xref: /linux/ipc/sem.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	int	sempid;		/* pid of last operation */
96 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97 	struct list_head pending_alter; /* pending single-sop operations */
98 					/* that alter the semaphore */
99 	struct list_head pending_const; /* pending single-sop operations */
100 					/* that do not alter the semaphore*/
101 	time_t	sem_otime;	/* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103 
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 	struct list_head	list;	 /* queue of pending operations */
107 	struct task_struct	*sleeper; /* this process */
108 	struct sem_undo		*undo;	 /* undo structure */
109 	int			pid;	 /* process id of requesting process */
110 	int			status;	 /* completion status of operation */
111 	struct sembuf		*sops;	 /* array of pending operations */
112 	struct sembuf		*blocking; /* the operation that blocked */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init(void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * Wait until all currently ongoing simple ops have completed.
257  * Caller must own sem_perm.lock.
258  * New simple ops cannot start, because simple ops first check
259  * that sem_perm.lock is free.
260  * that a) sem_perm.lock is free and b) complex_count is 0.
261  */
262 static void sem_wait_array(struct sem_array *sma)
263 {
264 	int i;
265 	struct sem *sem;
266 
267 	if (sma->complex_count)  {
268 		/* The thread that increased sma->complex_count waited on
269 		 * all sem->lock locks. Thus we don't need to wait again.
270 		 */
271 		return;
272 	}
273 
274 	for (i = 0; i < sma->sem_nsems; i++) {
275 		sem = sma->sem_base + i;
276 		spin_unlock_wait(&sem->lock);
277 	}
278 }
279 
280 /*
281  * If the request contains only one semaphore operation, and there are
282  * no complex transactions pending, lock only the semaphore involved.
283  * Otherwise, lock the entire semaphore array, since we either have
284  * multiple semaphores in our own semops, or we need to look at
285  * semaphores from other pending complex operations.
286  */
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 			      int nsops)
289 {
290 	struct sem *sem;
291 
292 	if (nsops != 1) {
293 		/* Complex operation - acquire a full lock */
294 		ipc_lock_object(&sma->sem_perm);
295 
296 		/* And wait until all simple ops that are processed
297 		 * right now have dropped their locks.
298 		 */
299 		sem_wait_array(sma);
300 		return -1;
301 	}
302 
303 	/*
304 	 * Only one semaphore affected - try to optimize locking.
305 	 * The rules are:
306 	 * - optimized locking is possible if no complex operation
307 	 *   is either enqueued or processed right now.
308 	 * - The test for enqueued complex ops is simple:
309 	 *      sma->complex_count != 0
310 	 * - Testing for complex ops that are processed right now is
311 	 *   a bit more difficult. Complex ops acquire the full lock
312 	 *   and first wait that the running simple ops have completed.
313 	 *   (see above)
314 	 *   Thus: If we own a simple lock and the global lock is free
315 	 *	and complex_count is now 0, then it will stay 0 and
316 	 *	thus just locking sem->lock is sufficient.
317 	 */
318 	sem = sma->sem_base + sops->sem_num;
319 
320 	if (sma->complex_count == 0) {
321 		/*
322 		 * It appears that no complex operation is around.
323 		 * Acquire the per-semaphore lock.
324 		 */
325 		spin_lock(&sem->lock);
326 
327 		/* Then check that the global lock is free */
328 		if (!spin_is_locked(&sma->sem_perm.lock)) {
329 			/*
330 			 * The ipc object lock check must be visible on all
331 			 * cores before rechecking the complex count.  Otherwise
332 			 * we can race with  another thread that does:
333 			 *	complex_count++;
334 			 *	spin_unlock(sem_perm.lock);
335 			 */
336 			smp_rmb();
337 
338 			/*
339 			 * Now repeat the test of complex_count:
340 			 * It can't change anymore until we drop sem->lock.
341 			 * Thus: if is now 0, then it will stay 0.
342 			 */
343 			if (sma->complex_count == 0) {
344 				/* fast path successful! */
345 				return sops->sem_num;
346 			}
347 		}
348 		spin_unlock(&sem->lock);
349 	}
350 
351 	/* slow path: acquire the full lock */
352 	ipc_lock_object(&sma->sem_perm);
353 
354 	if (sma->complex_count == 0) {
355 		/* False alarm:
356 		 * There is no complex operation, thus we can switch
357 		 * back to the fast path.
358 		 */
359 		spin_lock(&sem->lock);
360 		ipc_unlock_object(&sma->sem_perm);
361 		return sops->sem_num;
362 	} else {
363 		/* Not a false alarm, thus complete the sequence for a
364 		 * full lock.
365 		 */
366 		sem_wait_array(sma);
367 		return -1;
368 	}
369 }
370 
371 static inline void sem_unlock(struct sem_array *sma, int locknum)
372 {
373 	if (locknum == -1) {
374 		unmerge_queues(sma);
375 		ipc_unlock_object(&sma->sem_perm);
376 	} else {
377 		struct sem *sem = sma->sem_base + locknum;
378 		spin_unlock(&sem->lock);
379 	}
380 }
381 
382 /*
383  * sem_lock_(check_) routines are called in the paths where the rwsem
384  * is not held.
385  *
386  * The caller holds the RCU read lock.
387  */
388 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
389 			int id, struct sembuf *sops, int nsops, int *locknum)
390 {
391 	struct kern_ipc_perm *ipcp;
392 	struct sem_array *sma;
393 
394 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
395 	if (IS_ERR(ipcp))
396 		return ERR_CAST(ipcp);
397 
398 	sma = container_of(ipcp, struct sem_array, sem_perm);
399 	*locknum = sem_lock(sma, sops, nsops);
400 
401 	/* ipc_rmid() may have already freed the ID while sem_lock
402 	 * was spinning: verify that the structure is still valid
403 	 */
404 	if (ipc_valid_object(ipcp))
405 		return container_of(ipcp, struct sem_array, sem_perm);
406 
407 	sem_unlock(sma, *locknum);
408 	return ERR_PTR(-EINVAL);
409 }
410 
411 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
412 {
413 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
414 
415 	if (IS_ERR(ipcp))
416 		return ERR_CAST(ipcp);
417 
418 	return container_of(ipcp, struct sem_array, sem_perm);
419 }
420 
421 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
422 							int id)
423 {
424 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
425 
426 	if (IS_ERR(ipcp))
427 		return ERR_CAST(ipcp);
428 
429 	return container_of(ipcp, struct sem_array, sem_perm);
430 }
431 
432 static inline void sem_lock_and_putref(struct sem_array *sma)
433 {
434 	sem_lock(sma, NULL, -1);
435 	ipc_rcu_putref(sma, ipc_rcu_free);
436 }
437 
438 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
439 {
440 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
441 }
442 
443 /*
444  * Lockless wakeup algorithm:
445  * Without the check/retry algorithm a lockless wakeup is possible:
446  * - queue.status is initialized to -EINTR before blocking.
