1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 /* 96 * PID of the process that last modified the semaphore. For 97 * Linux, specifically these are: 98 * - semop 99 * - semctl, via SETVAL and SETALL. 100 * - at task exit when performing undo adjustments (see exit_sem). 101 */ 102 int sempid; 103 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 104 struct list_head pending_alter; /* pending single-sop operations */ 105 /* that alter the semaphore */ 106 struct list_head pending_const; /* pending single-sop operations */ 107 /* that do not alter the semaphore*/ 108 time_t sem_otime; /* candidate for sem_otime */ 109 } ____cacheline_aligned_in_smp; 110 111 /* One queue for each sleeping process in the system. */ 112 struct sem_queue { 113 struct list_head list; /* queue of pending operations */ 114 struct task_struct *sleeper; /* this process */ 115 struct sem_undo *undo; /* undo structure */ 116 int pid; /* process id of requesting process */ 117 int status; /* completion status of operation */ 118 struct sembuf *sops; /* array of pending operations */ 119 struct sembuf *blocking; /* the operation that blocked */ 120 int nsops; /* number of operations */ 121 int alter; /* does *sops alter the array? */ 122 }; 123 124 /* Each task has a list of undo requests. They are executed automatically 125 * when the process exits. 126 */ 127 struct sem_undo { 128 struct list_head list_proc; /* per-process list: * 129 * all undos from one process 130 * rcu protected */ 131 struct rcu_head rcu; /* rcu struct for sem_undo */ 132 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 133 struct list_head list_id; /* per semaphore array list: 134 * all undos for one array */ 135 int semid; /* semaphore set identifier */ 136 short *semadj; /* array of adjustments */ 137 /* one per semaphore */ 138 }; 139 140 /* sem_undo_list controls shared access to the list of sem_undo structures 141 * that may be shared among all a CLONE_SYSVSEM task group. 142 */ 143 struct sem_undo_list { 144 atomic_t refcnt; 145 spinlock_t lock; 146 struct list_head list_proc; 147 }; 148 149 150 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 151 152 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 153 154 static int newary(struct ipc_namespace *, struct ipc_params *); 155 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 156 #ifdef CONFIG_PROC_FS 157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 158 #endif 159 160 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 161 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 162 163 /* 164 * Locking: 165 * sem_undo.id_next, 166 * sem_array.complex_count, 167 * sem_array.pending{_alter,_cont}, 168 * sem_array.sem_undo: global sem_lock() for read/write 169 * sem_undo.proc_next: only "current" is allowed to read/write that field. 170 * 171 * sem_array.sem_base[i].pending_{const,alter}: 172 * global or semaphore sem_lock() for read/write 173 */ 174 175 #define sc_semmsl sem_ctls[0] 176 #define sc_semmns sem_ctls[1] 177 #define sc_semopm sem_ctls[2] 178 #define sc_semmni sem_ctls[3] 179 180 void sem_init_ns(struct ipc_namespace *ns) 181 { 182 ns->sc_semmsl = SEMMSL; 183 ns->sc_semmns = SEMMNS; 184 ns->sc_semopm = SEMOPM; 185 ns->sc_semmni = SEMMNI; 186 ns->used_sems = 0; 187 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 188 } 189 190 #ifdef CONFIG_IPC_NS 191 void sem_exit_ns(struct ipc_namespace *ns) 192 { 193 free_ipcs(ns, &sem_ids(ns), freeary); 194 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 195 } 196 #endif 197 198 void __init sem_init(void) 199 { 200 sem_init_ns(&init_ipc_ns); 201 ipc_init_proc_interface("sysvipc/sem", 202 " key semid perms nsems uid gid cuid cgid otime ctime\n", 203 IPC_SEM_IDS, sysvipc_sem_proc_show); 204 } 205 206 /** 207 * unmerge_queues - unmerge queues, if possible. 208 * @sma: semaphore array 209 * 210 * The function unmerges the wait queues if complex_count is 0. 211 * It must be called prior to dropping the global semaphore array lock. 212 */ 213 static void unmerge_queues(struct sem_array *sma) 214 { 215 struct sem_queue *q, *tq; 216 217 /* complex operations still around? */ 218 if (sma->complex_count) 219 return; 220 /* 221 * We will switch back to simple mode. 222 * Move all pending operation back into the per-semaphore 223 * queues. 224 */ 225 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 226 struct sem *curr; 227 curr = &sma->sem_base[q->sops[0].sem_num]; 228 229 list_add_tail(&q->list, &curr->pending_alter); 230 } 231 INIT_LIST_HEAD(&sma->pending_alter); 232 } 233 234 /** 235 * merge_queues - merge single semop queues into global queue 236 * @sma: semaphore array 237 * 238 * This function merges all per-semaphore queues into the global queue. 239 * It is necessary to achieve FIFO ordering for the pending single-sop 240 * operations when a multi-semop operation must sleep. 241 * Only the alter operations must be moved, the const operations can stay. 242 */ 243 static void merge_queues(struct sem_array *sma) 244 { 245 int i; 246 for (i = 0; i < sma->sem_nsems; i++) { 247 struct sem *sem = sma->sem_base + i; 248 249 list_splice_init(&sem->pending_alter, &sma->pending_alter); 250 } 251 } 252 253 static void sem_rcu_free(struct rcu_head *head) 254 { 255 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 256 struct sem_array *sma = ipc_rcu_to_struct(p); 257 258 security_sem_free(sma); 259 ipc_rcu_free(head); 260 } 261 262 /* 263 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they 264 * are only control barriers. 265 * The code must pair with spin_unlock(&sem->lock) or 266 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient. 267 * 268 * smp_rmb() is sufficient, as writes cannot pass the control barrier. 269 */ 270 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb() 271 272 /* 273 * Wait until all currently ongoing simple ops have completed. 274 * Caller must own sem_perm.lock. 275 * New simple ops cannot start, because simple ops first check 276 * that sem_perm.lock is free. 277 * that a) sem_perm.lock is free and b) complex_count is 0. 278 */ 279 static void sem_wait_array(struct sem_array *sma) 280 { 281 int i; 282 struct sem *sem; 283 284 if (sma->complex_count) { 285 /* The thread that increased sma->complex_count waited on 286 * all sem->lock locks. Thus we don't need to wait again. 287 */ 288 return; 289 } 290 291 for (i = 0; i < sma->sem_nsems; i++) { 292 sem = sma->sem_base + i; 293 spin_unlock_wait(&sem->lock); 294 } 295 ipc_smp_acquire__after_spin_is_unlocked(); 296 } 297 298 /* 299 * If the request contains only one semaphore operation, and there are 300 * no complex transactions pending, lock only the semaphore involved. 301 * Otherwise, lock the entire semaphore array, since we either have 302 * multiple semaphores in our own semops, or we need to look at 303 * semaphores from other pending complex operations. 304 */ 305 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 306 int nsops) 307 { 308 struct sem *sem; 309 310 if (nsops != 1) { 311 /* Complex operation - acquire a full lock */ 312 ipc_lock_object(&sma->sem_perm); 313 314 /* And wait until all simple ops that are processed 315 * right now have dropped their locks. 316 */ 317 sem_wait_array(sma); 318 return -1; 319 } 320 321 /* 322 * Only one semaphore affected - try to optimize locking. 