct sem_array, sem_perm);
580 	if (params->u.nsems > sma->sem_nsems)
581 		return -EINVAL;
582 
583 	return 0;
584 }
585 
586 long ksys_semget(key_t key, int nsems, int semflg)
587 {
588 	struct ipc_namespace *ns;
589 	static const struct ipc_ops sem_ops = {
590 		.getnew = newary,
591 		.associate = security_sem_associate,
592 		.more_checks = sem_more_checks,
593 	};
594 	struct ipc_params sem_params;
595 
596 	ns = current->nsproxy->ipc_ns;
597 
598 	if (nsems < 0 || nsems > ns->sc_semmsl)
599 		return -EINVAL;
600 
601 	sem_params.key = key;
602 	sem_params.flg = semflg;
603 	sem_params.u.nsems = nsems;
604 
605 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
606 }
607 
608 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
609 {
610 	return ksys_semget(key, nsems, semflg);
611 }
612 
613 /**
614  * perform_atomic_semop[_slow] - Attempt to perform semaphore
615  *                               operations on a given array.
616  * @sma: semaphore array
617  * @q: struct sem_queue that describes the operation
618  *
619  * Caller blocking are as follows, based the value
620  * indicated by the semaphore operation (sem_op):
621  *
622  *  (1) >0 never blocks.
623  *  (2)  0 (wait-for-zero operation): semval is non-zero.
624  *  (3) <0 attempting to decrement semval to a value smaller than zero.
625  *
626  * Returns 0 if the operation was possible.
627  * Returns 1 if the operation is impossible, the caller must sleep.
628  * Returns <0 for error codes.
629  */
630 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
631 {
632 	int result, sem_op, nsops;
633 	struct pid *pid;
634 	struct sembuf *sop;
635 	struct sem *curr;
636 	struct sembuf *sops;
637 	struct sem_undo *un;
638 
639 	sops = q->sops;
640 	nsops = q->nsops;
641 	un = q->undo;
642 
643 	for (sop = sops; sop < sops + nsops; sop++) {
644 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
645 		curr = &sma->sems[idx];
646 		sem_op = sop->sem_op;
647 		result = curr->semval;
648 
649 		if (!sem_op && result)
650 			goto would_block;
651 
652 		result += sem_op;
653 		if (result < 0)
654 			goto would_block;
655 		if (result > SEMVMX)
656 			goto out_of_range;
657 
658 		if (sop->sem_flg & SEM_UNDO) {
659 			int undo = un->semadj[sop->sem_num] - sem_op;
660 			/* Exceeding the undo range is an error. */
661 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
662 				goto out_of_range;
663 			un->semadj[sop->sem_num] = undo;
664 		}
665 
666 		curr->semval = result;
667 	}
668 
669 	sop--;
670 	pid = q->pid;
671 	while (sop >= sops) {
672 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
673 		sop--;
674 	}
675 
676 	return 0;
677 
678 out_of_range:
679 	result = -ERANGE;
680 	goto undo;
681 
682 would_block:
683 	q->blocking = sop;
684 
685 	if (sop->sem_flg & IPC_NOWAIT)
686 		result = -EAGAIN;
687 	else
688 		result = 1;
689 
690 undo:
691 	sop--;
692 	while (sop >= sops) {
693 		sem_op = sop->sem_op;
694 		sma->sems[sop->sem_num].semval -= sem_op;
695 		if (sop->sem_flg & SEM_UNDO)
696 			un->semadj[sop->sem_num] += sem_op;
697 		sop--;
698 	}
699 
700 	return result;
701 }
702 
703 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
704 {
705 	int result, sem_op, nsops;
706 	struct sembuf *sop;
707 	struct sem *curr;
708 	struct sembuf *sops;
709 	struct sem_undo *un;
710 
711 	sops = q->sops;
712 	nsops = q->nsops;
713 	un = q->undo;
714 
715 	if (unlikely(q->dupsop))
716 		return perform_atomic_semop_slow(sma, q);
717 
718 	/*
719 	 * We scan the semaphore set twice, first to ensure that the entire
720 	 * operation can succeed, therefore avoiding any pointless writes
721 	 * to shared memory and having to undo such changes in order to block
722 	 * until the operations can go through.
723 	 */
724 	for (sop = sops; sop < sops + nsops; sop++) {
725 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
726 
727 		curr = &sma->sems[idx];
728 		sem_op = sop->sem_op;
729 		result = curr->semval;
730 
731 		if (!sem_op && result)
732 			goto would_block; /* wait-for-zero */
733 
734 		result += sem_op;
735 		if (result < 0)
736 			goto would_block;
737 
738 		if (result > SEMVMX)
739 			return -ERANGE;
740 
741 		if (sop->sem_flg & SEM_UNDO) {
742 			int undo = un->semadj[sop->sem_num] - sem_op;
743 
744 			/* Exceeding the undo range is an error. */
745 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
746 				return -ERANGE;
747 		}
748 	}
749 
750 	for (sop = sops; sop < sops + nsops; sop++) {
751 		curr = &sma->sems[sop->sem_num];
752 		sem_op = sop->sem_op;
753 		result = curr->semval;
754 
755 		if (sop->sem_flg & SEM_UNDO) {
756 			int undo = un->semadj[sop->sem_num] - sem_op;
757 
758 			un->semadj[sop->sem_num] = undo;
759 		}
760 		curr->semval += sem_op;
761 		ipc_update_pid(&curr->sempid, q->pid);
762 	}
763 
764 	return 0;
765 
766 would_block:
767 	q->blocking = sop;
768 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
769 }
770 
771 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
772 					     struct wake_q_head *wake_q)
773 {
774 	wake_q_add(wake_q, q->sleeper);
775 	/*
776 	 * Rely on the above implicit barrier, such that we can
777 	 * ensure that we hold reference to the task before setting
778 	 * q->status. Otherwise we could race with do_exit if the
779 	 * task is awoken by an external event before calling
780 	 * wake_up_process().
781 	 */
782 	WRITE_ONCE(q->status, error);
783 }
784 
785 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
786 {
787 	list_del(&q->list);
788 	if (q->nsops > 1)
789 		sma->complex_count--;
790 }
791 
792 /** check_restart(sma, q)
793  * @sma: semaphore array
794  * @q: the operation that just completed
795  *
796  * update_queue is O(N^2) when it restarts scanning the whole queue of
797  * waiting operations. Therefore this function checks if the restart is
798  * really necessary. It is called after a previously waiting operation
799  * modified the array.
800  * Note that wait-for-zero operations are handled without restart.
801  */
802 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
803 {
804 	/* pending complex alter operations are too difficult to analyse */
805 	if (!list_empty(&sma->pending_alter))
806 		return 1;
807 
808 	/* we were a sleeping complex operation. Too difficult */
809 	if (q->nsops > 1)
810 		return 1;
811 
812 	/* It is impossible that someone waits for the new value:
813 	 * - complex operations always restart.
814 	 * - wait-for-zero are handled seperately.
815 	 * - q is a previously sleeping simple operation that
816 	 *   altered the array. It must be a decrement, because
817 	 *   simple increments never sleep.
818 	 * - If there are older (higher priority) decrements
819 	 *   in the queue, then they have observed the original
820 	 *   semval value and couldn't proceed. The operation
821 	 *   decremented to value - thus they won't proceed either.
822 	 */
823 	return 0;
824 }
825 
826 /**
827  * wake_const_ops - wake up non-alter tasks
828  * @sma: semaphore array.