447  * - wakeup is performed by
448  *	* unlinking the queue entry from the pending list
449  *	* setting queue.status to IN_WAKEUP
450  *	  This is the notification for the blocked thread that a
451  *	  result value is imminent.
452  *	* call wake_up_process
453  *	* set queue.status to the final value.
454  * - the previously blocked thread checks queue.status:
455  *	* if it's IN_WAKEUP, then it must wait until the value changes
456  *	* if it's not -EINTR, then the operation was completed by
457  *	  update_queue. semtimedop can return queue.status without
458  *	  performing any operation on the sem array.
459  *	* otherwise it must acquire the spinlock and check what's up.
460  *
461  * The two-stage algorithm is necessary to protect against the following
462  * races:
463  * - if queue.status is set after wake_up_process, then the woken up idle
464  *   thread could race forward and try (and fail) to acquire sma->lock
465  *   before update_queue had a chance to set queue.status
466  * - if queue.status is written before wake_up_process and if the
467  *   blocked process is woken up by a signal between writing
468  *   queue.status and the wake_up_process, then the woken up
469  *   process could return from semtimedop and die by calling
470  *   sys_exit before wake_up_process is called. Then wake_up_process
471  *   will oops, because the task structure is already invalid.
472  *   (yes, this happened on s390 with sysv msg).
473  *
474  */
475 #define IN_WAKEUP	1
476 
477 /**
478  * newary - Create a new semaphore set
479  * @ns: namespace
480  * @params: ptr to the structure that contains key, semflg and nsems
481  *
482  * Called with sem_ids.rwsem held (as a writer)
483  */
484 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
485 {
486 	int id;
487 	int retval;
488 	struct sem_array *sma;
489 	int size;
490 	key_t key = params->key;
491 	int nsems = params->u.nsems;
492 	int semflg = params->flg;
493 	int i;
494 
495 	if (!nsems)
496 		return -EINVAL;
497 	if (ns->used_sems + nsems > ns->sc_semmns)
498 		return -ENOSPC;
499 
500 	size = sizeof(*sma) + nsems * sizeof(struct sem);
501 	sma = ipc_rcu_alloc(size);
502 	if (!sma)
503 		return -ENOMEM;
504 
505 	memset(sma, 0, size);
506 
507 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
508 	sma->sem_perm.key = key;
509 
510 	sma->sem_perm.security = NULL;
511 	retval = security_sem_alloc(sma);
512 	if (retval) {
513 		ipc_rcu_putref(sma, ipc_rcu_free);
514 		return retval;
515 	}
516 
517 	sma->sem_base = (struct sem *) &sma[1];
518 
519 	for (i = 0; i < nsems; i++) {
520 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
522 		spin_lock_init(&sma->sem_base[i].lock);
523 	}
524 
525 	sma->complex_count = 0;
526 	INIT_LIST_HEAD(&sma->pending_alter);
527 	INIT_LIST_HEAD(&sma->pending_const);
528 	INIT_LIST_HEAD(&sma->list_id);
529 	sma->sem_nsems = nsems;
530 	sma->sem_ctime = get_seconds();
531 
532 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
533 	if (id < 0) {
534 		ipc_rcu_putref(sma, sem_rcu_free);
535 		return id;
536 	}
537 	ns->used_sems += nsems;
538 
539 	sem_unlock(sma, -1);
540 	rcu_read_unlock();
541 
542 	return sma->sem_perm.id;
543 }
544 
545 
546 /*
547  * Called with sem_ids.rwsem and ipcp locked.
548  */
549 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
550 {
551 	struct sem_array *sma;
552 
553 	sma = container_of(ipcp, struct sem_array, sem_perm);
554 	return security_sem_associate(sma, semflg);
555 }
556 
557 /*
558  * Called with sem_ids.rwsem and ipcp locked.
559  */
560 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
561 				struct ipc_params *params)
562 {
563 	struct sem_array *sma;
564 
565 	sma = container_of(ipcp, struct sem_array, sem_perm);
566 	if (params->u.nsems > sma->sem_nsems)
567 		return -EINVAL;
568 
569 	return 0;
570 }
571 
572 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
573 {
574 	struct ipc_namespace *ns;
575 	static const struct ipc_ops sem_ops = {
576 		.getnew = newary,
577 		.associate = sem_security,
578 		.more_checks = sem_more_checks,
579 	};
580 	struct ipc_params sem_params;
581 
582 	ns = current->nsproxy->ipc_ns;
583 
584 	if (nsems < 0 || nsems > ns->sc_semmsl)
585 		return -EINVAL;
586 
587 	sem_params.key = key;
588 	sem_params.flg = semflg;
589 	sem_params.u.nsems = nsems;
590 
591 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
592 }
593 
594 /**
595  * perform_atomic_semop - Perform (if possible) a semaphore operation
596  * @sma: semaphore array
597  * @q: struct sem_queue that describes the operation
598  *
599  * Returns 0 if the operation was possible.
600  * Returns 1 if the operation is impossible, the caller must sleep.
601  * Negative values are error codes.
602  */
603 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
604 {
605 	int result, sem_op, nsops, pid;
606 	struct sembuf *sop;
607 	struct sem *curr;
608 	struct sembuf *sops;
609 	struct sem_undo *un;
610 
611 	sops = q->sops;
612 	nsops = q->nsops;
613 	un = q->undo;
614 
615 	for (sop = sops; sop < sops + nsops; sop++) {
616 		curr = sma->sem_base + sop->sem_num;
617 		sem_op = sop->sem_op;
618 		result = curr->semval;
619 
620 		if (!sem_op && result)
621 			goto would_block;
622 
623 		result += sem_op;
624 		if (result < 0)
625 			goto would_block;
626 		if (result > SEMVMX)
627 			goto out_of_range;
628 
629 		if (sop->sem_flg & SEM_UNDO) {
630 			int undo = un->semadj[sop->sem_num] - sem_op;
631 			/* Exceeding the undo range is an error. */
632 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
633 				goto out_of_range;
634 			un->semadj[sop->sem_num] = undo;
635 		}
636 
637 		curr->semval = result;
638 	}
639 
640 	sop--;
641 	pid = q->pid;
642 	while (sop >= sops) {
643 		sma->sem_base[sop->sem_num].sempid = pid;
644 		sop--;
645 	}
646 
647 	return 0;
648 
649 out_of_range:
650 	result = -ERANGE;
651 	goto undo;
652 
653 would_block:
654 	q->blocking = sop;
655 
656 	if (sop->sem_flg & IPC_NOWAIT)
657 		result = -EAGAIN;
658 	else
659 		result = 1;
660 
661 undo:
662 	sop--;
663 	while (sop >= sops) {
664 		sem_op = sop->sem_op;
665 		sma->sem_base[sop->sem_num].semval -= sem_op;
666 		if (sop->sem_flg & SEM_UNDO)
667 			un->semadj[sop->sem_num] += sem_op;
668 		sop--;
669 	}
670 
671 	return result;
672 }
673 
674 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
675  * @q: queue entry that must be signaled
676  * @error: Error value for the signal
677  *
678  * Prepare the wake-up of the queue entry q.