323 * The rules are: 324 * - optimized locking is possible if no complex operation 325 * is either enqueued or processed right now. 326 * - The test for enqueued complex ops is simple: 327 * sma->complex_count != 0 328 * - Testing for complex ops that are processed right now is 329 * a bit more difficult. Complex ops acquire the full lock 330 * and first wait that the running simple ops have completed. 331 * (see above) 332 * Thus: If we own a simple lock and the global lock is free 333 * and complex_count is now 0, then it will stay 0 and 334 * thus just locking sem->lock is sufficient. 335 */ 336 sem = sma->sem_base + sops->sem_num; 337 338 if (sma->complex_count == 0) { 339 /* 340 * It appears that no complex operation is around. 341 * Acquire the per-semaphore lock. 342 */ 343 spin_lock(&sem->lock); 344 345 /* Then check that the global lock is free */ 346 if (!spin_is_locked(&sma->sem_perm.lock)) { 347 /* 348 * We need a memory barrier with acquire semantics, 349 * otherwise we can race with another thread that does: 350 * complex_count++; 351 * spin_unlock(sem_perm.lock); 352 */ 353 ipc_smp_acquire__after_spin_is_unlocked(); 354 355 /* 356 * Now repeat the test of complex_count: 357 * It can't change anymore until we drop sem->lock. 358 * Thus: if is now 0, then it will stay 0. 359 */ 360 if (sma->complex_count == 0) { 361 /* fast path successful! */ 362 return sops->sem_num; 363 } 364 } 365 spin_unlock(&sem->lock); 366 } 367 368 /* slow path: acquire the full lock */ 369 ipc_lock_object(&sma->sem_perm); 370 371 if (sma->complex_count == 0) { 372 /* False alarm: 373 * There is no complex operation, thus we can switch 374 * back to the fast path. 375 */ 376 spin_lock(&sem->lock); 377 ipc_unlock_object(&sma->sem_perm); 378 return sops->sem_num; 379 } else { 380 /* Not a false alarm, thus complete the sequence for a 381 * full lock. 382 */ 383 sem_wait_array(sma); 384 return -1; 385 } 386 } 387 388 static inline void sem_unlock(struct sem_array *sma, int locknum) 389 { 390 if (locknum == -1) { 391 unmerge_queues(sma); 392 ipc_unlock_object(&sma->sem_perm); 393 } else { 394 struct sem *sem = sma->sem_base + locknum; 395 spin_unlock(&sem->lock); 396 } 397 } 398 399 /* 400 * sem_lock_(check_) routines are called in the paths where the rwsem 401 * is not held. 402 * 403 * The caller holds the RCU read lock. 404 */ 405 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 406 int id, struct sembuf *sops, int nsops, int *locknum) 407 { 408 struct kern_ipc_perm *ipcp; 409 struct sem_array *sma; 410 411 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 412 if (IS_ERR(ipcp)) 413 return ERR_CAST(ipcp); 414 415 sma = container_of(ipcp, struct sem_array, sem_perm); 416 *locknum = sem_lock(sma, sops, nsops); 417 418 /* ipc_rmid() may have already freed the ID while sem_lock 419 * was spinning: verify that the structure is still valid 420 */ 421 if (ipc_valid_object(ipcp)) 422 return container_of(ipcp, struct sem_array, sem_perm); 423 424 sem_unlock(sma, *locknum); 425 return ERR_PTR(-EINVAL); 426 } 427 428 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 429 { 430 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 431 432 if (IS_ERR(ipcp)) 433 return ERR_CAST(ipcp); 434 435 return container_of(ipcp, struct sem_array, sem_perm); 436 } 437 438 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 439 int id) 440 { 441 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 442 443 if (IS_ERR(ipcp)) 444 return ERR_CAST(ipcp); 445 446 return container_of(ipcp, struct sem_array, sem_perm); 447 } 448 449 static inline void sem_lock_and_putref(struct sem_array *sma) 450 { 451 sem_lock(sma, NULL, -1); 452 ipc_rcu_putref(sma, ipc_rcu_free); 453 } 454 455 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 456 { 457 ipc_rmid(&sem_ids(ns), &s->sem_perm); 458 } 459 460 /* 461 * Lockless wakeup algorithm: 462 * Without the check/retry algorithm a lockless wakeup is possible: 463 * - queue.status is initialized to -EINTR before blocking. 464 * - wakeup is performed by 465 * * unlinking the queue entry from the pending list 466 * * setting queue.status to IN_WAKEUP 467 * This is the notification for the blocked thread that a 468 * result value is imminent. 469 * * call wake_up_process 470 * * set queue.status to the final value. 471 * - the previously blocked thread checks queue.status: 472 * * if it's IN_WAKEUP, then it must wait until the value changes 473 * * if it's not -EINTR, then the operation was completed by 474 * update_queue. semtimedop can return queue.status without 475 * performing any operation on the sem array. 476 * * otherwise it must acquire the spinlock and check what's up. 477 * 478 * The two-stage algorithm is necessary to protect against the following 479 * races: 480 * - if queue.status is set after wake_up_process, then the woken up idle 481 * thread could race forward and try (and fail) to acquire sma->lock 482 * before update_queue had a chance to set queue.status 483 * - if queue.status is written before wake_up_process and if the 484 * blocked process is woken up by a signal between writing 485 * queue.status and the wake_up_process, then the woken up 486 * process could return from semtimedop and die by calling 487 * sys_exit before wake_up_process is called. Then wake_up_process 488 * will oops, because the task structure is already invalid. 489 * (yes, this happened on s390 with sysv msg). 490 * 491 */ 492 #define IN_WAKEUP 1 493 494 /** 495 * newary - Create a new semaphore set 496 * @ns: namespace 497 * @params: ptr to the structure that contains key, semflg and nsems 498 * 499 * Called with sem_ids.rwsem held (as a writer) 500 */ 501 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 502 { 503 int id; 504 int retval; 505 struct sem_array *sma; 506 int size; 507 key_t key = params->key; 508 int nsems = params->u.nsems; 509 int semflg = params->flg; 510 int i; 511 512 if (!nsems) 513 return -EINVAL; 514 if (ns->used_sems + nsems > ns->sc_semmns) 515 return -ENOSPC; 516 517 size = sizeof(*sma) + nsems * sizeof(struct sem); 518 sma = ipc_rcu_alloc(size); 519 if (!sma) 520 return -ENOMEM; 521 522 memset(sma, 0, size); 523 524 sma->sem_perm.mode = (semflg & S_IRWXUGO); 525 sma->sem_perm.key = key; 526 527 sma->sem_perm.security = NULL; 528 retval = security_sem_alloc(sma); 529 if (retval) { 530 ipc_rcu_putref(sma, ipc_rcu_free); 531 return retval; 532 } 533 534 sma->sem_base = (struct sem *) &sma[1]; 535 536 for (i = 0; i < nsems; i++) { 537 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 538 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 539 spin_lock_init(&sma->sem_base[i].lock); 540 } 541 542 sma->complex_count = 0; 543 INIT_LIST_HEAD(&sma->pending_alter); 544 INIT_LIST_HEAD(&sma->pending_const); 545 INIT_LIST_HEAD(&sma->list_id); 546 sma->sem_nsems = nsems; 547 sma->sem_ctime = get_seconds(); 548 549 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 550 if (id < 0) { 551 ipc_rcu_putref(sma, sem_rcu_free); 552 return id; 553 } 554 ns->used_sems += nsems; 555 556 sem_unlock(sma, -1); 557 rcu_read_unlock(); 558 559 return sma->sem_perm.id; 560 } 561 562 563 /* 564 * Called with sem_ids.rwsem and ipcp locked. 565 */ 566 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 567 { 568 struct sem_array *sma; 569 570 sma = container_of(ipcp, struct sem_array, sem_perm); 571 return security_sem_associate(sma, semflg); 572 } 573 574 /* 575 * Called with sem_ids.rwsem and ipcp locked. 