829  * @semnum: semaphore that was modified.
830  * @wake_q: lockless wake-queue head.
831  *
832  * wake_const_ops must be called after a semaphore in a semaphore array
833  * was set to 0. If complex const operations are pending, wake_const_ops must
834  * be called with semnum = -1, as well as with the number of each modified
835  * semaphore.
836  * The tasks that must be woken up are added to @wake_q. The return code
837  * is stored in q->pid.
838  * The function returns 1 if at least one operation was completed successfully.
839  */
840 static int wake_const_ops(struct sem_array *sma, int semnum,
841 			  struct wake_q_head *wake_q)
842 {
843 	struct sem_queue *q, *tmp;
844 	struct list_head *pending_list;
845 	int semop_completed = 0;
846 
847 	if (semnum == -1)
848 		pending_list = &sma->pending_const;
849 	else
850 		pending_list = &sma->sems[semnum].pending_const;
851 
852 	list_for_each_entry_safe(q, tmp, pending_list, list) {
853 		int error = perform_atomic_semop(sma, q);
854 
855 		if (error > 0)
856 			continue;
857 		/* operation completed, remove from queue & wakeup */
858 		unlink_queue(sma, q);
859 
860 		wake_up_sem_queue_prepare(q, error, wake_q);
861 		if (error == 0)
862 			semop_completed = 1;
863 	}
864 
865 	return semop_completed;
866 }
867 
868 /**
869  * do_smart_wakeup_zero - wakeup all wait for zero tasks
870  * @sma: semaphore array
871  * @sops: operations that were performed
872  * @nsops: number of operations
873  * @wake_q: lockless wake-queue head
874  *
875  * Checks all required queue for wait-for-zero operations, based
876  * on the actual changes that were performed on the semaphore array.
877  * The function returns 1 if at least one operation was completed successfully.
878  */
879 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
880 				int nsops, struct wake_q_head *wake_q)
881 {
882 	int i;
883 	int semop_completed = 0;
884 	int got_zero = 0;
885 
886 	/* first: the per-semaphore queues, if known */
887 	if (sops) {
888 		for (i = 0; i < nsops; i++) {
889 			int num = sops[i].sem_num;
890 
891 			if (sma->sems[num].semval == 0) {
892 				got_zero = 1;
893 				semop_completed |= wake_const_ops(sma, num, wake_q);
894 			}
895 		}
896 	} else {
897 		/*
898 		 * No sops means modified semaphores not known.
899 		 * Assume all were changed.
900 		 */
901 		for (i = 0; i < sma->sem_nsems; i++) {
902 			if (sma->sems[i].semval == 0) {
903 				got_zero = 1;
904 				semop_completed |= wake_const_ops(sma, i, wake_q);
905 			}
906 		}
907 	}
908 	/*
909 	 * If one of the modified semaphores got 0,
910 	 * then check the global queue, too.
911 	 */
912 	if (got_zero)
913 		semop_completed |= wake_const_ops(sma, -1, wake_q);
914 
915 	return semop_completed;
916 }
917 
918 
919 /**
920  * update_queue - look for tasks that can be completed.
921  * @sma: semaphore array.
922  * @semnum: semaphore that was modified.
923  * @wake_q: lockless wake-queue head.
924  *
925  * update_queue must be called after a semaphore in a semaphore array
926  * was modified. If multiple semaphores were modified, update_queue must
927  * be called with semnum = -1, as well as with the number of each modified
928  * semaphore.
929  * The tasks that must be woken up are added to @wake_q. The return code
930  * is stored in q->pid.
931  * The function internally checks if const operations can now succeed.
932  *
933  * The function return 1 if at least one semop was completed successfully.
934  */
935 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
936 {
937 	struct sem_queue *q, *tmp;
938 	struct list_head *pending_list;
939 	int semop_completed = 0;
940 
941 	if (semnum == -1)
942 		pending_list = &sma->pending_alter;
943 	else
944 		pending_list = &sma->sems[semnum].pending_alter;
945 
946 again:
947 	list_for_each_entry_safe(q, tmp, pending_list, list) {
948 		int error, restart;
949 
950 		/* If we are scanning the single sop, per-semaphore list of
951 		 * one semaphore and that semaphore is 0, then it is not
952 		 * necessary to scan further: simple increments
953 		 * that affect only one entry succeed immediately and cannot
954 		 * be in the  per semaphore pending queue, and decrements
955 		 * cannot be successful if the value is already 0.
956 		 */
957 		if (semnum != -1 && sma->sems[semnum].semval == 0)
958 			break;
959 
960 		error = perform_atomic_semop(sma, q);
961 
962 		/* Does q->sleeper still need to sleep? */
963 		if (error > 0)
964 			continue;
965 
966 		unlink_queue(sma, q);
967 
968 		if (error) {
969 			restart = 0;
970 		} else {
971 			semop_completed = 1;
972 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
973 			restart = check_restart(sma, q);
974 		}
975 
976 		wake_up_sem_queue_prepare(q, error, wake_q);
977 		if (restart)
978 			goto again;
979 	}
980 	return semop_completed;
981 }
982 
983 /**
984  * set_semotime - set sem_otime
985  * @sma: semaphore array
986  * @sops: operations that modified the array, may be NULL
987  *
988  * sem_otime is replicated to avoid cache line trashing.
989  * This function sets one instance to the current time.
990  */
991 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
992 {
993 	if (sops == NULL) {
994 		sma->sems[0].sem_otime = ktime_get_real_seconds();
995 	} else {
996 		sma->sems[sops[0].sem_num].sem_otime =
997 						ktime_get_real_seconds();
998 	}
999 }
1000 
1001 /**
1002  * do_smart_update - optimized update_queue
1003  * @sma: semaphore array
1004  * @sops: operations that were performed
1005  * @nsops: number of operations
1006  * @otime: force setting otime
1007  * @wake_q: lockless wake-queue head
1008  *
1009  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1010  * based on the actual changes that were performed on the semaphore array.
1011  * Note that the function does not do the actual wake-up: the caller is
1012  * responsible for calling wake_up_q().
1013  * It is safe to perform this call after dropping all locks.
1014  */
1015 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1016 			    int otime, struct wake_q_head *wake_q)
1017 {
1018 	int i;
1019 
1020 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1021 
1022 	if (!list_empty(&sma->pending_alter)) {
1023 		/* semaphore array uses the global queue - just process it. */
1024 		otime |= update_queue(sma, -1, wake_q);
1025 	} else {
1026 		if (!sops) {
1027 			/*
1028 			 * No sops, thus the modified semaphores are not
1029 			 * known. Check all.
1030 			 */
1031 			for (i = 0; i < sma->sem_nsems; i++)
1032 				otime |= update_queue(sma, i, wake_q);
1033 		} else {
1034 			/*
1035 			 * Check the semaphores that were increased:
1036 			 * - No complex ops, thus all sleeping ops are
1037 			 *   decrease.
1038 			 * - if we decreased the value, then any sleeping
1039 			 *   semaphore ops wont be able to run: If the
1040 			 *   previous value was too small, then the new
1041 			 *   value will be too small, too.
1042 			 */
1043 			for (i = 0; i < nsops; i++) {
1044 				if (sops[i].sem_op > 0) {
1045 					otime |= update_queue(sma,
1046 							      sops[i].sem_num, wake_q);
1047 				}
1048 			}
1049 		}
1050 	}
1051 	if (otime)
1052 		set_semotime(sma, sops);
1053 }
1054 
1055 /*
1056  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1057  */
1058 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1059 			bool count_zero)
1060 {
1061 	struct sembuf *sop = q->blocking;
1062 
1063 	/*
1064 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1065 	 * semaphores. This violates SUS, therefore it was changed to the
1066 	 * standard compliant behavior.