679  */
680 static void wake_up_sem_queue_prepare(struct list_head *pt,
681 				struct sem_queue *q, int error)
682 {
683 	if (list_empty(pt)) {
684 		/*
685 		 * Hold preempt off so that we don't get preempted and have the
686 		 * wakee busy-wait until we're scheduled back on.
687 		 */
688 		preempt_disable();
689 	}
690 	q->status = IN_WAKEUP;
691 	q->pid = error;
692 
693 	list_add_tail(&q->list, pt);
694 }
695 
696 /**
697  * wake_up_sem_queue_do - do the actual wake-up
698  * @pt: list of tasks to be woken up
699  *
700  * Do the actual wake-up.
701  * The function is called without any locks held, thus the semaphore array
702  * could be destroyed already and the tasks can disappear as soon as the
703  * status is set to the actual return code.
704  */
705 static void wake_up_sem_queue_do(struct list_head *pt)
706 {
707 	struct sem_queue *q, *t;
708 	int did_something;
709 
710 	did_something = !list_empty(pt);
711 	list_for_each_entry_safe(q, t, pt, list) {
712 		wake_up_process(q->sleeper);
713 		/* q can disappear immediately after writing q->status. */
714 		smp_wmb();
715 		q->status = q->pid;
716 	}
717 	if (did_something)
718 		preempt_enable();
719 }
720 
721 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
722 {
723 	list_del(&q->list);
724 	if (q->nsops > 1)
725 		sma->complex_count--;
726 }
727 
728 /** check_restart(sma, q)
729  * @sma: semaphore array
730  * @q: the operation that just completed
731  *
732  * update_queue is O(N^2) when it restarts scanning the whole queue of
733  * waiting operations. Therefore this function checks if the restart is
734  * really necessary. It is called after a previously waiting operation
735  * modified the array.
736  * Note that wait-for-zero operations are handled without restart.
737  */
738 static int check_restart(struct sem_array *sma, struct sem_queue *q)
739 {
740 	/* pending complex alter operations are too difficult to analyse */
741 	if (!list_empty(&sma->pending_alter))
742 		return 1;
743 
744 	/* we were a sleeping complex operation. Too difficult */
745 	if (q->nsops > 1)
746 		return 1;
747 
748 	/* It is impossible that someone waits for the new value:
749 	 * - complex operations always restart.
750 	 * - wait-for-zero are handled seperately.
751 	 * - q is a previously sleeping simple operation that
752 	 *   altered the array. It must be a decrement, because
753 	 *   simple increments never sleep.
754 	 * - If there are older (higher priority) decrements
755 	 *   in the queue, then they have observed the original
756 	 *   semval value and couldn't proceed. The operation
757 	 *   decremented to value - thus they won't proceed either.
758 	 */
759 	return 0;
760 }
761 
762 /**
763  * wake_const_ops - wake up non-alter tasks
764  * @sma: semaphore array.
765  * @semnum: semaphore that was modified.
766  * @pt: list head for the tasks that must be woken up.
767  *
768  * wake_const_ops must be called after a semaphore in a semaphore array
769  * was set to 0. If complex const operations are pending, wake_const_ops must
770  * be called with semnum = -1, as well as with the number of each modified
771  * semaphore.
772  * The tasks that must be woken up are added to @pt. The return code
773  * is stored in q->pid.
774  * The function returns 1 if at least one operation was completed successfully.
775  */
776 static int wake_const_ops(struct sem_array *sma, int semnum,
777 				struct list_head *pt)
778 {
779 	struct sem_queue *q;
780 	struct list_head *walk;
781 	struct list_head *pending_list;
782 	int semop_completed = 0;
783 
784 	if (semnum == -1)
785 		pending_list = &sma->pending_const;
786 	else
787 		pending_list = &sma->sem_base[semnum].pending_const;
788 
789 	walk = pending_list->next;
790 	while (walk != pending_list) {
791 		int error;
792 
793 		q = container_of(walk, struct sem_queue, list);
794 		walk = walk->next;
795 
796 		error = perform_atomic_semop(sma, q);
797 
798 		if (error <= 0) {
799 			/* operation completed, remove from queue & wakeup */
800 
801 			unlink_queue(sma, q);
802 
803 			wake_up_sem_queue_prepare(pt, q, error);
804 			if (error == 0)
805 				semop_completed = 1;
806 		}
807 	}
808 	return semop_completed;
809 }
810 
811 /**
812  * do_smart_wakeup_zero - wakeup all wait for zero tasks
813  * @sma: semaphore array
814  * @sops: operations that were performed
815  * @nsops: number of operations
816  * @pt: list head of the tasks that must be woken up.
817  *
818  * Checks all required queue for wait-for-zero operations, based
819  * on the actual changes that were performed on the semaphore array.
820  * The function returns 1 if at least one operation was completed successfully.
821  */
822 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
823 					int nsops, struct list_head *pt)
824 {
825 	int i;
826 	int semop_completed = 0;
827 	int got_zero = 0;
828 
829 	/* first: the per-semaphore queues, if known */
830 	if (sops) {
831 		for (i = 0; i < nsops; i++) {
832 			int num = sops[i].sem_num;
833 
834 			if (sma->sem_base[num].semval == 0) {
835 				got_zero = 1;
836 				semop_completed |= wake_const_ops(sma, num, pt);
837 			}
838 		}
839 	} else {
840 		/*
841 		 * No sops means modified semaphores not known.
842 		 * Assume all were changed.
843 		 */
844 		for (i = 0; i < sma->sem_nsems; i++) {
845 			if (sma->sem_base[i].semval == 0) {
846 				got_zero = 1;
847 				semop_completed |= wake_const_ops(sma, i, pt);
848 			}
849 		}
850 	}
851 	/*
852 	 * If one of the modified semaphores got 0,
853 	 * then check the global queue, too.
854 	 */
855 	if (got_zero)
856 		semop_completed |= wake_const_ops(sma, -1, pt);
857 
858 	return semop_completed;
859 }
860 
861 
862 /**
863  * update_queue - look for tasks that can be completed.