576 */ 577 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 578 struct ipc_params *params) 579 { 580 struct sem_array *sma; 581 582 sma = container_of(ipcp, struct sem_array, sem_perm); 583 if (params->u.nsems > sma->sem_nsems) 584 return -EINVAL; 585 586 return 0; 587 } 588 589 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 590 { 591 struct ipc_namespace *ns; 592 static const struct ipc_ops sem_ops = { 593 .getnew = newary, 594 .associate = sem_security, 595 .more_checks = sem_more_checks, 596 }; 597 struct ipc_params sem_params; 598 599 ns = current->nsproxy->ipc_ns; 600 601 if (nsems < 0 || nsems > ns->sc_semmsl) 602 return -EINVAL; 603 604 sem_params.key = key; 605 sem_params.flg = semflg; 606 sem_params.u.nsems = nsems; 607 608 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 609 } 610 611 /** 612 * perform_atomic_semop - Perform (if possible) a semaphore operation 613 * @sma: semaphore array 614 * @q: struct sem_queue that describes the operation 615 * 616 * Returns 0 if the operation was possible. 617 * Returns 1 if the operation is impossible, the caller must sleep. 618 * Negative values are error codes. 619 */ 620 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 621 { 622 int result, sem_op, nsops, pid; 623 struct sembuf *sop; 624 struct sem *curr; 625 struct sembuf *sops; 626 struct sem_undo *un; 627 628 sops = q->sops; 629 nsops = q->nsops; 630 un = q->undo; 631 632 for (sop = sops; sop < sops + nsops; sop++) { 633 curr = sma->sem_base + sop->sem_num; 634 sem_op = sop->sem_op; 635 result = curr->semval; 636 637 if (!sem_op && result) 638 goto would_block; 639 640 result += sem_op; 641 if (result < 0) 642 goto would_block; 643 if (result > SEMVMX) 644 goto out_of_range; 645 646 if (sop->sem_flg & SEM_UNDO) { 647 int undo = un->semadj[sop->sem_num] - sem_op; 648 /* Exceeding the undo range is an error. */ 649 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 650 goto out_of_range; 651 un->semadj[sop->sem_num] = undo; 652 } 653 654 curr->semval = result; 655 } 656 657 sop--; 658 pid = q->pid; 659 while (sop >= sops) { 660 sma->sem_base[sop->sem_num].sempid = pid; 661 sop--; 662 } 663 664 return 0; 665 666 out_of_range: 667 result = -ERANGE; 668 goto undo; 669 670 would_block: 671 q->blocking = sop; 672 673 if (sop->sem_flg & IPC_NOWAIT) 674 result = -EAGAIN; 675 else 676 result = 1; 677 678 undo: 679 sop--; 680 while (sop >= sops) { 681 sem_op = sop->sem_op; 682 sma->sem_base[sop->sem_num].semval -= sem_op; 683 if (sop->sem_flg & SEM_UNDO) 684 un->semadj[sop->sem_num] += sem_op; 685 sop--; 686 } 687 688 return result; 689 } 690 691 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 692 * @q: queue entry that must be signaled 693 * @error: Error value for the signal 694 * 695 * Prepare the wake-up of the queue entry q. 696 */ 697 static void wake_up_sem_queue_prepare(struct list_head *pt, 698 struct sem_queue *q, int error) 699 { 700 if (list_empty(pt)) { 701 /* 702 * Hold preempt off so that we don't get preempted and have the 703 * wakee busy-wait until we're scheduled back on. 704 */ 705 preempt_disable(); 706 } 707 q->status = IN_WAKEUP; 708 q->pid = error; 709 710 list_add_tail(&q->list, pt); 711 } 712 713 /** 714 * wake_up_sem_queue_do - do the actual wake-up 715 * @pt: list of tasks to be woken up 716 * 717 * Do the actual wake-up. 718 * The function is called without any locks held, thus the semaphore array 719 * could be destroyed already and the tasks can disappear as soon as the 720 * status is set to the actual return code. 721 */ 722 static void wake_up_sem_queue_do(struct list_head *pt) 723 { 724 struct sem_queue *q, *t; 725 int did_something; 726 727 did_something = !list_empty(pt); 728 list_for_each_entry_safe(q, t, pt, list) { 729 wake_up_process(q->sleeper); 730 /* q can disappear immediately after writing q->status. */ 731 smp_wmb(); 732 q->status = q->pid; 733 } 734 if (did_something) 735 preempt_enable(); 736 } 737 738 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 739 { 740 list_del(&q->list); 741 if (q->nsops > 1) 742 sma->complex_count--; 743 } 744 745 /** check_restart(sma, q) 746 * @sma: semaphore array 747 * @q: the operation that just completed 748 * 749 * update_queue is O(N^2) when it restarts scanning the whole queue of 750 * waiting operations. Therefore this function checks if the restart is 751 * really necessary. It is called after a previously waiting operation 752 * modified the array. 753 * Note that wait-for-zero operations are handled without restart. 754 */ 755 static int check_restart(struct sem_array *sma, struct sem_queue *q) 756 { 757 /* pending complex alter operations are too difficult to analyse */ 758 if (!list_empty(&sma->pending_alter)) 759 return 1; 760 761 /* we were a sleeping complex operation. Too difficult */ 762 if (q->nsops > 1) 763 return 1; 764 765 /* It is impossible that someone waits for the new value: 766 * - complex operations always restart. 767 * - wait-for-zero are handled seperately. 768 * - q is a previously sleeping simple operation that 769 * altered the array. It must be a decrement, because 770 * simple increments never sleep. 771 * - If there are older (higher priority) decrements 772 * in the queue, then they have observed the original 773 * semval value and couldn't proceed. The operation 774 * decremented to value - thus they won't proceed either. 775 */ 776 return 0; 777 } 778 779 /** 780 * wake_const_ops - wake up non-alter tasks 781 * @sma: semaphore array. 782 * @semnum: semaphore that was modified. 783 * @pt: list head for the tasks that must be woken up. 784 * 785 * wake_const_ops must be called after a semaphore in a semaphore array 786 * was set to 0. If complex const operations are pending, wake_const_ops must 787 * be called with semnum = -1, as well as with the number of each modified 788 * semaphore. 789 * The tasks that must be woken up are added to @pt. The return code 790 * is stored in q->pid. 791 * The function returns 1 if at least one operation was completed successfully. 792 */ 793 static int wake_const_ops(struct sem_array *sma, int semnum, 794 struct list_head *pt) 795 { 796 struct sem_queue *q; 797 struct list_head *walk; 798 struct list_head *pending_list; 799 int semop_completed = 0; 800 801 if (semnum == -1) 802 pending_list = &sma->pending_const; 803 else 804 pending_list = &sma->sem_base[semnum].pending_const; 805 806 walk = pending_list->next; 807 while (walk != pending_list) { 808 int error; 809 810 q = container_of(walk, struct sem_queue, list); 811 walk = walk->next; 812 813 error = perform_atomic_semop(sma, q); 814 815 if (error <= 0) { 816 /* operation completed, remove from queue & wakeup */ 817 818 unlink_queue(sma, q); 819 820 wake_up_sem_queue_prepare(pt, q, error); 821 if (error == 0) 822 semop_completed = 1; 823 } 824 } 825 return semop_completed; 826 } 827 828 /** 829 * do_smart_wakeup_zero - wakeup all wait for zero tasks 830 * @sma: semaphore array 831 * @sops: operations that were performed 832 * @nsops: number of operations 833 * @pt: list head of the tasks that must be woken up. 834 * 835 * Checks all required queue for wait-for-zero operations, based 836 * on the actual changes that were performed on the semaphore array. 837 * The function returns 1 if at least one operation was completed successfully. 