1067 	 * Give the administrators a chance to notice that an application
1068 	 * might misbehave because it relies on the Linux behavior.
1069 	 */
1070 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1071 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1072 			current->comm, task_pid_nr(current));
1073 
1074 	if (sop->sem_num != semnum)
1075 		return 0;
1076 
1077 	if (count_zero && sop->sem_op == 0)
1078 		return 1;
1079 	if (!count_zero && sop->sem_op < 0)
1080 		return 1;
1081 
1082 	return 0;
1083 }
1084 
1085 /* The following counts are associated to each semaphore:
1086  *   semncnt        number of tasks waiting on semval being nonzero
1087  *   semzcnt        number of tasks waiting on semval being zero
1088  *
1089  * Per definition, a task waits only on the semaphore of the first semop
1090  * that cannot proceed, even if additional operation would block, too.
1091  */
1092 static int count_semcnt(struct sem_array *sma, ushort semnum,
1093 			bool count_zero)
1094 {
1095 	struct list_head *l;
1096 	struct sem_queue *q;
1097 	int semcnt;
1098 
1099 	semcnt = 0;
1100 	/* First: check the simple operations. They are easy to evaluate */
1101 	if (count_zero)
1102 		l = &sma->sems[semnum].pending_const;
1103 	else
1104 		l = &sma->sems[semnum].pending_alter;
1105 
1106 	list_for_each_entry(q, l, list) {
1107 		/* all task on a per-semaphore list sleep on exactly
1108 		 * that semaphore
1109 		 */
1110 		semcnt++;
1111 	}
1112 
1113 	/* Then: check the complex operations. */
1114 	list_for_each_entry(q, &sma->pending_alter, list) {
1115 		semcnt += check_qop(sma, semnum, q, count_zero);
1116 	}
1117 	if (count_zero) {
1118 		list_for_each_entry(q, &sma->pending_const, list) {
1119 			semcnt += check_qop(sma, semnum, q, count_zero);
1120 		}
1121 	}
1122 	return semcnt;
1123 }
1124 
1125 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1126  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1127  * remains locked on exit.
1128  */
1129 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1130 {
1131 	struct sem_undo *un, *tu;
1132 	struct sem_queue *q, *tq;
1133 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1134 	int i;
1135 	DEFINE_WAKE_Q(wake_q);
1136 
1137 	/* Free the existing undo structures for this semaphore set.  */
1138 	ipc_assert_locked_object(&sma->sem_perm);
1139 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1140 		list_del(&un->list_id);
1141 		spin_lock(&un->ulp->lock);
1142 		un->semid = -1;
1143 		list_del_rcu(&un->list_proc);
1144 		spin_unlock(&un->ulp->lock);
1145 		kfree_rcu(un, rcu);
1146 	}
1147 
1148 	/* Wake up all pending processes and let them fail with EIDRM. */
1149 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1150 		unlink_queue(sma, q);
1151 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1152 	}
1153 
1154 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1155 		unlink_queue(sma, q);
1156 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1157 	}
1158 	for (i = 0; i < sma->sem_nsems; i++) {
1159 		struct sem *sem = &sma->sems[i];
1160 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1161 			unlink_queue(sma, q);
1162 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1163 		}
1164 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1165 			unlink_queue(sma, q);
1166 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1167 		}
1168 		ipc_update_pid(&sem->sempid, NULL);
1169 	}
1170 
1171 	/* Remove the semaphore set from the IDR */
1172 	sem_rmid(ns, sma);
1173 	sem_unlock(sma, -1);
1174 	rcu_read_unlock();
1175 
1176 	wake_up_q(&wake_q);
1177 	ns->used_sems -= sma->sem_nsems;
1178 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1179 }
1180 
1181 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1182 {
1183 	switch (version) {
1184 	case IPC_64:
1185 		return copy_to_user(buf, in, sizeof(*in));
1186 	case IPC_OLD:
1187 	    {
1188 		struct semid_ds out;
1189 
1190 		memset(&out, 0, sizeof(out));
1191 
1192 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1193 
1194 		out.sem_otime	= in->sem_otime;
1195 		out.sem_ctime	= in->sem_ctime;
1196 		out.sem_nsems	= in->sem_nsems;
1197 
1198 		return copy_to_user(buf, &out, sizeof(out));
1199 	    }
1200 	default:
1201 		return -EINVAL;
1202 	}
1203 }
1204 
1205 static time64_t get_semotime(struct sem_array *sma)
1206 {
1207 	int i;
1208 	time64_t res;
1209 
1210 	res = sma->sems[0].sem_otime;
1211 	for (i = 1; i < sma->sem_nsems; i++) {
1212 		time64_t to = sma->sems[i].sem_otime;
1213 
1214 		if (to > res)
1215 			res = to;
1216 	}
1217 	return res;
1218 }
1219 
1220 static int semctl_stat(struct ipc_namespace *ns, int semid,
1221 			 int cmd, struct semid64_ds *semid64)
1222 {
1223 	struct sem_array *sma;
1224 	time64_t semotime;
1225 	int id = 0;
1226 	int err;
1227 
1228 	memset(semid64, 0, sizeof(*semid64));
1229 
1230 	rcu_read_lock();
1231 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1232 		sma = sem_obtain_object(ns, semid);
1233 		if (IS_ERR(sma)) {
1234 			err = PTR_ERR(sma);
1235 			goto out_unlock;
1236 		}
1237 		id = sma->sem_perm.id;
1238 	} else { /* IPC_STAT */
1239 		sma = sem_obtain_object_check(ns, semid);
1240 		if (IS_ERR(sma)) {
1241 			err = PTR_ERR(sma);
1242 			goto out_unlock;
1243 		}
1244 	}
1245 
1246 	/* see comment for SHM_STAT_ANY */
1247 	if (cmd == SEM_STAT_ANY)
1248 		audit_ipc_obj(&sma->sem_perm);
1249 	else {
1250 		err = -EACCES;
1251 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1252 			goto out_unlock;
1253 	}
1254 
1255 	err = security_sem_semctl(&sma->sem_perm, cmd);
1256 	if (err)
1257 		goto out_unlock;
1258 
1259 	ipc_lock_object(&sma->sem_perm);
1260 
1261 	if (!ipc_valid_object(&sma->sem_perm)) {
1262 		ipc_unlock_object(&sma->sem_perm);
1263 		err = -EIDRM;
1264 		goto out_unlock;
1265 	}
1266 
1267 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1268 	semotime = get_semotime(sma);
1269 	semid64->sem_otime = semotime;
1270 	semid64->sem_ctime = sma->sem_ctime;
1271 #ifndef CONFIG_64BIT
1272 	semid64->sem_otime_high = semotime >> 32;
1273 	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1274 #endif
1275 	semid64->sem_nsems = sma->sem_nsems;
1276 
1277 	ipc_unlock_object(&sma->sem_perm);
1278 	rcu_read_unlock();
1279 	return id;
1280 
1281 out_unlock:
1282 	rcu_read_unlock();
1283 	return err;
1284 }
1285 
1286 static int semctl_info(struct ipc_namespace *ns, int semid,
1287 			 int cmd, void __user *p)
1288 {
1289 	struct seminfo seminfo;
1290 	int max_id;
1291 	int err;
1292 
1293 	err = security_sem_semctl(NULL, cmd);
1294 	if (err)
1295 		return err;
1296 
1297 	memset(&seminfo, 0, sizeof(seminfo));
1298 	seminfo.semmni = ns->sc_semmni;
1299 	seminfo.semmns = ns->sc_semmns;
1300 	seminfo.semmsl = ns->sc_semmsl;
1301 	seminfo.semopm = ns->sc_semopm;
1302 	seminfo.semvmx = SEMVMX;
1303 	seminfo.semmnu = SEMMNU;
1304 	seminfo.semmap = SEMMAP;
1305 	seminfo.semume = SEMUME;
1306 	down_read(&sem_ids(ns).rwsem);
1307 	if (cmd == SEM_INFO) {
1308 		seminfo.semusz = sem_ids(ns).in_use;