864  * @sma: semaphore array.
865  * @semnum: semaphore that was modified.
866  * @pt: list head for the tasks that must be woken up.
867  *
868  * update_queue must be called after a semaphore in a semaphore array
869  * was modified. If multiple semaphores were modified, update_queue must
870  * be called with semnum = -1, as well as with the number of each modified
871  * semaphore.
872  * The tasks that must be woken up are added to @pt. The return code
873  * is stored in q->pid.
874  * The function internally checks if const operations can now succeed.
875  *
876  * The function return 1 if at least one semop was completed successfully.
877  */
878 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
879 {
880 	struct sem_queue *q;
881 	struct list_head *walk;
882 	struct list_head *pending_list;
883 	int semop_completed = 0;
884 
885 	if (semnum == -1)
886 		pending_list = &sma->pending_alter;
887 	else
888 		pending_list = &sma->sem_base[semnum].pending_alter;
889 
890 again:
891 	walk = pending_list->next;
892 	while (walk != pending_list) {
893 		int error, restart;
894 
895 		q = container_of(walk, struct sem_queue, list);
896 		walk = walk->next;
897 
898 		/* If we are scanning the single sop, per-semaphore list of
899 		 * one semaphore and that semaphore is 0, then it is not
900 		 * necessary to scan further: simple increments
901 		 * that affect only one entry succeed immediately and cannot
902 		 * be in the  per semaphore pending queue, and decrements
903 		 * cannot be successful if the value is already 0.
904 		 */
905 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
906 			break;
907 
908 		error = perform_atomic_semop(sma, q);
909 
910 		/* Does q->sleeper still need to sleep? */
911 		if (error > 0)
912 			continue;
913 
914 		unlink_queue(sma, q);
915 
916 		if (error) {
917 			restart = 0;
918 		} else {
919 			semop_completed = 1;
920 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
921 			restart = check_restart(sma, q);
922 		}
923 
924 		wake_up_sem_queue_prepare(pt, q, error);
925 		if (restart)
926 			goto again;
927 	}
928 	return semop_completed;
929 }
930 
931 /**
932  * set_semotime - set sem_otime
933  * @sma: semaphore array
934  * @sops: operations that modified the array, may be NULL
935  *
936  * sem_otime is replicated to avoid cache line trashing.
937  * This function sets one instance to the current time.
938  */
939 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
940 {
941 	if (sops == NULL) {
942 		sma->sem_base[0].sem_otime = get_seconds();
943 	} else {
944 		sma->sem_base[sops[0].sem_num].sem_otime =
945 							get_seconds();
946 	}
947 }
948 
949 /**
950  * do_smart_update - optimized update_queue
951  * @sma: semaphore array
952  * @sops: operations that were performed
953  * @nsops: number of operations
954  * @otime: force setting otime
955  * @pt: list head of the tasks that must be woken up.
956  *
957  * do_smart_update() does the required calls to update_queue and wakeup_zero,
958  * based on the actual changes that were performed on the semaphore array.
959  * Note that the function does not do the actual wake-up: the caller is
960  * responsible for calling wake_up_sem_queue_do(@pt).
961  * It is safe to perform this call after dropping all locks.
962  */
963 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
964 			int otime, struct list_head *pt)
965 {
966 	int i;
967 
968 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
969 
970 	if (!list_empty(&sma->pending_alter)) {
971 		/* semaphore array uses the global queue - just process it. */
972 		otime |= update_queue(sma, -1, pt);
973 	} else {
974 		if (!sops) {
975 			/*
976 			 * No sops, thus the modified semaphores are not
977 			 * known. Check all.
978 			 */
979 			for (i = 0; i < sma->sem_nsems; i++)
980 				otime |= update_queue(sma, i, pt);
981 		} else {
982 			/*
983 			 * Check the semaphores that were increased:
984 			 * - No complex ops, thus all sleeping ops are
985 			 *   decrease.
986 			 * - if we decreased the value, then any sleeping
987 			 *   semaphore ops wont be able to run: If the
988 			 *   previous value was too small, then the new
989 			 *   value will be too small, too.
990 			 */
991 			for (i = 0; i < nsops; i++) {
992 				if (sops[i].sem_op > 0) {
993 					otime |= update_queue(sma,
994 							sops[i].sem_num, pt);
995 				}
996 			}
997 		}
998 	}
999 	if (otime)
1000 		set_semotime(sma, sops);
1001 }
1002 
1003 /*
1004  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1005  */
1006 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1007 			bool count_zero)
1008 {
1009 	struct sembuf *sop = q->blocking;
1010 
1011 	/*
1012 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1013 	 * semaphores. This violates SUS, therefore it was changed to the
1014 	 * standard compliant behavior.
1015 	 * Give the administrators a chance to notice that an application
1016 	 * might misbehave because it relies on the Linux behavior.
1017 	 */
1018 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1019 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1020 			current->comm, task_pid_nr(current));
1021 
1022 	if (sop->sem_num != semnum)
1023 		return 0;
1024 
1025 	if (count_zero && sop->sem_op == 0)
1026 		return 1;
1027 	if (!count_zero && sop->sem_op < 0)
1028 		return 1;
1029 
1030 	return 0;
1031 }
1032 
1033 /* The following counts are associated to each semaphore:
1034  *   semncnt        number of tasks waiting on semval being nonzero
1035  *   semzcnt        number of tasks waiting on semval being zero
1036  *
1037  * Per definition, a task waits only on the semaphore of the first semop
1038  * that cannot proceed, even if additional operation would block, too.
1039  */
1040 static int count_semcnt(struct sem_array *sma, ushort semnum,
1041 			bool count_zero)
1042 {
1043 	struct list_head *l;
1044 	struct sem_queue *q;
1045 	int semcnt;
1046 
1047 	semcnt = 0;
1048 	/* First: check the simple operations. They are easy to evaluate */
1049 	if (count_zero)
1050 		l = &sma->sem_base[semnum].pending_const;
1051 	else
1052 		l = &sma->sem_base[semnum].pending_alter;
1053 
1054 	list_for_each_entry(q, l, list) {
1055 		/* all task on a per-semaphore list sleep on exactly
1056 		 * that semaphore
1057 		 */
1058 		semcnt++;
1059 	}
1060 
1061 	/* Then: check the complex operations. */
1062 	list_for_each_entry(q, &sma->pending_alter, list) {
1063 		semcnt += check_qop(sma, semnum, q, count_zero);
1064 	}
1065 	if (count_zero) {
1066 		list_for_each_entry(q, &sma->pending_const, list) {
1067 			semcnt += check_qop(sma, semnum, q, count_zero);
1068 		}
1069 	}
1070 	return semcnt;
1071 }
1072 
1073 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1074  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1075  * remains locked on exit.