838 */ 839 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 840 int nsops, struct list_head *pt) 841 { 842 int i; 843 int semop_completed = 0; 844 int got_zero = 0; 845 846 /* first: the per-semaphore queues, if known */ 847 if (sops) { 848 for (i = 0; i < nsops; i++) { 849 int num = sops[i].sem_num; 850 851 if (sma->sem_base[num].semval == 0) { 852 got_zero = 1; 853 semop_completed |= wake_const_ops(sma, num, pt); 854 } 855 } 856 } else { 857 /* 858 * No sops means modified semaphores not known. 859 * Assume all were changed. 860 */ 861 for (i = 0; i < sma->sem_nsems; i++) { 862 if (sma->sem_base[i].semval == 0) { 863 got_zero = 1; 864 semop_completed |= wake_const_ops(sma, i, pt); 865 } 866 } 867 } 868 /* 869 * If one of the modified semaphores got 0, 870 * then check the global queue, too. 871 */ 872 if (got_zero) 873 semop_completed |= wake_const_ops(sma, -1, pt); 874 875 return semop_completed; 876 } 877 878 879 /** 880 * update_queue - look for tasks that can be completed. 881 * @sma: semaphore array. 882 * @semnum: semaphore that was modified. 883 * @pt: list head for the tasks that must be woken up. 884 * 885 * update_queue must be called after a semaphore in a semaphore array 886 * was modified. If multiple semaphores were modified, update_queue must 887 * be called with semnum = -1, as well as with the number of each modified 888 * semaphore. 889 * The tasks that must be woken up are added to @pt. The return code 890 * is stored in q->pid. 891 * The function internally checks if const operations can now succeed. 892 * 893 * The function return 1 if at least one semop was completed successfully. 894 */ 895 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 896 { 897 struct sem_queue *q; 898 struct list_head *walk; 899 struct list_head *pending_list; 900 int semop_completed = 0; 901 902 if (semnum == -1) 903 pending_list = &sma->pending_alter; 904 else 905 pending_list = &sma->sem_base[semnum].pending_alter; 906 907 again: 908 walk = pending_list->next; 909 while (walk != pending_list) { 910 int error, restart; 911 912 q = container_of(walk, struct sem_queue, list); 913 walk = walk->next; 914 915 /* If we are scanning the single sop, per-semaphore list of 916 * one semaphore and that semaphore is 0, then it is not 917 * necessary to scan further: simple increments 918 * that affect only one entry succeed immediately and cannot 919 * be in the per semaphore pending queue, and decrements 920 * cannot be successful if the value is already 0. 921 */ 922 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 923 break; 924 925 error = perform_atomic_semop(sma, q); 926 927 /* Does q->sleeper still need to sleep? */ 928 if (error > 0) 929 continue; 930 931 unlink_queue(sma, q); 932 933 if (error) { 934 restart = 0; 935 } else { 936 semop_completed = 1; 937 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 938 restart = check_restart(sma, q); 939 } 940 941 wake_up_sem_queue_prepare(pt, q, error); 942 if (restart) 943 goto again; 944 } 945 return semop_completed; 946 } 947 948 /** 949 * set_semotime - set sem_otime 950 * @sma: semaphore array 951 * @sops: operations that modified the array, may be NULL 952 * 953 * sem_otime is replicated to avoid cache line trashing. 954 * This function sets one instance to the current time. 955 */ 956 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 957 { 958 if (sops == NULL) { 959 sma->sem_base[0].sem_otime = get_seconds(); 960 } else { 961 sma->sem_base[sops[0].sem_num].sem_otime = 962 get_seconds(); 963 } 964 } 965 966 /** 967 * do_smart_update - optimized update_queue 968 * @sma: semaphore array 969 * @sops: operations that were performed 970 * @nsops: number of operations 971 * @otime: force setting otime 972 * @pt: list head of the tasks that must be woken up. 973 * 974 * do_smart_update() does the required calls to update_queue and wakeup_zero, 975 * based on the actual changes that were performed on the semaphore array. 976 * Note that the function does not do the actual wake-up: the caller is 977 * responsible for calling wake_up_sem_queue_do(@pt). 978 * It is safe to perform this call after dropping all locks. 979 */ 980 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 981 int otime, struct list_head *pt) 982 { 983 int i; 984 985 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 986 987 if (!list_empty(&sma->pending_alter)) { 988 /* semaphore array uses the global queue - just process it. */ 989 otime |= update_queue(sma, -1, pt); 990 } else { 991 if (!sops) { 992 /* 993 * No sops, thus the modified semaphores are not 994 * known. Check all. 995 */ 996 for (i = 0; i < sma->sem_nsems; i++) 997 otime |= update_queue(sma, i, pt); 998 } else { 999 /* 1000 * Check the semaphores that were increased: 1001 * - No complex ops, thus all sleeping ops are 1002 * decrease. 1003 * - if we decreased the value, then any sleeping 1004 * semaphore ops wont be able to run: If the 1005 * previous value was too small, then the new 1006 * value will be too small, too. 1007 */ 1008 for (i = 0; i < nsops; i++) { 1009 if (sops[i].sem_op > 0) { 1010 otime |= update_queue(sma, 1011 sops[i].sem_num, pt); 1012 } 1013 } 1014 } 1015 } 1016 if (otime) 1017 set_semotime(sma, sops); 1018 } 1019 1020 /* 1021 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1022 */ 1023 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1024 bool count_zero) 1025 { 1026 struct sembuf *sop = q->blocking; 1027 1028 /* 1029 * Linux always (since 0.99.10) reported a task as sleeping on all 1030 * semaphores. This violates SUS, therefore it was changed to the 1031 * standard compliant behavior. 1032 * Give the administrators a chance to notice that an application 1033 * might misbehave because it relies on the Linux behavior. 1034 */ 1035 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1036 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1037 current->comm, task_pid_nr(current)); 1038 1039 if (sop->sem_num != semnum) 1040 return 0; 1041 1042 if (count_zero && sop->sem_op == 0) 1043 return 1; 1044 if (!count_zero && sop->sem_op < 0) 1045 return 1; 1046 1047 return 0; 1048 } 1049 1050 /* The following counts are associated to each semaphore: 1051 * semncnt number of tasks waiting on semval being nonzero 1052 * semzcnt number of tasks waiting on semval being zero 1053 * 1054 * Per definition, a task waits only on the semaphore of the first semop 1055 * that cannot proceed, even if additional operation would block, too. 1056 */ 1057 static int count_semcnt(struct sem_array *sma, ushort semnum, 1058 bool count_zero) 1059 { 1060 struct list_head *l; 1061 struct sem_queue *q; 1062 int semcnt; 1063 1064 semcnt = 0; 1065 /* First: check the simple operations. They are easy to evaluate */ 1066 if (count_zero) 1067 l = &sma->sem_base[semnum].pending_const; 1068 else 1069 l = &sma->sem_base[semnum].pending_alter; 1070 1071 list_for_each_entry(q, l, list) { 1072 /* all task on a per-semaphore list sleep on exactly 1073 * that semaphore 1074 */ 1075 semcnt++; 1076 } 1077 1078 /* Then: check the complex operations. */ 1079 list_for_each_entry(q, &sma->pending_alter, list) { 1080 semcnt += check_qop(sma, semnum, q, count_zero); 1081 } 1082 if (count_zero) { 1083 list_for_each_entry(q, &sma->pending_const, list) { 1084 semcnt += check_qop(sma, semnum, q, count_zero); 1085 } 1086 } 1087 return semcnt; 1088 } 1089 1090 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1091 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1092 * remains locked on exit. 1093 */ 1094 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1095 { 