1309 		seminfo.semaem = ns->used_sems;
1310 	} else {
1311 		seminfo.semusz = SEMUSZ;
1312 		seminfo.semaem = SEMAEM;
1313 	}
1314 	max_id = ipc_get_maxid(&sem_ids(ns));
1315 	up_read(&sem_ids(ns).rwsem);
1316 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1317 		return -EFAULT;
1318 	return (max_id < 0) ? 0 : max_id;
1319 }
1320 
1321 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1322 		int val)
1323 {
1324 	struct sem_undo *un;
1325 	struct sem_array *sma;
1326 	struct sem *curr;
1327 	int err;
1328 	DEFINE_WAKE_Q(wake_q);
1329 
1330 	if (val > SEMVMX || val < 0)
1331 		return -ERANGE;
1332 
1333 	rcu_read_lock();
1334 	sma = sem_obtain_object_check(ns, semid);
1335 	if (IS_ERR(sma)) {
1336 		rcu_read_unlock();
1337 		return PTR_ERR(sma);
1338 	}
1339 
1340 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1341 		rcu_read_unlock();
1342 		return -EINVAL;
1343 	}
1344 
1345 
1346 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1347 		rcu_read_unlock();
1348 		return -EACCES;
1349 	}
1350 
1351 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1352 	if (err) {
1353 		rcu_read_unlock();
1354 		return -EACCES;
1355 	}
1356 
1357 	sem_lock(sma, NULL, -1);
1358 
1359 	if (!ipc_valid_object(&sma->sem_perm)) {
1360 		sem_unlock(sma, -1);
1361 		rcu_read_unlock();
1362 		return -EIDRM;
1363 	}
1364 
1365 	semnum = array_index_nospec(semnum, sma->sem_nsems);
1366 	curr = &sma->sems[semnum];
1367 
1368 	ipc_assert_locked_object(&sma->sem_perm);
1369 	list_for_each_entry(un, &sma->list_id, list_id)
1370 		un->semadj[semnum] = 0;
1371 
1372 	curr->semval = val;
1373 	ipc_update_pid(&curr->sempid, task_tgid(current));
1374 	sma->sem_ctime = ktime_get_real_seconds();
1375 	/* maybe some queued-up processes were waiting for this */
1376 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1377 	sem_unlock(sma, -1);
1378 	rcu_read_unlock();
1379 	wake_up_q(&wake_q);
1380 	return 0;
1381 }
1382 
1383 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1384 		int cmd, void __user *p)
1385 {
1386 	struct sem_array *sma;
1387 	struct sem *curr;
1388 	int err, nsems;
1389 	ushort fast_sem_io[SEMMSL_FAST];
1390 	ushort *sem_io = fast_sem_io;
1391 	DEFINE_WAKE_Q(wake_q);
1392 
1393 	rcu_read_lock();
1394 	sma = sem_obtain_object_check(ns, semid);
1395 	if (IS_ERR(sma)) {
1396 		rcu_read_unlock();
1397 		return PTR_ERR(sma);
1398 	}
1399 
1400 	nsems = sma->sem_nsems;
1401 
1402 	err = -EACCES;
1403 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1404 		goto out_rcu_wakeup;
1405 
1406 	err = security_sem_semctl(&sma->sem_perm, cmd);
1407 	if (err)
1408 		goto out_rcu_wakeup;
1409 
1410 	err = -EACCES;
1411 	switch (cmd) {
1412 	case GETALL:
1413 	{
1414 		ushort __user *array = p;
1415 		int i;
1416 
1417 		sem_lock(sma, NULL, -1);
1418 		if (!ipc_valid_object(&sma->sem_perm)) {
1419 			err = -EIDRM;
1420 			goto out_unlock;
1421 		}
1422 		if (nsems > SEMMSL_FAST) {
1423 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1424 				err = -EIDRM;
1425 				goto out_unlock;
1426 			}
1427 			sem_unlock(sma, -1);
1428 			rcu_read_unlock();
1429 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1430 						GFP_KERNEL);
1431 			if (sem_io == NULL) {
1432 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1433 				return -ENOMEM;
1434 			}
1435 
1436 			rcu_read_lock();
1437 			sem_lock_and_putref(sma);
1438 			if (!ipc_valid_object(&sma->sem_perm)) {
1439 				err = -EIDRM;
1440 				goto out_unlock;
1441 			}
1442 		}
1443 		for (i = 0; i < sma->sem_nsems; i++)
1444 			sem_io[i] = sma->sems[i].semval;
1445 		sem_unlock(sma, -1);
1446 		rcu_read_unlock();
1447 		err = 0;
1448 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1449 			err = -EFAULT;
1450 		goto out_free;
1451 	}
1452 	case SETALL:
1453 	{
1454 		int i;
1455 		struct sem_undo *un;
1456 
1457 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1458 			err = -EIDRM;
1459 			goto out_rcu_wakeup;
1460 		}
1461 		rcu_read_unlock();
1462 
1463 		if (nsems > SEMMSL_FAST) {
1464 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1465 						GFP_KERNEL);
1466 			if (sem_io == NULL) {
1467 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1468 				return -ENOMEM;
1469 			}
1470 		}
1471 
1472 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1473 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1474 			err = -EFAULT;
1475 			goto out_free;
1476 		}
1477 
1478 		for (i = 0; i < nsems; i++) {
1479 			if (sem_io[i] > SEMVMX) {
1480 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1481 				err = -ERANGE;
1482 				goto out_free;
1483 			}
1484 		}
1485 		rcu_read_lock();
1486 		sem_lock_and_putref(sma);
1487 		if (!ipc_valid_object(&sma->sem_perm)) {
1488 			err = -EIDRM;
1489 			goto out_unlock;
1490 		}
1491 
1492 		for (i = 0; i < nsems; i++) {
1493 			sma->sems[i].semval = sem_io[i];
1494 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1495 		}
1496 
1497 		ipc_assert_locked_object(&sma->sem_perm);
1498 		list_for_each_entry(un, &sma->list_id, list_id) {
1499 			for (i = 0; i < nsems; i++)
1500 				un->semadj[i] = 0;
1501 		}
1502 		sma->sem_ctime = ktime_get_real_seconds();
1503 		/* maybe some queued-up processes were waiting for this */
1504 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1505 		err = 0;
1506 		goto out_unlock;
1507 	}
1508 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1509 	}
1510 	err = -EINVAL;
1511 	if (semnum < 0 || semnum >= nsems)
1512 		goto out_rcu_wakeup;
1513 
1514 	sem_lock(sma, NULL, -1);
1515 	if (!ipc_valid_object(&sma->sem_perm)) {
1516 		err = -EIDRM;
1517 		goto out_unlock;
1518 	}
1519 
1520 	semnum = array_index_nospec(semnum, nsems);
1521 	curr = &sma->sems[semnum];
1522 
1523 	switch (cmd) {
1524 	case GETVAL:
1525 		err = curr->semval;
1526 		goto out_unlock;
1527 	case GETPID:
1528 		err = pid_vnr(curr->sempid);
1529 		goto out_unlock;
1530 	case GETNCNT:
1531 		err = count_semcnt(sma, semnum, 0);
1532 		goto out_unlock;
1533 	case GETZCNT:
1534 		err = count_semcnt(sma, semnum, 1);
1535 		goto out_unlock;
1536 	}
1537 
1538 out_unlock:
1539 	sem_unlock(sma, -1);
1540 out_rcu_wakeup:
1541 	rcu_read_unlock();
1542 	wake_up_q(&wake_q);
1543 out_free:
1544 	if (sem_io != fast_sem_io)
1545 		kvfree(sem_io);
1546 	return err;
1547 }
1548 
1549 static inline unsigned long
1550 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1551 {
1552 	switch (version) {
1553 	case IPC_64:
1554 		if (copy_from_user(out, buf, sizeof(*out)))
1555 			return -EFAULT;
1556 		return 0;
1557 	case IPC_OLD:
1558 	    {
1559 		struct semid_ds tbuf_old;
1560 
1561 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1562 			return -EFAULT;
1563 
1564 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1565 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1566 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1567 
1568 		return 0;
1569 	    }
1570 	default:
1571 		return -EINVAL;
1572 	}
1573 }
1574 
1575 /*
1576  * This function handles some semctl commands which require the rwsem
1577  * to be held in write mode.