1076  */
1077 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1078 {
1079 	struct sem_undo *un, *tu;
1080 	struct sem_queue *q, *tq;
1081 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1082 	struct list_head tasks;
1083 	int i;
1084 
1085 	/* Free the existing undo structures for this semaphore set.  */
1086 	ipc_assert_locked_object(&sma->sem_perm);
1087 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1088 		list_del(&un->list_id);
1089 		spin_lock(&un->ulp->lock);
1090 		un->semid = -1;
1091 		list_del_rcu(&un->list_proc);
1092 		spin_unlock(&un->ulp->lock);
1093 		kfree_rcu(un, rcu);
1094 	}
1095 
1096 	/* Wake up all pending processes and let them fail with EIDRM. */
1097 	INIT_LIST_HEAD(&tasks);
1098 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1099 		unlink_queue(sma, q);
1100 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1101 	}
1102 
1103 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1104 		unlink_queue(sma, q);
1105 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1106 	}
1107 	for (i = 0; i < sma->sem_nsems; i++) {
1108 		struct sem *sem = sma->sem_base + i;
1109 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1110 			unlink_queue(sma, q);
1111 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1112 		}
1113 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1114 			unlink_queue(sma, q);
1115 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1116 		}
1117 	}
1118 
1119 	/* Remove the semaphore set from the IDR */
1120 	sem_rmid(ns, sma);
1121 	sem_unlock(sma, -1);
1122 	rcu_read_unlock();
1123 
1124 	wake_up_sem_queue_do(&tasks);
1125 	ns->used_sems -= sma->sem_nsems;
1126 	ipc_rcu_putref(sma, sem_rcu_free);
1127 }
1128 
1129 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1130 {
1131 	switch (version) {
1132 	case IPC_64:
1133 		return copy_to_user(buf, in, sizeof(*in));
1134 	case IPC_OLD:
1135 	    {
1136 		struct semid_ds out;
1137 
1138 		memset(&out, 0, sizeof(out));
1139 
1140 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1141 
1142 		out.sem_otime	= in->sem_otime;
1143 		out.sem_ctime	= in->sem_ctime;
1144 		out.sem_nsems	= in->sem_nsems;
1145 
1146 		return copy_to_user(buf, &out, sizeof(out));
1147 	    }
1148 	default:
1149 		return -EINVAL;
1150 	}
1151 }
1152 
1153 static time_t get_semotime(struct sem_array *sma)
1154 {
1155 	int i;
1156 	time_t res;
1157 
1158 	res = sma->sem_base[0].sem_otime;
1159 	for (i = 1; i < sma->sem_nsems; i++) {
1160 		time_t to = sma->sem_base[i].sem_otime;
1161 
1162 		if (to > res)
1163 			res = to;
1164 	}
1165 	return res;
1166 }
1167 
1168 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1169 			 int cmd, int version, void __user *p)
1170 {
1171 	int err;
1172 	struct sem_array *sma;
1173 
1174 	switch (cmd) {
1175 	case IPC_INFO:
1176 	case SEM_INFO:
1177 	{
1178 		struct seminfo seminfo;
1179 		int max_id;
1180 
1181 		err = security_sem_semctl(NULL, cmd);
1182 		if (err)
1183 			return err;
1184 
1185 		memset(&seminfo, 0, sizeof(seminfo));
1186 		seminfo.semmni = ns->sc_semmni;
1187 		seminfo.semmns = ns->sc_semmns;
1188 		seminfo.semmsl = ns->sc_semmsl;
1189 		seminfo.semopm = ns->sc_semopm;
1190 		seminfo.semvmx = SEMVMX;
1191 		seminfo.semmnu = SEMMNU;
1192 		seminfo.semmap = SEMMAP;
1193 		seminfo.semume = SEMUME;
1194 		down_read(&sem_ids(ns).rwsem);
1195 		if (cmd == SEM_INFO) {
1196 			seminfo.semusz = sem_ids(ns).in_use;
1197 			seminfo.semaem = ns->used_sems;
1198 		} else {
1199 			seminfo.semusz = SEMUSZ;
1200 			seminfo.semaem = SEMAEM;
1201 		}
1202 		max_id = ipc_get_maxid(&sem_ids(ns));
1203 		up_read(&sem_ids(ns).rwsem);
1204 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1205 			return -EFAULT;
1206 		return (max_id < 0) ? 0 : max_id;
1207 	}
1208 	case IPC_STAT:
1209 	case SEM_STAT:
1210 	{
1211 		struct semid64_ds tbuf;
1212 		int id = 0;
1213 
1214 		memset(&tbuf, 0, sizeof(tbuf));
1215 
1216 		rcu_read_lock();
1217 		if (cmd == SEM_STAT) {
1218 			sma = sem_obtain_object(ns, semid);
1219 			if (IS_ERR(sma)) {
1220 				err = PTR_ERR(sma);
1221 				goto out_unlock;
1222 			}
1223 			id = sma->sem_perm.id;
1224 		} else {
1225 			sma = sem_obtain_object_check(ns, semid);
1226 			if (IS_ERR(sma)) {
1227 				err = PTR_ERR(sma);
1228 				goto out_unlock;
1229 			}
1230 		}
1231 
1232 		err = -EACCES;
1233 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1234 			goto out_unlock;
1235 
1236 		err = security_sem_semctl(sma, cmd);
1237 		if (err)
1238 			goto out_unlock;
1239 
1240 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1241 		tbuf.sem_otime = get_semotime(sma);
1242 		tbuf.sem_ctime = sma->sem_ctime;
1243 		tbuf.sem_nsems = sma->sem_nsems;
1244 		rcu_read_unlock();
1245 		if (copy_semid_to_user(p, &tbuf, version))
1246 			return -EFAULT;
1247 		return id;
1248 	}
1249 	default:
1250 		return -EINVAL;
1251 	}
1252 out_unlock:
1253 	rcu_read_unlock();
1254 	return err;
1255 }
1256 
1257 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1258 		unsigned long arg)
1259 {
1260 	struct sem_undo *un;
1261 	struct sem_array *sma;
1262 	struct sem *curr;
1263 	int err;
1264 	struct list_head tasks;
1265 	int val;
1266 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1267 	/* big-endian 64bit */
1268 	val = arg >> 32;
1269 #else
1270 	/* 32bit or little-endian 64bit */
1271 	val = arg;
1272 #endif
1273 
1274 	if (val > SEMVMX || val < 0)
1275 		return -ERANGE;
1276 
1277 	INIT_LIST_HEAD(&tasks);
1278 
1279 	rcu_read_lock();
1280 	sma = sem_obtain_object_check(ns, semid);
1281 	if (IS_ERR(sma)) {
1282 		rcu_read_unlock();
1283 		return PTR_ERR(sma);
1284 	}
1285 
1286 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1287 		rcu_read_unlock();
1288 		return -EINVAL;
1289 	}
1290 
1291 