1096 struct sem_undo *un, *tu; 1097 struct sem_queue *q, *tq; 1098 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1099 struct list_head tasks; 1100 int i; 1101 1102 /* Free the existing undo structures for this semaphore set. */ 1103 ipc_assert_locked_object(&sma->sem_perm); 1104 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1105 list_del(&un->list_id); 1106 spin_lock(&un->ulp->lock); 1107 un->semid = -1; 1108 list_del_rcu(&un->list_proc); 1109 spin_unlock(&un->ulp->lock); 1110 kfree_rcu(un, rcu); 1111 } 1112 1113 /* Wake up all pending processes and let them fail with EIDRM. */ 1114 INIT_LIST_HEAD(&tasks); 1115 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1116 unlink_queue(sma, q); 1117 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1118 } 1119 1120 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1121 unlink_queue(sma, q); 1122 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1123 } 1124 for (i = 0; i < sma->sem_nsems; i++) { 1125 struct sem *sem = sma->sem_base + i; 1126 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1127 unlink_queue(sma, q); 1128 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1129 } 1130 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1131 unlink_queue(sma, q); 1132 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1133 } 1134 } 1135 1136 /* Remove the semaphore set from the IDR */ 1137 sem_rmid(ns, sma); 1138 sem_unlock(sma, -1); 1139 rcu_read_unlock(); 1140 1141 wake_up_sem_queue_do(&tasks); 1142 ns->used_sems -= sma->sem_nsems; 1143 ipc_rcu_putref(sma, sem_rcu_free); 1144 } 1145 1146 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1147 { 1148 switch (version) { 1149 case IPC_64: 1150 return copy_to_user(buf, in, sizeof(*in)); 1151 case IPC_OLD: 1152 { 1153 struct semid_ds out; 1154 1155 memset(&out, 0, sizeof(out)); 1156 1157 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1158 1159 out.sem_otime = in->sem_otime; 1160 out.sem_ctime = in->sem_ctime; 1161 out.sem_nsems = in->sem_nsems; 1162 1163 return copy_to_user(buf, &out, sizeof(out)); 1164 } 1165 default: 1166 return -EINVAL; 1167 } 1168 } 1169 1170 static time_t get_semotime(struct sem_array *sma) 1171 { 1172 int i; 1173 time_t res; 1174 1175 res = sma->sem_base[0].sem_otime; 1176 for (i = 1; i < sma->sem_nsems; i++) { 1177 time_t to = sma->sem_base[i].sem_otime; 1178 1179 if (to > res) 1180 res = to; 1181 } 1182 return res; 1183 } 1184 1185 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1186 int cmd, int version, void __user *p) 1187 { 1188 int err; 1189 struct sem_array *sma; 1190 1191 switch (cmd) { 1192 case IPC_INFO: 1193 case SEM_INFO: 1194 { 1195 struct seminfo seminfo; 1196 int max_id; 1197 1198 err = security_sem_semctl(NULL, cmd); 1199 if (err) 1200 return err; 1201 1202 memset(&seminfo, 0, sizeof(seminfo)); 1203 seminfo.semmni = ns->sc_semmni; 1204 seminfo.semmns = ns->sc_semmns; 1205 seminfo.semmsl = ns->sc_semmsl; 1206 seminfo.semopm = ns->sc_semopm; 1207 seminfo.semvmx = SEMVMX; 1208 seminfo.semmnu = SEMMNU; 1209 seminfo.semmap = SEMMAP; 1210 seminfo.semume = SEMUME; 1211 down_read(&sem_ids(ns).rwsem); 1212 if (cmd == SEM_INFO) { 1213 seminfo.semusz = sem_ids(ns).in_use; 1214 seminfo.semaem = ns->used_sems; 1215 } else { 1216 seminfo.semusz = SEMUSZ; 1217 seminfo.semaem = SEMAEM; 1218 } 1219 max_id = ipc_get_maxid(&sem_ids(ns)); 1220 up_read(&sem_ids(ns).rwsem); 1221 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1222 return -EFAULT; 1223 return (max_id < 0) ? 0 : max_id; 1224 } 1225 case IPC_STAT: 1226 case SEM_STAT: 1227 { 1228 struct semid64_ds tbuf; 1229 int id = 0; 1230 1231 memset(&tbuf, 0, sizeof(tbuf)); 1232 1233 rcu_read_lock(); 1234 if (cmd == SEM_STAT) { 1235 sma = sem_obtain_object(ns, semid); 1236 if (IS_ERR(sma)) { 1237 err = PTR_ERR(sma); 1238 goto out_unlock; 1239 } 1240 id = sma->sem_perm.id; 1241 } else { 1242 sma = sem_obtain_object_check(ns, semid); 1243 if (IS_ERR(sma)) { 1244 err = PTR_ERR(sma); 1245 goto out_unlock; 1246 } 1247 } 1248 1249 err = -EACCES; 1250 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1251 goto out_unlock; 1252 1253 err = security_sem_semctl(sma, cmd); 1254 if (err) 1255 goto out_unlock; 1256 1257 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1258 tbuf.sem_otime = get_semotime(sma); 1259 tbuf.sem_ctime = sma->sem_ctime; 1260 tbuf.sem_nsems = sma->sem_nsems; 1261 rcu_read_unlock(); 1262 if (copy_semid_to_user(p, &tbuf, version)) 1263 return -EFAULT; 1264 return id; 1265 } 1266 default: 1267 return -EINVAL; 1268 } 1269 out_unlock: 1270 rcu_read_unlock(); 1271 return err; 1272 } 1273 1274 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1275 unsigned long arg) 1276 { 1277 struct sem_undo *un; 1278 struct sem_array *sma; 1279 struct sem *curr; 1280 int err; 1281 struct list_head tasks; 1282 int val; 1283 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1284 /* big-endian 64bit */ 1285 val = arg >> 32; 1286 #else 1287 /* 32bit or little-endian 64bit */ 1288 val = arg; 1289 #endif 1290 1291 if (val > SEMVMX || val < 0) 1292 return -ERANGE; 1293 1294 INIT_LIST_HEAD(&tasks); 1295 1296 rcu_read_lock(); 1297 sma = sem_obtain_object_check(ns, semid); 1298 if (IS_ERR(sma)) { 1299 rcu_read_unlock(); 1300 return PTR_ERR(sma); 1301 } 1302 1303 if (semnum < 0 || semnum >= sma->sem_nsems) { 1304 rcu_read_unlock(); 1305 return -EINVAL; 1306 } 1307 1308 1309 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1310 rcu_read_unlock(); 1311 return -EACCES; 1312 } 1313 1314 err = security_sem_semctl(sma, SETVAL); 1315 if (err) { 1316 rcu_read_unlock(); 1317 return -EACCES; 1318 } 1319 1320 sem_lock(sma, NULL, -1); 1321 1322 if (!ipc_valid_object(&sma->sem_perm)) { 1323 sem_unlock(sma, -1); 1324 rcu_read_unlock(); 1325 return -EIDRM; 1326 } 1327 1328 curr = &sma->sem_base[semnum]; 1329 1330 ipc_assert_locked_object(&sma->sem_perm); 1331 list_for_each_entry(un, &sma->list_id, list_id) 1332 un->semadj[semnum] = 0; 1333 1334 curr->semval = val; 1335 curr->sempid = task_tgid_vnr(current); 1336 sma->sem_ctime = get_seconds(); 1337 /* maybe some queued-up processes were waiting for this */ 1338 do_smart_update(sma, NULL, 0, 0, &tasks); 1339 sem_unlock(sma, -1); 1340 rcu_read_unlock(); 1341 wake_up_sem_queue_do(&tasks); 1342 return 0; 1343 } 1344 1345 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1346 int cmd, void __user *p) 1347 { 1348 struct sem_array *sma; 1349 struct sem *curr; 1350 int err, nsems; 1351 ushort fast_sem_io[SEMMSL_FAST]; 1352 ushort *sem_io = fast_sem_io; 1353 struct list_head tasks; 1354 1355 INIT_LIST_HEAD(&tasks); 1356 1357 rcu_read_lock(); 1358 sma = sem_obtain_object_check(ns, semid); 1359 if (IS_ERR(sma)) { 1360 rcu_read_unlock(); 1361 return PTR_ERR(sma); 1362 } 1363 1364 nsems = sma->sem_nsems; 1365 1366 err = -EACCES; 1367 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1368 goto out_rcu_wakeup; 1369 1370 err = security_sem_semctl(sma, cmd); 1371 if (err) 1372 goto out_rcu_wakeup; 1373 1374 err = -EACCES; 1375 switch (cmd) { 1376 case GETALL: 1377 { 1378 ushort __user *array = p; 1379 int i; 1380 1381 sem_lock(sma, NULL, -1); 1382 if (!ipc_valid_object(&sma->sem_perm)) { 1383 err = -EIDRM; 1384 goto out_unlock; 1385 } 1386 if (nsems > SEMMSL_FAST) { 1387 if (!ipc_rcu_getref(sma)) { 1388 err = -EIDRM; 1389 goto out_unlock; 1390 } 1391 sem_unlock(sma, -1); 1392 rcu_read_unlock(); 1393 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1394 