1578  * NOTE: no locks must be held, the rwsem is taken inside this function.
1579  */
1580 static int semctl_down(struct ipc_namespace *ns, int semid,
1581 		       int cmd, struct semid64_ds *semid64)
1582 {
1583 	struct sem_array *sma;
1584 	int err;
1585 	struct kern_ipc_perm *ipcp;
1586 
1587 	down_write(&sem_ids(ns).rwsem);
1588 	rcu_read_lock();
1589 
1590 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1591 				      &semid64->sem_perm, 0);
1592 	if (IS_ERR(ipcp)) {
1593 		err = PTR_ERR(ipcp);
1594 		goto out_unlock1;
1595 	}
1596 
1597 	sma = container_of(ipcp, struct sem_array, sem_perm);
1598 
1599 	err = security_sem_semctl(&sma->sem_perm, cmd);
1600 	if (err)
1601 		goto out_unlock1;
1602 
1603 	switch (cmd) {
1604 	case IPC_RMID:
1605 		sem_lock(sma, NULL, -1);
1606 		/* freeary unlocks the ipc object and rcu */
1607 		freeary(ns, ipcp);
1608 		goto out_up;
1609 	case IPC_SET:
1610 		sem_lock(sma, NULL, -1);
1611 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1612 		if (err)
1613 			goto out_unlock0;
1614 		sma->sem_ctime = ktime_get_real_seconds();
1615 		break;
1616 	default:
1617 		err = -EINVAL;
1618 		goto out_unlock1;
1619 	}
1620 
1621 out_unlock0:
1622 	sem_unlock(sma, -1);
1623 out_unlock1:
1624 	rcu_read_unlock();
1625 out_up:
1626 	up_write(&sem_ids(ns).rwsem);
1627 	return err;
1628 }
1629 
1630 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1631 {
1632 	int version;
1633 	struct ipc_namespace *ns;
1634 	void __user *p = (void __user *)arg;
1635 	struct semid64_ds semid64;
1636 	int err;
1637 
1638 	if (semid < 0)
1639 		return -EINVAL;
1640 
1641 	version = ipc_parse_version(&cmd);
1642 	ns = current->nsproxy->ipc_ns;
1643 
1644 	switch (cmd) {
1645 	case IPC_INFO:
1646 	case SEM_INFO:
1647 		return semctl_info(ns, semid, cmd, p);
1648 	case IPC_STAT:
1649 	case SEM_STAT:
1650 	case SEM_STAT_ANY:
1651 		err = semctl_stat(ns, semid, cmd, &semid64);
1652 		if (err < 0)
1653 			return err;
1654 		if (copy_semid_to_user(p, &semid64, version))
1655 			err = -EFAULT;
1656 		return err;
1657 	case GETALL:
1658 	case GETVAL:
1659 	case GETPID:
1660 	case GETNCNT:
1661 	case GETZCNT:
1662 	case SETALL:
1663 		return semctl_main(ns, semid, semnum, cmd, p);
1664 	case SETVAL: {
1665 		int val;
1666 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1667 		/* big-endian 64bit */
1668 		val = arg >> 32;
1669 #else
1670 		/* 32bit or little-endian 64bit */
1671 		val = arg;
1672 #endif
1673 		return semctl_setval(ns, semid, semnum, val);
1674 	}
1675 	case IPC_SET:
1676 		if (copy_semid_from_user(&semid64, p, version))
1677 			return -EFAULT;
1678 	case IPC_RMID:
1679 		return semctl_down(ns, semid, cmd, &semid64);
1680 	default:
1681 		return -EINVAL;
1682 	}
1683 }
1684 
1685 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1686 {
1687 	return ksys_semctl(semid, semnum, cmd, arg);
1688 }
1689 
1690 #ifdef CONFIG_COMPAT
1691 
1692 struct compat_semid_ds {
1693 	struct compat_ipc_perm sem_perm;
1694 	compat_time_t sem_otime;
1695 	compat_time_t sem_ctime;
1696 	compat_uptr_t sem_base;
1697 	compat_uptr_t sem_pending;
1698 	compat_uptr_t sem_pending_last;
1699 	compat_uptr_t undo;
1700 	unsigned short sem_nsems;
1701 };
1702 
1703 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1704 					int version)
1705 {
1706 	memset(out, 0, sizeof(*out));
1707 	if (version == IPC_64) {
1708 		struct compat_semid64_ds __user *p = buf;
1709 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1710 	} else {
1711 		struct compat_semid_ds __user *p = buf;
1712 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1713 	}
1714 }
1715 
1716 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1717 					int version)
1718 {
1719 	if (version == IPC_64) {
1720 		struct compat_semid64_ds v;
1721 		memset(&v, 0, sizeof(v));
1722 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1723 		v.sem_otime	 = lower_32_bits(in->sem_otime);
1724 		v.sem_otime_high = upper_32_bits(in->sem_otime);
1725 		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1726 		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1727 		v.sem_nsems = in->sem_nsems;
1728 		return copy_to_user(buf, &v, sizeof(v));
1729 	} else {
1730 		struct compat_semid_ds v;
1731 		memset(&v, 0, sizeof(v));
1732 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1733 		v.sem_otime = in->sem_otime;
1734 		v.sem_ctime = in->sem_ctime;
1735 		v.sem_nsems = in->sem_nsems;
1736 		return copy_to_user(buf, &v, sizeof(v));
1737 	}
1738 }
1739 
1740 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1741 {
1742 	void __user *p = compat_ptr(arg);
1743 	struct ipc_namespace *ns;
1744 	struct semid64_ds semid64;
1745 	int version = compat_ipc_parse_version(&cmd);
1746 	int err;
1747 
1748 	ns = current->nsproxy->ipc_ns;
1749 
1750 	if (semid < 0)
1751 		return -EINVAL;
1752 
1753 	switch (cmd & (~IPC_64)) {
1754 	case IPC_INFO:
1755 	case SEM_INFO:
1756 		return semctl_info(ns, semid, cmd, p);
1757 	case IPC_STAT:
1758 	case SEM_STAT:
1759 	case SEM_STAT_ANY:
1760 		err = semctl_stat(ns, semid, cmd, &semid64);
1761 		if (err < 0)
1762 			return err;
1763 		if (copy_compat_semid_to_user(p, &semid64, version))
1764 			err = -EFAULT;
1765 		return err;
1766 	case GETVAL:
1767 	case GETPID:
1768 	case GETNCNT:
1769 	case GETZCNT:
1770 	case GETALL:
1771 	case SETALL:
1772 		return semctl_main(ns, semid, semnum, cmd, p);
1773 	case SETVAL:
1774 		return semctl_setval(ns, semid, semnum, arg);
1775 	case IPC_SET:
1776 		if (copy_compat_semid_from_user(&semid64, p, version))
1777 			return -EFAULT;
1778 		/* fallthru */
1779 	case IPC_RMID:
1780 		return semctl_down(ns, semid, cmd, &semid64);
1781 	default:
1782 		return -EINVAL;
1783 	}
1784 }
1785 
1786 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1787 {
1788 	return compat_ksys_semctl(semid, semnum, cmd, arg);
1789 }
1790 #endif
1791 
1792 /* If the task doesn't already have a undo_list, then allocate one
1793  * here.  We guarantee there is only one thread using this undo list,
1794  * and current is THE ONE
1795  *
1796  * If this allocation and assignment succeeds, but later
1797  * portions of this code fail, there is no need to free the sem_undo_list.