1292 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1293 		rcu_read_unlock();
1294 		return -EACCES;
1295 	}
1296 
1297 	err = security_sem_semctl(sma, SETVAL);
1298 	if (err) {
1299 		rcu_read_unlock();
1300 		return -EACCES;
1301 	}
1302 
1303 	sem_lock(sma, NULL, -1);
1304 
1305 	if (!ipc_valid_object(&sma->sem_perm)) {
1306 		sem_unlock(sma, -1);
1307 		rcu_read_unlock();
1308 		return -EIDRM;
1309 	}
1310 
1311 	curr = &sma->sem_base[semnum];
1312 
1313 	ipc_assert_locked_object(&sma->sem_perm);
1314 	list_for_each_entry(un, &sma->list_id, list_id)
1315 		un->semadj[semnum] = 0;
1316 
1317 	curr->semval = val;
1318 	curr->sempid = task_tgid_vnr(current);
1319 	sma->sem_ctime = get_seconds();
1320 	/* maybe some queued-up processes were waiting for this */
1321 	do_smart_update(sma, NULL, 0, 0, &tasks);
1322 	sem_unlock(sma, -1);
1323 	rcu_read_unlock();
1324 	wake_up_sem_queue_do(&tasks);
1325 	return 0;
1326 }
1327 
1328 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1329 		int cmd, void __user *p)
1330 {
1331 	struct sem_array *sma;
1332 	struct sem *curr;
1333 	int err, nsems;
1334 	ushort fast_sem_io[SEMMSL_FAST];
1335 	ushort *sem_io = fast_sem_io;
1336 	struct list_head tasks;
1337 
1338 	INIT_LIST_HEAD(&tasks);
1339 
1340 	rcu_read_lock();
1341 	sma = sem_obtain_object_check(ns, semid);
1342 	if (IS_ERR(sma)) {
1343 		rcu_read_unlock();
1344 		return PTR_ERR(sma);
1345 	}
1346 
1347 	nsems = sma->sem_nsems;
1348 
1349 	err = -EACCES;
1350 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1351 		goto out_rcu_wakeup;
1352 
1353 	err = security_sem_semctl(sma, cmd);
1354 	if (err)
1355 		goto out_rcu_wakeup;
1356 
1357 	err = -EACCES;
1358 	switch (cmd) {
1359 	case GETALL:
1360 	{
1361 		ushort __user *array = p;
1362 		int i;
1363 
1364 		sem_lock(sma, NULL, -1);
1365 		if (!ipc_valid_object(&sma->sem_perm)) {
1366 			err = -EIDRM;
1367 			goto out_unlock;
1368 		}
1369 		if (nsems > SEMMSL_FAST) {
1370 			if (!ipc_rcu_getref(sma)) {
1371 				err = -EIDRM;
1372 				goto out_unlock;
1373 			}
1374 			sem_unlock(sma, -1);
1375 			rcu_read_unlock();
1376 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1377 			if (sem_io == NULL) {
1378 				ipc_rcu_putref(sma, ipc_rcu_free);
1379 				return -ENOMEM;
1380 			}
1381 
1382 			rcu_read_lock();
1383 			sem_lock_and_putref(sma);
1384 			if (!ipc_valid_object(&sma->sem_perm)) {
1385 				err = -EIDRM;
1386 				goto out_unlock;
1387 			}
1388 		}
1389 		for (i = 0; i < sma->sem_nsems; i++)
1390 			sem_io[i] = sma->sem_base[i].semval;
1391 		sem_unlock(sma, -1);
1392 		rcu_read_unlock();
1393 		err = 0;
1394 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1395 			err = -EFAULT;
1396 		goto out_free;
1397 	}
1398 	case SETALL:
1399 	{
1400 		int i;
1401 		struct sem_undo *un;
1402 
1403 		if (!ipc_rcu_getref(sma)) {
1404 			err = -EIDRM;
1405 			goto out_rcu_wakeup;
1406 		}
1407 		rcu_read_unlock();
1408 
1409 		if (nsems > SEMMSL_FAST) {
1410 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1411 			if (sem_io == NULL) {
1412 				ipc_rcu_putref(sma, ipc_rcu_free);
1413 				return -ENOMEM;
1414 			}
1415 		}
1416 
1417 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1418 			ipc_rcu_putref(sma, ipc_rcu_free);
1419 			err = -EFAULT;
1420 			goto out_free;
1421 		}
1422 
1423 		for (i = 0; i < nsems; i++) {
1424 			if (sem_io[i] > SEMVMX) {
1425 				ipc_rcu_putref(sma, ipc_rcu_free);
1426 				err = -ERANGE;
1427 				goto out_free;
1428 			}
1429 		}
1430 		rcu_read_lock();
1431 		sem_lock_and_putref(sma);
1432 		if (!ipc_valid_object(&sma->sem_perm)) {
1433 			err = -EIDRM;
1434 			goto out_unlock;
1435 		}
1436 
1437 		for (i = 0; i < nsems; i++)
1438 			sma->sem_base[i].semval = sem_io[i];
1439 
1440 		ipc_assert_locked_object(&sma->sem_perm);
1441 		list_for_each_entry(un, &sma->list_id, list_id) {
1442 			for (i = 0; i < nsems; i++)
1443 				un->semadj[i] = 0;
1444 		}
1445 		sma->sem_ctime = get_seconds();
1446 		/* maybe some queued-up processes were waiting for this */
1447 		do_smart_update(sma, NULL, 0, 0, &tasks);
1448 		err = 0;
1449 		goto out_unlock;
1450 	}
1451 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1452 	}
1453 	err = -EINVAL;
1454 	if (semnum < 0 || semnum >= nsems)
1455 		goto out_rcu_wakeup;
1456 
1457 	sem_lock(sma, NULL, -1);
1458 	if (!ipc_valid_object(&sma->sem_perm)) {
1459 		err = -EIDRM;
1460 		goto out_unlock;
1461 	}
1462 	curr = &sma->sem_base[semnum];
1463 
1464 	switch (cmd) {
1465 	case GETVAL:
1466 		err = curr->semval;
1467 		goto out_unlock;
1468 	case GETPID:
1469 		err = curr->sempid;
1470 		goto out_unlock;
1471 	case GETNCNT:
1472 		err = count_semcnt(sma, semnum, 0);
1473 		goto out_unlock;
1474 	case GETZCNT:
1475 		err = count_semcnt(sma, semnum, 1);
1476 		goto out_unlock;
1477 	}
1478 
1479 out_unlock:
1480 	sem_unlock(sma, -1);
1481 out_rcu_wakeup:
1482 	rcu_read_unlock();
1483 	wake_up_sem_queue_do(&tasks);
1484 out_free:
1485 	if (sem_io != fast_sem_io)
1486 		ipc_free(sem_io, sizeof(ushort)*nsems);
1487 	return err;
1488 }
1489 
1490 static inline unsigned long
1491 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1492 {
1493 	switch (version) {
1494 	case IPC_64:
1495 		if (copy_from_user(out, buf, sizeof(*out)))
1496 			return -EFAULT;
1497 		return 0;
1498 	case IPC_OLD:
1499 	    {
1500 		struct semid_ds tbuf_old;
1501 
1502 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1503 			return -EFAULT;
1504 
1505 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1506 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1507 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1508 
1509 		return 0;
1510 	    }
1511 	default:
1512 		return -EINVAL;
1513 	}
1514 }
1515 
1516 /*
1517  * This function handles some semctl commands which require the rwsem
1518  * to be held in write mode.