if (sem_io == NULL) { 1395 ipc_rcu_putref(sma, ipc_rcu_free); 1396 return -ENOMEM; 1397 } 1398 1399 rcu_read_lock(); 1400 sem_lock_and_putref(sma); 1401 if (!ipc_valid_object(&sma->sem_perm)) { 1402 err = -EIDRM; 1403 goto out_unlock; 1404 } 1405 } 1406 for (i = 0; i < sma->sem_nsems; i++) 1407 sem_io[i] = sma->sem_base[i].semval; 1408 sem_unlock(sma, -1); 1409 rcu_read_unlock(); 1410 err = 0; 1411 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1412 err = -EFAULT; 1413 goto out_free; 1414 } 1415 case SETALL: 1416 { 1417 int i; 1418 struct sem_undo *un; 1419 1420 if (!ipc_rcu_getref(sma)) { 1421 err = -EIDRM; 1422 goto out_rcu_wakeup; 1423 } 1424 rcu_read_unlock(); 1425 1426 if (nsems > SEMMSL_FAST) { 1427 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1428 if (sem_io == NULL) { 1429 ipc_rcu_putref(sma, ipc_rcu_free); 1430 return -ENOMEM; 1431 } 1432 } 1433 1434 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1435 ipc_rcu_putref(sma, ipc_rcu_free); 1436 err = -EFAULT; 1437 goto out_free; 1438 } 1439 1440 for (i = 0; i < nsems; i++) { 1441 if (sem_io[i] > SEMVMX) { 1442 ipc_rcu_putref(sma, ipc_rcu_free); 1443 err = -ERANGE; 1444 goto out_free; 1445 } 1446 } 1447 rcu_read_lock(); 1448 sem_lock_and_putref(sma); 1449 if (!ipc_valid_object(&sma->sem_perm)) { 1450 err = -EIDRM; 1451 goto out_unlock; 1452 } 1453 1454 for (i = 0; i < nsems; i++) { 1455 sma->sem_base[i].semval = sem_io[i]; 1456 sma->sem_base[i].sempid = task_tgid_vnr(current); 1457 } 1458 1459 ipc_assert_locked_object(&sma->sem_perm); 1460 list_for_each_entry(un, &sma->list_id, list_id) { 1461 for (i = 0; i < nsems; i++) 1462 un->semadj[i] = 0; 1463 } 1464 sma->sem_ctime = get_seconds(); 1465 /* maybe some queued-up processes were waiting for this */ 1466 do_smart_update(sma, NULL, 0, 0, &tasks); 1467 err = 0; 1468 goto out_unlock; 1469 } 1470 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1471 } 1472 err = -EINVAL; 1473 if (semnum < 0 || semnum >= nsems) 1474 goto out_rcu_wakeup; 1475 1476 sem_lock(sma, NULL, -1); 1477 if (!ipc_valid_object(&sma->sem_perm)) { 1478 err = -EIDRM; 1479 goto out_unlock; 1480 } 1481 curr = &sma->sem_base[semnum]; 1482 1483 switch (cmd) { 1484 case GETVAL: 1485 err = curr->semval; 1486 goto out_unlock; 1487 case GETPID: 1488 err = curr->sempid; 1489 goto out_unlock; 1490 case GETNCNT: 1491 err = count_semcnt(sma, semnum, 0); 1492 goto out_unlock; 1493 case GETZCNT: 1494 err = count_semcnt(sma, semnum, 1); 1495 goto out_unlock; 1496 } 1497 1498 out_unlock: 1499 sem_unlock(sma, -1); 1500 out_rcu_wakeup: 1501 rcu_read_unlock(); 1502 wake_up_sem_queue_do(&tasks); 1503 out_free: 1504 if (sem_io != fast_sem_io) 1505 ipc_free(sem_io); 1506 return err; 1507 } 1508 1509 static inline unsigned long 1510 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1511 { 1512 switch (version) { 1513 case IPC_64: 1514 if (copy_from_user(out, buf, sizeof(*out))) 1515 return -EFAULT; 1516 return 0; 1517 case IPC_OLD: 1518 { 1519 struct semid_ds tbuf_old; 1520 1521 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1522 return -EFAULT; 1523 1524 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1525 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1526 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1527 1528 return 0; 1529 } 1530 default: 1531 return -EINVAL; 1532 } 1533 } 1534 1535 /* 1536 * This function handles some semctl commands which require the rwsem 1537 * to be held in write mode. 1538 * NOTE: no locks must be held, the rwsem is taken inside this function. 1539 */ 1540 static int semctl_down(struct ipc_namespace *ns, int semid, 1541 int cmd, int version, void __user *p) 1542 { 1543 struct sem_array *sma; 1544 int err; 1545 struct semid64_ds semid64; 1546 struct kern_ipc_perm *ipcp; 1547 1548 if (cmd == IPC_SET) { 1549 if (copy_semid_from_user(&semid64, p, version)) 1550 return -EFAULT; 1551 } 1552 1553 down_write(&sem_ids(ns).rwsem); 1554 rcu_read_lock(); 1555 1556 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1557 &semid64.sem_perm, 0); 1558 if (IS_ERR(ipcp)) { 1559 err = PTR_ERR(ipcp); 1560 goto out_unlock1; 1561 } 1562 1563 sma = container_of(ipcp, struct sem_array, sem_perm); 1564 1565 err = security_sem_semctl(sma, cmd); 1566 if (err) 1567 goto out_unlock1; 1568 1569 switch (cmd) { 1570 case IPC_RMID: 1571 sem_lock(sma, NULL, -1); 1572 /* freeary unlocks the ipc object and rcu */ 1573 freeary(ns, ipcp); 1574 goto out_up; 1575 case IPC_SET: 1576 sem_lock(sma, NULL, -1); 1577 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1578 if (err) 1579 goto out_unlock0; 1580 sma->sem_ctime = get_seconds(); 1581 break; 1582 default: 1583 err = -EINVAL; 1584 goto out_unlock1; 1585 } 1586 1587 out_unlock0: 1588 sem_unlock(sma, -1); 1589 out_unlock1: 1590 rcu_read_unlock(); 1591 out_up: 1592 up_write(&sem_ids(ns).rwsem); 1593 return err; 1594 } 1595 1596 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1597 { 1598 int version; 1599 struct ipc_namespace *ns; 1600 void __user *p = (void __user *)arg; 1601 1602 if (semid < 0) 1603 return -EINVAL; 1604 1605 version = ipc_parse_version(&cmd); 1606 ns = current->nsproxy->ipc_ns; 1607 1608 switch (cmd) { 1609 case IPC_INFO: 1610 case SEM_INFO: 1611 case IPC_STAT: 1612 case SEM_STAT: 1613 return semctl_nolock(ns, semid, cmd, version, p); 1614 case GETALL: 1615 case GETVAL: 1616 case GETPID: 1617 case GETNCNT: 1618 case GETZCNT: 1619 case SETALL: 1620 return semctl_main(ns, semid, semnum, cmd, p); 1621 case SETVAL: 1622 return semctl_setval(ns, semid, semnum, arg); 1623 case IPC_RMID: 1624 case IPC_SET: 1625 return semctl_down(ns, semid, cmd, version, p); 1626 default: 1627 return -EINVAL; 1628 } 1629 } 1630 1631 /* If the task doesn't already have a undo_list, then allocate one 1632 * here. We guarantee there is only one thread using this undo list, 1633 * and current is THE ONE 1634 * 1635 * If this allocation and assignment succeeds, but later 1636 * portions of this code fail, there is no need to free the sem_undo_list. 1637 * Just let it stay associated with the task, and it'll be freed later 1638 * at exit time. 1639 * 1640 * This can block, so callers must hold no locks. 1641 */ 1642 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1643 { 1644 struct sem_undo_list *undo_list; 1645 1646 undo_list = current->sysvsem.undo_list; 1647 if (!undo_list) { 1648 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1649 if (undo_list == NULL) 1650 return -ENOMEM; 1651 spin_lock_init(&undo_list->lock); 1652 atomic_set(&undo_list->refcnt, 1); 1653 INIT_LIST_HEAD(&undo_list->list_proc); 1654 1655 current->sysvsem.undo_list = undo_list; 1656 } 1657 *undo_listp = undo_list; 1658 return 0; 1659 } 1660 1661 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1662 { 1663 struct sem_undo *un; 1664 1665 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1666 if (un->semid == semid) 1667 return un; 1668 } 1669 return NULL; 1670 } 1671 1672 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1673 { 1674 struct sem_undo *un; 1675 1676 assert_spin_locked(&ulp->lock); 1677 1678 un = __lookup_undo(ulp, semid); 1679 if (un) { 1680 list_del_rcu(&un->list_proc); 1681 list_add_rcu(&un->list_proc, &ulp->list_proc); 1682 } 1683 return un; 1684 } 1685 1686 /** 1687 * find_alloc_undo - lookup (and if not present create) undo array 1688 * @ns: namespace 1689 * @semid: semaphore array id 1690 * 1691 * The function looks up (and if not present creates) the undo structure. 