1798  * Just let it stay associated with the task, and it'll be freed later
1799  * at exit time.
1800  *
1801  * This can block, so callers must hold no locks.
1802  */
1803 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1804 {
1805 	struct sem_undo_list *undo_list;
1806 
1807 	undo_list = current->sysvsem.undo_list;
1808 	if (!undo_list) {
1809 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1810 		if (undo_list == NULL)
1811 			return -ENOMEM;
1812 		spin_lock_init(&undo_list->lock);
1813 		refcount_set(&undo_list->refcnt, 1);
1814 		INIT_LIST_HEAD(&undo_list->list_proc);
1815 
1816 		current->sysvsem.undo_list = undo_list;
1817 	}
1818 	*undo_listp = undo_list;
1819 	return 0;
1820 }
1821 
1822 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1823 {
1824 	struct sem_undo *un;
1825 
1826 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1827 		if (un->semid == semid)
1828 			return un;
1829 	}
1830 	return NULL;
1831 }
1832 
1833 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1834 {
1835 	struct sem_undo *un;
1836 
1837 	assert_spin_locked(&ulp->lock);
1838 
1839 	un = __lookup_undo(ulp, semid);
1840 	if (un) {
1841 		list_del_rcu(&un->list_proc);
1842 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1843 	}
1844 	return un;
1845 }
1846 
1847 /**
1848  * find_alloc_undo - lookup (and if not present create) undo array
1849  * @ns: namespace
1850  * @semid: semaphore array id
1851  *
1852  * The function looks up (and if not present creates) the undo structure.
1853  * The size of the undo structure depends on the size of the semaphore
1854  * array, thus the alloc path is not that straightforward.
1855  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1856  * performs a rcu_read_lock().
1857  */
1858 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1859 {
1860 	struct sem_array *sma;
1861 	struct sem_undo_list *ulp;
1862 	struct sem_undo *un, *new;
1863 	int nsems, error;
1864 
1865 	error = get_undo_list(&ulp);
1866 	if (error)
1867 		return ERR_PTR(error);
1868 
1869 	rcu_read_lock();
1870 	spin_lock(&ulp->lock);
1871 	un = lookup_undo(ulp, semid);
1872 	spin_unlock(&ulp->lock);
1873 	if (likely(un != NULL))
1874 		goto out;
1875 
1876 	/* no undo structure around - allocate one. */
1877 	/* step 1: figure out the size of the semaphore array */
1878 	sma = sem_obtain_object_check(ns, semid);
1879 	if (IS_ERR(sma)) {
1880 		rcu_read_unlock();
1881 		return ERR_CAST(sma);
1882 	}
1883 
1884 	nsems = sma->sem_nsems;
1885 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1886 		rcu_read_unlock();
1887 		un = ERR_PTR(-EIDRM);
1888 		goto out;
1889 	}
1890 	rcu_read_unlock();
1891 
1892 	/* step 2: allocate new undo structure */
1893 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1894 	if (!new) {
1895 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1896 		return ERR_PTR(-ENOMEM);
1897 	}
1898 
1899 	/* step 3: Acquire the lock on semaphore array */
1900 	rcu_read_lock();
1901 	sem_lock_and_putref(sma);
1902 	if (!ipc_valid_object(&sma->sem_perm)) {
1903 		sem_unlock(sma, -1);
1904 		rcu_read_unlock();
1905 		kfree(new);
1906 		un = ERR_PTR(-EIDRM);
1907 		goto out;
1908 	}
1909 	spin_lock(&ulp->lock);
1910 
1911 	/*
1912 	 * step 4: check for races: did someone else allocate the undo struct?
1913 	 */
1914 	un = lookup_undo(ulp, semid);
1915 	if (un) {
1916 		kfree(new);
1917 		goto success;
1918 	}
1919 	/* step 5: initialize & link new undo structure */
1920 	new->semadj = (short *) &new[1];
1921 	new->ulp = ulp;
1922 	new->semid = semid;
1923 	assert_spin_locked(&ulp->lock);
1924 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1925 	ipc_assert_locked_object(&sma->sem_perm);
1926 	list_add(&new->list_id, &sma->list_id);
1927 	un = new;
1928 
1929 success:
1930 	spin_unlock(&ulp->lock);
1931 	sem_unlock(sma, -1);
1932 out:
1933 	return un;
1934 }
1935 
1936 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1937 		unsigned nsops, const struct timespec64 *timeout)
1938 {
1939 	int error = -EINVAL;
1940 	struct sem_array *sma;
1941 	struct sembuf fast_sops[SEMOPM_FAST];
1942 	struct sembuf *sops = fast_sops, *sop;
1943 	struct sem_undo *un;
1944 	int max, locknum;
1945 	bool undos = false, alter = false, dupsop = false;
1946 	struct sem_queue queue;
1947 	unsigned long dup = 0, jiffies_left = 0;
1948 	struct ipc_namespace *ns;
1949 
1950 	ns = current->nsproxy->ipc_ns;
1951 
1952 	if (nsops < 1 || semid < 0)
1953 		return -EINVAL;
1954 	if (nsops > ns->sc_semopm)
1955 		return -E2BIG;
1956 	if (nsops > SEMOPM_FAST) {
1957 		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1958 		if (sops == NULL)
1959 			return -ENOMEM;
1960 	}
1961 
1962 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1963 		error =  -EFAULT;
1964 		goto out_free;
1965 	}
1966 
1967 	if (timeout) {
1968 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1969 			timeout->tv_nsec >= 1000000000L) {
1970 			error = -EINVAL;
1971 			goto out_free;
1972 		}
1973 		jiffies_left = timespec64_to_jiffies(timeout);
1974 	}
1975 
1976 	max = 0;
1977 	for (sop = sops; sop < sops + nsops; sop++) {
1978 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1979 
1980 		if (sop->sem_num >= max)
1981 			max = sop->sem_num;
1982 		if (sop->sem_flg & SEM_UNDO)
1983 			undos = true;
1984 		if (dup & mask) {
1985 			/*
1986 			 * There was a previous alter access that appears
1987 			 * to have accessed the same semaphore, thus use
1988 			 * the dupsop logic. "appears", because the detection
1989 			 * can only check % BITS_PER_LONG.