1519  * NOTE: no locks must be held, the rwsem is taken inside this function.
1520  */
1521 static int semctl_down(struct ipc_namespace *ns, int semid,
1522 		       int cmd, int version, void __user *p)
1523 {
1524 	struct sem_array *sma;
1525 	int err;
1526 	struct semid64_ds semid64;
1527 	struct kern_ipc_perm *ipcp;
1528 
1529 	if (cmd == IPC_SET) {
1530 		if (copy_semid_from_user(&semid64, p, version))
1531 			return -EFAULT;
1532 	}
1533 
1534 	down_write(&sem_ids(ns).rwsem);
1535 	rcu_read_lock();
1536 
1537 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1538 				      &semid64.sem_perm, 0);
1539 	if (IS_ERR(ipcp)) {
1540 		err = PTR_ERR(ipcp);
1541 		goto out_unlock1;
1542 	}
1543 
1544 	sma = container_of(ipcp, struct sem_array, sem_perm);
1545 
1546 	err = security_sem_semctl(sma, cmd);
1547 	if (err)
1548 		goto out_unlock1;
1549 
1550 	switch (cmd) {
1551 	case IPC_RMID:
1552 		sem_lock(sma, NULL, -1);
1553 		/* freeary unlocks the ipc object and rcu */
1554 		freeary(ns, ipcp);
1555 		goto out_up;
1556 	case IPC_SET:
1557 		sem_lock(sma, NULL, -1);
1558 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1559 		if (err)
1560 			goto out_unlock0;
1561 		sma->sem_ctime = get_seconds();
1562 		break;
1563 	default:
1564 		err = -EINVAL;
1565 		goto out_unlock1;
1566 	}
1567 
1568 out_unlock0:
1569 	sem_unlock(sma, -1);
1570 out_unlock1:
1571 	rcu_read_unlock();
1572 out_up:
1573 	up_write(&sem_ids(ns).rwsem);
1574 	return err;
1575 }
1576 
1577 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1578 {
1579 	int version;
1580 	struct ipc_namespace *ns;
1581 	void __user *p = (void __user *)arg;
1582 
1583 	if (semid < 0)
1584 		return -EINVAL;
1585 
1586 	version = ipc_parse_version(&cmd);
1587 	ns = current->nsproxy->ipc_ns;
1588 
1589 	switch (cmd) {
1590 	case IPC_INFO:
1591 	case SEM_INFO:
1592 	case IPC_STAT:
1593 	case SEM_STAT:
1594 		return semctl_nolock(ns, semid, cmd, version, p);
1595 	case GETALL:
1596 	case GETVAL:
1597 	case GETPID:
1598 	case GETNCNT:
1599 	case GETZCNT:
1600 	case SETALL:
1601 		return semctl_main(ns, semid, semnum, cmd, p);
1602 	case SETVAL:
1603 		return semctl_setval(ns, semid, semnum, arg);
1604 	case IPC_RMID:
1605 	case IPC_SET:
1606 		return semctl_down(ns, semid, cmd, version, p);
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 }
1611 
1612 /* If the task doesn't already have a undo_list, then allocate one
1613  * here.  We guarantee there is only one thread using this undo list,
1614  * and current is THE ONE
1615  *
1616  * If this allocation and assignment succeeds, but later
1617  * portions of this code fail, there is no need to free the sem_undo_list.
1618  * Just let it stay associated with the task, and it'll be freed later
1619  * at exit time.
1620  *
1621  * This can block, so callers must hold no locks.
1622  */
1623 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1624 {
1625 	struct sem_undo_list *undo_list;
1626 
1627 	undo_list = current->sysvsem.undo_list;
1628 	if (!undo_list) {
1629 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1630 		if (undo_list == NULL)
1631 			return -ENOMEM;
1632 		spin_lock_init(&undo_list->lock);
1633 		atomic_set(&undo_list->refcnt, 1);
1634 		INIT_LIST_HEAD(&undo_list->list_proc);
1635 
1636 		current->sysvsem.undo_list = undo_list;
1637 	}
1638 	*undo_listp = undo_list;
1639 	return 0;
1640 }
1641 
1642 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1643 {
1644 	struct sem_undo *un;
1645 
1646 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1647 		if (un->semid == semid)
1648 			return un;
1649 	}
1650 	return NULL;
1651 }
1652 
1653 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1654 {
1655 	struct sem_undo *un;
1656 
1657 	assert_spin_locked(&ulp->lock);
1658 
1659 	un = __lookup_undo(ulp, semid);
1660 	if (un) {
1661 		list_del_rcu(&un->list_proc);
1662 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1663 	}
1664 	return un;
1665 }
1666 
1667 /**
1668  * find_alloc_undo - lookup (and if not present create) undo array
1669  * @ns: namespace
1670  * @semid: semaphore array id
1671  *
1672  * The function looks up (and if not present creates) the undo structure.
1673  * The size of the undo structure depends on the size of the semaphore
1674  * array, thus the alloc path is not that straightforward.
1675  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1676  * performs a rcu_read_lock().