1692 * The size of the undo structure depends on the size of the semaphore 1693 * array, thus the alloc path is not that straightforward. 1694 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1695 * performs a rcu_read_lock(). 1696 */ 1697 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1698 { 1699 struct sem_array *sma; 1700 struct sem_undo_list *ulp; 1701 struct sem_undo *un, *new; 1702 int nsems, error; 1703 1704 error = get_undo_list(&ulp); 1705 if (error) 1706 return ERR_PTR(error); 1707 1708 rcu_read_lock(); 1709 spin_lock(&ulp->lock); 1710 un = lookup_undo(ulp, semid); 1711 spin_unlock(&ulp->lock); 1712 if (likely(un != NULL)) 1713 goto out; 1714 1715 /* no undo structure around - allocate one. */ 1716 /* step 1: figure out the size of the semaphore array */ 1717 sma = sem_obtain_object_check(ns, semid); 1718 if (IS_ERR(sma)) { 1719 rcu_read_unlock(); 1720 return ERR_CAST(sma); 1721 } 1722 1723 nsems = sma->sem_nsems; 1724 if (!ipc_rcu_getref(sma)) { 1725 rcu_read_unlock(); 1726 un = ERR_PTR(-EIDRM); 1727 goto out; 1728 } 1729 rcu_read_unlock(); 1730 1731 /* step 2: allocate new undo structure */ 1732 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1733 if (!new) { 1734 ipc_rcu_putref(sma, ipc_rcu_free); 1735 return ERR_PTR(-ENOMEM); 1736 } 1737 1738 /* step 3: Acquire the lock on semaphore array */ 1739 rcu_read_lock(); 1740 sem_lock_and_putref(sma); 1741 if (!ipc_valid_object(&sma->sem_perm)) { 1742 sem_unlock(sma, -1); 1743 rcu_read_unlock(); 1744 kfree(new); 1745 un = ERR_PTR(-EIDRM); 1746 goto out; 1747 } 1748 spin_lock(&ulp->lock); 1749 1750 /* 1751 * step 4: check for races: did someone else allocate the undo struct? 1752 */ 1753 un = lookup_undo(ulp, semid); 1754 if (un) { 1755 kfree(new); 1756 goto success; 1757 } 1758 /* step 5: initialize & link new undo structure */ 1759 new->semadj = (short *) &new[1]; 1760 new->ulp = ulp; 1761 new->semid = semid; 1762 assert_spin_locked(&ulp->lock); 1763 list_add_rcu(&new->list_proc, &ulp->list_proc); 1764 ipc_assert_locked_object(&sma->sem_perm); 1765 list_add(&new->list_id, &sma->list_id); 1766 un = new; 1767 1768 success: 1769 spin_unlock(&ulp->lock); 1770 sem_unlock(sma, -1); 1771 out: 1772 return un; 1773 } 1774 1775 1776 /** 1777 * get_queue_result - retrieve the result code from sem_queue 1778 * @q: Pointer to queue structure 1779 * 1780 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1781 * q->status, then we must loop until the value is replaced with the final 1782 * value: This may happen if a task is woken up by an unrelated event (e.g. 1783 * signal) and in parallel the task is woken up by another task because it got 1784 * the requested semaphores. 1785 * 1786 * The function can be called with or without holding the semaphore spinlock. 1787 */ 1788 static int get_queue_result(struct sem_queue *q) 1789 { 1790 int error; 1791 1792 error = q->status; 1793 while (unlikely(error == IN_WAKEUP)) { 1794 cpu_relax(); 1795 error = q->status; 1796 } 1797 1798 return error; 1799 } 1800 1801 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1802 unsigned, nsops, const struct timespec __user *, timeout) 1803 { 1804 int error = -EINVAL; 1805 struct sem_array *sma; 1806 struct sembuf fast_sops[SEMOPM_FAST]; 1807 struct sembuf *sops = fast_sops, *sop; 1808 struct sem_undo *un; 1809 int undos = 0, alter = 0, max, locknum; 1810 struct sem_queue queue; 1811 unsigned long jiffies_left = 0; 1812 struct ipc_namespace *ns; 1813 struct list_head tasks; 1814 1815 ns = current->nsproxy->ipc_ns; 1816 1817 if (nsops < 1 || semid < 0) 1818 return -EINVAL; 1819 if (nsops > ns->sc_semopm) 1820 return -E2BIG; 1821 if (nsops > SEMOPM_FAST) { 1822 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1823 if (sops == NULL) 1824 return -ENOMEM; 1825 } 1826 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1827 error = -EFAULT; 1828 goto out_free; 1829 } 1830 if (timeout) { 1831 struct timespec _timeout; 1832 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1833 error = -EFAULT; 1834 goto out_free; 1835 } 1836 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1837 _timeout.tv_nsec >= 1000000000L) { 1838 error = -EINVAL; 1839 goto out_free; 1840 } 1841 jiffies_left = timespec_to_jiffies(&_timeout); 1842 } 1843 max = 0; 1844 for (sop = sops; sop < sops + nsops; sop++) { 1845 if (sop->sem_num >= max) 1846 max = sop->sem_num; 1847 if (sop->sem_flg & SEM_UNDO) 1848 undos = 1; 1849 if (sop->sem_op != 0) 1850 alter = 1; 1851 } 1852 1853 INIT_LIST_HEAD(&tasks); 1854 1855 if (undos) { 1856 /* On success, find_alloc_undo takes the rcu_read_lock */ 1857 un = find_alloc_undo(ns, semid); 1858 if (IS_ERR(un)) { 1859 error = PTR_ERR(un); 1860 goto out_free; 1861 } 1862 } else { 1863 un = NULL; 1864 rcu_read_lock(); 1865 } 1866 1867 sma = sem_obtain_object_check(ns, semid); 1868 if (IS_ERR(sma)) { 1869 rcu_read_unlock(); 1870 error = PTR_ERR(sma); 1871 goto out_free; 1872 } 1873 1874 error = -EFBIG; 1875 if (max >= sma->sem_nsems) 1876 goto out_rcu_wakeup; 1877 1878 error = -EACCES; 1879 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1880 goto out_rcu_wakeup; 1881 1882 error = security_sem_semop(sma, sops, nsops, alter); 1883 if (error) 1884 goto out_rcu_wakeup; 1885 1886 error = -EIDRM; 1887 locknum = sem_lock(sma, sops, nsops); 1888 /* 1889 * We eventually might perform the following check in a lockless 1890 * fashion, considering ipc_valid_object() locking constraints. 1891 * If nsops == 1 and there is no contention for sem_perm.lock, then 1892 * only a per-semaphore lock is held and it's OK to proceed with the 1893 * check below. More details on the fine grained locking scheme 1894 * entangled here and why it's RMID race safe on comments at sem_lock() 1895 */ 1896 if (!ipc_valid_object(&sma->sem_perm)) 1897 goto out_unlock_free; 1898 /* 1899 * semid identifiers are not unique - find_alloc_undo may have 1900 * allocated an undo structure, it was invalidated by an RMID 1901 * and now a new array with received the same id. Check and fail. 1902 * This case can be detected checking un->semid. The existence of 1903 * "un" itself is guaranteed by rcu. 1904 */ 1905 if (un && un->semid == -1) 1906 goto out_unlock_free; 1907 1908 queue.sops = sops; 1909 queue.nsops = nsops; 1910 queue.undo = un; 1911 queue.pid = task_tgid_vnr(current); 1912 queue.alter = alter; 1913 1914 error = perform_atomic_semop(sma, &queue); 1915 if (error == 0) { 1916 /* If the operation was successful, then do 1917 * the required updates. 1918 */ 1919 if (alter) 1920 do_smart_update(sma, sops, nsops, 1, &tasks); 1921 else 1922 set_semotime(sma, sops); 1923 } 1924 if (error <= 0) 1925 goto out_unlock_free; 1926 1927 /* We need to sleep on this operation, so we put the current 1928 * task into the pending queue and go to sleep. 1929 */ 1930 1931 if (nsops == 1) { 1932 struct sem *curr; 1933 curr = &sma->sem_base[sops->sem_num]; 1934 1935 if (alter) { 1936 if (sma->complex_count) { 1937 list_add_tail(&queue.list, 1938 &sma->pending_alter); 1939 } else { 1940 1941 list_add_tail(&queue.list, 1942 &curr->pending_alter); 1943 } 1944 } else { 1945 list_add_tail(&queue.list, &curr->pending_const); 1946 } 1947 } else { 1948 if (!sma->complex_count) 1949 merge_queues(sma); 1950 1951 if (alter) 1952 list_add_tail(&queue.list, &sma->pending_alter); 1953 else 1954 list_add_tail(&queue.list, &sma->pending_const); 1955 1956 sma->complex_count++; 1957 } 1958 1959 queue.status = -EINTR; 1960 queue.sleeper = current; 1961 1962 sleep_again: 1963 __set_current_state(TASK_INTERRUPTIBLE); 1964 sem_unlock(sma, locknum); 1965 rcu_read_unlock(); 1966 1967 if (timeout) 1968 jiffies_left = schedule_timeout(jiffies_left); 1969 else 1970 schedule(); 1971 1972 error = get_queue_result(&queue); 1973 1974 if (error != -EINTR) { 1975 /* fast path: update_queue already obtained all requested 1976 * resources. 