1990 			 */
1991 			dupsop = true;
1992 		}
1993 		if (sop->sem_op != 0) {
1994 			alter = true;
1995 			dup |= mask;
1996 		}
1997 	}
1998 
1999 	if (undos) {
2000 		/* On success, find_alloc_undo takes the rcu_read_lock */
2001 		un = find_alloc_undo(ns, semid);
2002 		if (IS_ERR(un)) {
2003 			error = PTR_ERR(un);
2004 			goto out_free;
2005 		}
2006 	} else {
2007 		un = NULL;
2008 		rcu_read_lock();
2009 	}
2010 
2011 	sma = sem_obtain_object_check(ns, semid);
2012 	if (IS_ERR(sma)) {
2013 		rcu_read_unlock();
2014 		error = PTR_ERR(sma);
2015 		goto out_free;
2016 	}
2017 
2018 	error = -EFBIG;
2019 	if (max >= sma->sem_nsems) {
2020 		rcu_read_unlock();
2021 		goto out_free;
2022 	}
2023 
2024 	error = -EACCES;
2025 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2026 		rcu_read_unlock();
2027 		goto out_free;
2028 	}
2029 
2030 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2031 	if (error) {
2032 		rcu_read_unlock();
2033 		goto out_free;
2034 	}
2035 
2036 	error = -EIDRM;
2037 	locknum = sem_lock(sma, sops, nsops);
2038 	/*
2039 	 * We eventually might perform the following check in a lockless
2040 	 * fashion, considering ipc_valid_object() locking constraints.
2041 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2042 	 * only a per-semaphore lock is held and it's OK to proceed with the
2043 	 * check below. More details on the fine grained locking scheme
2044 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2045 	 */
2046 	if (!ipc_valid_object(&sma->sem_perm))
2047 		goto out_unlock_free;
2048 	/*
2049 	 * semid identifiers are not unique - find_alloc_undo may have
2050 	 * allocated an undo structure, it was invalidated by an RMID
2051 	 * and now a new array with received the same id. Check and fail.
2052 	 * This case can be detected checking un->semid. The existence of
2053 	 * "un" itself is guaranteed by rcu.
2054 	 */
2055 	if (un && un->semid == -1)
2056 		goto out_unlock_free;
2057 
2058 	queue.sops = sops;
2059 	queue.nsops = nsops;
2060 	queue.undo = un;
2061 	queue.pid = task_tgid(current);
2062 	queue.alter = alter;
2063 	queue.dupsop = dupsop;
2064 
2065 	error = perform_atomic_semop(sma, &queue);
2066 	if (error == 0) { /* non-blocking succesfull path */
2067 		DEFINE_WAKE_Q(wake_q);
2068 
2069 		/*
2070 		 * If the operation was successful, then do
2071 		 * the required updates.
2072 		 */
2073 		if (alter)
2074 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2075 		else
2076 			set_semotime(sma, sops);
2077 
2078 		sem_unlock(sma, locknum);
2079 		rcu_read_unlock();
2080 		wake_up_q(&wake_q);
2081 
2082 		goto out_free;
2083 	}
2084 	if (error < 0) /* non-blocking error path */
2085 		goto out_unlock_free;
2086 
2087 	/*
2088 	 * We need to sleep on this operation, so we put the current
2089 	 * task into the pending queue and go to sleep.
2090 	 */
2091 	if (nsops == 1) {
2092 		struct sem *curr;
2093 		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2094 		curr = &sma->sems[idx];
2095 
2096 		if (alter) {
2097 			if (sma->complex_count) {
2098 				list_add_tail(&queue.list,
2099 						&sma->pending_alter);
2100 			} else {
2101 
2102 				list_add_tail(&queue.list,
2103 						&curr->pending_alter);
2104 			}
2105 		} else {
2106 			list_add_tail(&queue.list, &curr->pending_const);
2107 		}
2108 	} else {
2109 		if (!sma->complex_count)
2110 			merge_queues(sma);
2111 
2112 		if (alter)
2113 			list_add_tail(&queue.list, &sma->pending_alter);
2114 		else
2115 			list_add_tail(&queue.list, &sma->pending_const);
2116 
2117 		sma->complex_count++;
2118 	}
2119 
2120 	do {
2121 		queue.status = -EINTR;
2122 		queue.sleeper = current;
2123 
2124 		__set_current_state(TASK_INTERRUPTIBLE);
2125 		sem_unlock(sma, locknum);
2126 		rcu_read_unlock();
2127 
2128 		if (timeout)
2129 			jiffies_left = schedule_timeout(jiffies_left);
2130 		else
2131 			schedule();
2132 
2133 		/*
2134 		 * fastpath: the semop has completed, either successfully or
2135 		 * not, from the syscall pov, is quite irrelevant to us at this
2136 		 * point; we're done.
2137 		 *
2138 		 * We _do_ care, nonetheless, about being awoken by a signal or
2139 		 * spuriously.  The queue.status is checked again in the
2140 		 * slowpath (aka after taking sem_lock), such that we can detect
2141 		 * scenarios where we were awakened externally, during the
2142 		 * window between wake_q_add() and wake_up_q().
2143 		 */
2144 		error = READ_ONCE(queue.status);
2145 		if (error != -EINTR) {
2146 			/*
2147 			 * User space could assume that semop() is a memory
2148 			 * barrier: Without the mb(), the cpu could
2149 			 * speculatively read in userspace stale data that was
2150 			 * overwritten by the previous owner of the semaphore.
2151 			 */
2152 			smp_mb();
2153 			goto out_free;
2154 		}
2155 
2156 		rcu_read_lock();
2157 		locknum = sem_lock(sma, sops, nsops);
2158 
2159 		if (!ipc_valid_object(&sma->sem_perm))
2160 			goto out_unlock_free;
2161 
2162 		error = READ_ONCE(queue.status);
2163 
2164 		/*
2165 		 * If queue.status != -EINTR we are woken up by another process.
2166 		 * Leave without unlink_queue(), but with sem_unlock().
2167 		 */
2168 		if (error != -EINTR)
2169 			goto out_unlock_free;
2170 
2171 		/*
2172 		 * If an interrupt occurred we have to clean up the queue.
2173 		 */
2174 		if (timeout && jiffies_left == 0)
2175 			error = -EAGAIN;
2176 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2177 
2178 	unlink_queue(sma, &queue);
2179 
2180 out_unlock_free:
2181 	sem_unlock(sma, locknum);
2182 	rcu_read_unlock();
2183 out_free:
2184 	if (sops != fast_sops)
2185 		kvfree(sops);
2186 	return error;
2187 }
2188 
2189 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2190 		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2191 {
2192 	if (timeout) {
2193 		struct timespec64 ts;
2194 		if (get_timespec64(&ts, timeout))
2195 			return -EFAULT;
2196 		return do_semtimedop(semid, tsops, nsops, &ts);
2197 	}
2198 	return do_semtimedop(semid, tsops, nsops, NULL);
2199 }
2200 
2201 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2202 		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2203 {
2204 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2205 }
2206 
2207 #ifdef CONFIG_COMPAT_32BIT_TIME
2208 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2209 			    unsigned int nsops,
2210 			    const struct compat_timespec __user *timeout)
2211 {
2212 	if (timeout) {
2213 		struct timespec64 ts;
2214 		if (compat_get_timespec64(&ts, timeout))
2215 			return -EFAULT;
2216 		return do_semtimedop(semid, tsems, nsops, &ts);
2217 	}
2218 	return do_semtimedop(semid, tsems, nsops, NULL);
2219 }
2220 
2221 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2222 		       unsigned int, nsops,
2223 		       const struct compat_timespec __user *, timeout)
2224 {
2225 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2226 }
2227 #endif
2228 
2229 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2230 		unsigned, nsops)
2231 {
2232 	return do_semtimedop(semid, tsops, nsops, NULL);
2233 }
2234 
2235 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2236  * parent and child tasks.
2237  */
2238 
2239 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2240 {
2241 	struct sem_undo_list *undo_list;
2242 	int error;
2243 
2244 	if (clone_flags & CLONE_SYSVSEM) {
2245 		error = get_undo_list(&undo_list);
2246 		if (error)
2247 			return error;
2248 		refcount_inc(&undo_list->refcnt);
2249 		tsk->sysvsem.undo_list = undo_list;
2250 	} else
2251 		tsk->sysvsem.undo_list = NULL;
2252 
2253 	return 0;
2254 }
2255 
2256 /*
2257  * add semadj values to semaphores, free undo structures.
2258  * undo structures are not freed when semaphore arrays are destroyed
2259  * so some of them may be out of date.
2260  * IMPLEMENTATION NOTE: There is some confusion over whether the
2261  * set of adjustments that needs to be done should be done in an atomic
2262  * manner or not. That is, if we are attempting to decrement the semval
2263  * should we queue up and wait until we can do so legally?
2264  * The original implementation attempted to do this (queue and wait).
2265  * The current implementation does not do so. The POSIX standard
2266  * and SVID should be consulted to determine what behavior is mandated.
2267  */
2268 void exit_sem(struct task_struct *tsk)
2269 {
2270 	struct sem_undo_list *ulp;
2271 
2272 	ulp = tsk->sysvsem.undo_list;
2273 	if (!ulp)
2274 		return;
2275 	tsk->sysvsem.undo_list = NULL;
2276 
2277 	if (!refcount_dec_and_test(&ulp->refcnt))
2278 		return;
2279 
2280 	for (;;) {
2281 		struct sem_array *sma;
2282 		struct sem_undo *un;
2283 		int semid, i;
2284 		DEFINE_WAKE_Q(wake_q);
2285 
2286 		cond_resched();
2287 
2288 		rcu_read_lock();
2289 		un = list_entry_rcu(ulp->list_proc.next,
2290 				    struct sem_undo, list_proc);
2291 		if (&un->list_proc == &ulp->list_proc) {
2292 			/*
2293 			 * We must wait for freeary() before freeing this ulp,
2294 			 * in case we raced with last sem_undo. There is a small
2295 			 * possibility where we exit while freeary() didn't
2296 			 * finish unlocking sem_undo_list.
2297 			 */
2298 			spin_lock(&ulp->lock);
2299 			spin_unlock(&ulp->lock);
2300 			rcu_read_unlock();
2301 			break;
2302 		}
2303 		spin_lock(&ulp->lock);
2304 		semid = un->semid;
2305 		spin_unlock(&ulp->lock);
2306 
2307 		/* exit_sem raced with IPC_RMID, nothing to do */
2308 		if (semid == -1) {
2309 			rcu_read_unlock();
2310 			continue;
2311 		}
2312 
2313 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2314 		/* exit_sem raced with IPC_RMID, nothing to do */
2315 		if (IS_ERR(sma)) {
2316 			rcu_read_unlock();
2317 			continue;
2318 		}
2319 
2320 		sem_lock(sma, NULL, -1);
2321 		/* exit_sem raced with IPC_RMID, nothing to do */
2322 		if (!ipc_valid_object(&sma->sem_perm)) {
2323 			sem_unlock(sma, -1);
2324 			rcu_read_unlock();
2325 			continue;
2326 		}
2327 		un = __lookup_undo(ulp, semid);
2328 		if (un == NULL) {
2329 			/* exit_sem raced with IPC_RMID+semget() that created
2330 			 * exactly the same semid. Nothing to do.
2331 			 */
2332 			sem_unlock(sma, -1);
2333 			rcu_read_unlock();
2334 			continue;
2335 		}
2336 
2337 		/* remove un from the linked lists */
2338 		ipc_assert_locked_object(&sma->sem_perm);
2339 		list_del(&un->list_id);
2340 
2341 		/* we are the last process using this ulp, acquiring ulp->lock
2342 		 * isn't required. Besides that, we are also protected against
2343 		 * IPC_RMID as we hold sma->sem_perm lock now
2344 		 */
2345 		list_del_rcu(&un->list_proc);
2346 
2347 		/* perform adjustments registered in un */
2348 		for (i = 0; i < sma->sem_nsems; i++) {
2349 			struct sem *semaphore = &sma->sems[i];
2350 			if (un->semadj[i]) {
2351 				semaphore->semval += un->semadj[i];
2352 				/*
2353 				 * Range checks of the new semaphore value,
2354 				 * not defined by sus:
2355 				 * - Some unices ignore the undo entirely
2356 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2357 				 * - some cap the value (e.g. FreeBSD caps
2358 				 *   at 0, but doesn't enforce SEMVMX)
2359 				 *
2360 				 * Linux caps the semaphore value, both at 0
2361 				 * and at SEMVMX.
2362 				 *
2363 				 *	Manfred <manfred@colorfullife.com>
2364 				 */
2365 				if (semaphore->semval < 0)
2366 					semaphore->semval = 0;
2367 				if (semaphore->semval > SEMVMX)
2368 					semaphore->semval = SEMVMX;
2369 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2370 			}
2371 		}
2372 		/* maybe some queued-up processes were waiting for this */
2373 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2374 		sem_unlock(sma, -1);
2375 		rcu_read_unlock();
2376 		wake_up_q(&wake_q);
2377 
2378 		kfree_rcu(un, rcu);
2379 	}
2380 	kfree(ulp);
2381 }
2382 
2383 #ifdef CONFIG_PROC_FS
2384 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2385 {
2386 	struct user_namespace *user_ns = seq_user_ns(s);
2387 	struct kern_ipc_perm *ipcp = it;
2388 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2389 	time64_t sem_otime;
2390 
2391 	/*
2392 	 * The proc interface isn't aware of sem_lock(), it calls
2393 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2394 	 * In order to stay compatible with sem_lock(), we must
2395 	 * enter / leave complex_mode.
2396 	 */
2397 	complexmode_enter(sma);
2398 
2399 	sem_otime = get_semotime(sma);
2400 
2401 	seq_printf(s,
2402 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2403 		   sma->sem_perm.key,
2404 		   sma->sem_perm.id,
2405 		   sma->sem_perm.mode,
2406 		   sma->sem_nsems,
2407 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2408 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2409 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2410 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2411 		   sem_otime,
2412 		   sma->sem_ctime);
2413 
2414 	complexmode_tryleave(sma);
2415 
2416 	return 0;
2417 }
2418 #endif
2419