1977 * Perform a smp_mb(): User space could assume that semop() 1978 * is a memory barrier: Without the mb(), the cpu could 1979 * speculatively read in user space stale data that was 1980 * overwritten by the previous owner of the semaphore. 1981 */ 1982 smp_mb(); 1983 1984 goto out_free; 1985 } 1986 1987 rcu_read_lock(); 1988 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1989 1990 /* 1991 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1992 */ 1993 error = get_queue_result(&queue); 1994 1995 /* 1996 * Array removed? If yes, leave without sem_unlock(). 1997 */ 1998 if (IS_ERR(sma)) { 1999 rcu_read_unlock(); 2000 goto out_free; 2001 } 2002 2003 2004 /* 2005 * If queue.status != -EINTR we are woken up by another process. 2006 * Leave without unlink_queue(), but with sem_unlock(). 2007 */ 2008 if (error != -EINTR) 2009 goto out_unlock_free; 2010 2011 /* 2012 * If an interrupt occurred we have to clean up the queue 2013 */ 2014 if (timeout && jiffies_left == 0) 2015 error = -EAGAIN; 2016 2017 /* 2018 * If the wakeup was spurious, just retry 2019 */ 2020 if (error == -EINTR && !signal_pending(current)) 2021 goto sleep_again; 2022 2023 unlink_queue(sma, &queue); 2024 2025 out_unlock_free: 2026 sem_unlock(sma, locknum); 2027 out_rcu_wakeup: 2028 rcu_read_unlock(); 2029 wake_up_sem_queue_do(&tasks); 2030 out_free: 2031 if (sops != fast_sops) 2032 kfree(sops); 2033 return error; 2034 } 2035 2036 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2037 unsigned, nsops) 2038 { 2039 return sys_semtimedop(semid, tsops, nsops, NULL); 2040 } 2041 2042 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2043 * parent and child tasks. 2044 */ 2045 2046 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2047 { 2048 struct sem_undo_list *undo_list; 2049 int error; 2050 2051 if (clone_flags & CLONE_SYSVSEM) { 2052 error = get_undo_list(&undo_list); 2053 if (error) 2054 return error; 2055 atomic_inc(&undo_list->refcnt); 2056 tsk->sysvsem.undo_list = undo_list; 2057 } else 2058 tsk->sysvsem.undo_list = NULL; 2059 2060 return 0; 2061 } 2062 2063 /* 2064 * add semadj values to semaphores, free undo structures. 2065 * undo structures are not freed when semaphore arrays are destroyed 2066 * so some of them may be out of date. 2067 * IMPLEMENTATION NOTE: There is some confusion over whether the 2068 * set of adjustments that needs to be done should be done in an atomic 2069 * manner or not. That is, if we are attempting to decrement the semval 2070 * should we queue up and wait until we can do so legally? 2071 * The original implementation attempted to do this (queue and wait). 2072 * The current implementation does not do so. The POSIX standard 2073 * and SVID should be consulted to determine what behavior is mandated. 2074 */ 2075 void exit_sem(struct task_struct *tsk) 2076 { 2077 struct sem_undo_list *ulp; 2078 2079 ulp = tsk->sysvsem.undo_list; 2080 if (!ulp) 2081 return; 2082 tsk->sysvsem.undo_list = NULL; 2083 2084 if (!atomic_dec_and_test(&ulp->refcnt)) 2085 return; 2086 2087 for (;;) { 2088 struct sem_array *sma; 2089 struct sem_undo *un; 2090 struct list_head tasks; 2091 int semid, i; 2092 2093 rcu_read_lock(); 2094 un = list_entry_rcu(ulp->list_proc.next, 2095 struct sem_undo, list_proc); 2096 if (&un->list_proc == &ulp->list_proc) { 2097 /* 2098 * We must wait for freeary() before freeing this ulp, 2099 * in case we raced with last sem_undo. There is a small 2100 * possibility where we exit while freeary() didn't 2101 * finish unlocking sem_undo_list. 2102 */ 2103 spin_unlock_wait(&ulp->lock); 2104 rcu_read_unlock(); 2105 break; 2106 } 2107 spin_lock(&ulp->lock); 2108 semid = un->semid; 2109 spin_unlock(&ulp->lock); 2110 2111 /* exit_sem raced with IPC_RMID, nothing to do */ 2112 if (semid == -1) { 2113 rcu_read_unlock(); 2114 continue; 2115 } 2116 2117 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2118 /* exit_sem raced with IPC_RMID, nothing to do */ 2119 if (IS_ERR(sma)) { 2120 rcu_read_unlock(); 2121 continue; 2122 } 2123 2124 sem_lock(sma, NULL, -1); 2125 /* exit_sem raced with IPC_RMID, nothing to do */ 2126 if (!ipc_valid_object(&sma->sem_perm)) { 2127 sem_unlock(sma, -1); 2128 rcu_read_unlock(); 2129 continue; 2130 } 2131 un = __lookup_undo(ulp, semid); 2132 if (un == NULL) { 2133 /* exit_sem raced with IPC_RMID+semget() that created 2134 * exactly the same semid. Nothing to do. 2135 */ 2136 sem_unlock(sma, -1); 2137 rcu_read_unlock(); 2138 continue; 2139 } 2140 2141 /* remove un from the linked lists */ 2142 ipc_assert_locked_object(&sma->sem_perm); 2143 list_del(&un->list_id); 2144 2145 /* we are the last process using this ulp, acquiring ulp->lock 2146 * isn't required. Besides that, we are also protected against 2147 * IPC_RMID as we hold sma->sem_perm lock now 2148 */ 2149 list_del_rcu(&un->list_proc); 2150 2151 /* perform adjustments registered in un */ 2152 for (i = 0; i < sma->sem_nsems; i++) { 2153 struct sem *semaphore = &sma->sem_base[i]; 2154 if (un->semadj[i]) { 2155 semaphore->semval += un->semadj[i]; 2156 /* 2157 * Range checks of the new semaphore value, 2158 * not defined by sus: 2159 * - Some unices ignore the undo entirely 2160 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2161 * - some cap the value (e.g. FreeBSD caps 2162 * at 0, but doesn't enforce SEMVMX) 2163 * 2164 * Linux caps the semaphore value, both at 0 2165 * and at SEMVMX. 2166 * 2167 * Manfred <manfred@colorfullife.com> 2168 */ 2169 if (semaphore->semval < 0) 2170 semaphore->semval = 0; 2171 if (semaphore->semval > SEMVMX) 2172 semaphore->semval = SEMVMX; 2173 semaphore->sempid = task_tgid_vnr(current); 2174 } 2175 } 2176 /* maybe some queued-up processes were waiting for this */ 2177 INIT_LIST_HEAD(&tasks); 2178 do_smart_update(sma, NULL, 0, 1, &tasks); 2179 sem_unlock(sma, -1); 2180 rcu_read_unlock(); 2181 wake_up_sem_queue_do(&tasks); 2182 2183 kfree_rcu(un, rcu); 2184 } 2185 kfree(ulp); 2186 } 2187 2188 #ifdef CONFIG_PROC_FS 2189 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2190 { 2191 struct user_namespace *user_ns = seq_user_ns(s); 2192 struct sem_array *sma = it; 2193 time_t sem_otime; 2194 2195 /* 2196 * The proc interface isn't aware of sem_lock(), it calls 2197 * ipc_lock_object() directly (in sysvipc_find_ipc). 2198 * In order to stay compatible with sem_lock(), we must wait until 2199 * all simple semop() calls have left their critical regions. 2200 */ 2201 sem_wait_array(sma); 2202 2203 sem_otime = get_semotime(sma); 2204 2205 seq_printf(s, 2206 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2207 sma->sem_perm.key, 2208 sma->sem_perm.id, 2209 sma->sem_perm.mode, 2210 sma->sem_nsems, 2211 from_kuid_munged(user_ns, sma->sem_perm.uid), 2212 from_kgid_munged(user_ns, sma->sem_perm.gid), 2213 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2214 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2215 sem_otime, 2216 sma->sem_ctime); 2217 2218 return 0; 2219 } 2220 #endif 2221