1677  */
1678 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1679 {
1680 	struct sem_array *sma;
1681 	struct sem_undo_list *ulp;
1682 	struct sem_undo *un, *new;
1683 	int nsems, error;
1684 
1685 	error = get_undo_list(&ulp);
1686 	if (error)
1687 		return ERR_PTR(error);
1688 
1689 	rcu_read_lock();
1690 	spin_lock(&ulp->lock);
1691 	un = lookup_undo(ulp, semid);
1692 	spin_unlock(&ulp->lock);
1693 	if (likely(un != NULL))
1694 		goto out;
1695 
1696 	/* no undo structure around - allocate one. */
1697 	/* step 1: figure out the size of the semaphore array */
1698 	sma = sem_obtain_object_check(ns, semid);
1699 	if (IS_ERR(sma)) {
1700 		rcu_read_unlock();
1701 		return ERR_CAST(sma);
1702 	}
1703 
1704 	nsems = sma->sem_nsems;
1705 	if (!ipc_rcu_getref(sma)) {
1706 		rcu_read_unlock();
1707 		un = ERR_PTR(-EIDRM);
1708 		goto out;
1709 	}
1710 	rcu_read_unlock();
1711 
1712 	/* step 2: allocate new undo structure */
1713 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1714 	if (!new) {
1715 		ipc_rcu_putref(sma, ipc_rcu_free);
1716 		return ERR_PTR(-ENOMEM);
1717 	}
1718 
1719 	/* step 3: Acquire the lock on semaphore array */
1720 	rcu_read_lock();
1721 	sem_lock_and_putref(sma);
1722 	if (!ipc_valid_object(&sma->sem_perm)) {
1723 		sem_unlock(sma, -1);
1724 		rcu_read_unlock();
1725 		kfree(new);
1726 		un = ERR_PTR(-EIDRM);
1727 		goto out;
1728 	}
1729 	spin_lock(&ulp->lock);
1730 
1731 	/*
1732 	 * step 4: check for races: did someone else allocate the undo struct?
1733 	 */
1734 	un = lookup_undo(ulp, semid);
1735 	if (un) {
1736 		kfree(new);
1737 		goto success;
1738 	}
1739 	/* step 5: initialize & link new undo structure */
1740 	new->semadj = (short *) &new[1];
1741 	new->ulp = ulp;
1742 	new->semid = semid;
1743 	assert_spin_locked(&ulp->lock);
1744 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1745 	ipc_assert_locked_object(&sma->sem_perm);
1746 	list_add(&new->list_id, &sma->list_id);
1747 	un = new;
1748 
1749 success:
1750 	spin_unlock(&ulp->lock);
1751 	sem_unlock(sma, -1);
1752 out:
1753 	return un;
1754 }
1755 
1756 
1757 /**
1758  * get_queue_result - retrieve the result code from sem_queue
1759  * @q: Pointer to queue structure
1760  *
1761  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1762  * q->status, then we must loop until the value is replaced with the final
1763  * value: This may happen if a task is woken up by an unrelated event (e.g.
1764  * signal) and in parallel the task is woken up by another task because it got
1765  * the requested semaphores.
1766  *
1767  * The function can be called with or without holding the semaphore spinlock.
1768  */
1769 static int get_queue_result(struct sem_queue *q)
1770 {
1771 	int error;
1772 
1773 	error = q->status;
1774 	while (unlikely(error == IN_WAKEUP)) {
1775 		cpu_relax();
1776 		error = q->status;
1777 	}
1778 
1779 	return error;
1780 }
1781 
1782 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1783 		unsigned, nsops, const struct timespec __user *, timeout)
1784 {
1785 	int error = -EINVAL;
1786 	struct sem_array *sma;
1787 	struct sembuf fast_sops[SEMOPM_FAST];
1788 	struct sembuf *sops = fast_sops, *sop;
1789 	struct sem_undo *un;
1790 	int undos = 0, alter = 0, max, locknum;
1791 	struct sem_queue queue;
1792 	unsigned long jiffies_left = 0;
1793 	struct ipc_namespace *ns;
1794 	struct list_head tasks;
1795 
1796 	ns = current->nsproxy->ipc_ns;
1797 
1798 	if (nsops < 1 || semid < 0)
1799 		return -EINVAL;
1800 	if (nsops > ns->sc_semopm)
1801 		return -E2BIG;
1802 	if (nsops > SEMOPM_FAST) {
1803 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1804 		if (sops == NULL)
1805 			return -ENOMEM;
1806 	}
1807 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1808 		error =  -EFAULT;
1809 		goto out_free;
1810 	}
1811 	if (timeout) {
1812 		struct timespec _timeout;
1813 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1814 			error = -EFAULT;
1815 			goto out_free;
1816 		}
1817 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1818 			_timeout.tv_nsec >= 1000000000L) {
1819 			error = -EINVAL;
1820 			goto out_free;
1821 		}
1822 		jiffies_left = timespec_to_jiffies(&_timeout);
1823 	}
1824 	max = 0;
1825 	for (sop = sops; sop < sops + nsops; sop++) {
1826 		if (sop->sem_num >= max)
1827 			max = sop->sem_num;
1828 		if (sop->sem_flg & SEM_UNDO)
1829 			undos = 1;
1830 		if (sop->sem_op != 0)
1831 			alter = 1;
1832 	}
1833 
1834 	INIT_LIST_HEAD(&tasks);
1835 
1836 	if (undos) {
1837 		/* On success, find_alloc_undo takes the rcu_read_lock */
1838 		un = find_alloc_undo(ns, semid);
1839 		if (IS_ERR(un)) {
1840 			error = PTR_ERR(un);
1841 			goto out_free;
1842 		}
1843 	} else {
1844 		un = NULL;
1845 		rcu_read_lock();
1846 	}
1847 
1848 	sma = sem_obtain_object_check(ns, semid);
1849 	if (IS_ERR(sma)) {
1850 		rcu_read_unlock();
1851 		error = PTR_ERR(sma);
1852 		goto out_free;
1853 	}
1854 
1855 	error = -EFBIG;
1856 	if (max >= sma->sem_nsems)
1857 		goto out_rcu_wakeup;
1858 
1859 	error = -EACCES;
1860 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1861 		goto out_rcu_wakeup;
1862 
1863 	error = security_sem_semop(sma, sops, nsops, alter);
1864 	if (error)
1865 		goto out_rcu_wakeup;
1866 
1867 	error = -EIDRM;
1868 	locknum = sem_lock(sma, sops, nsops);
1869 	/*
1870 	 * We eventually might perform the following check in a lockless
1871 	 * fashion, considering ipc_valid_object() locking constraints.
1872 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1873 	 * only a per-semaphore lock is held and it's OK to proceed with the
1874 	 * check below. More details on the fine grained locking scheme
1875 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1876 	 */
1877 	if (!ipc_valid_object(&sma->sem_perm))
1878 		goto out_unlock_free;
1879 	/*
1880 	 * semid identifiers are not unique - find_alloc_undo may have
1881 	 * allocated an undo structure, it was invalidated by an RMID
1882 	 * and now a new array with received the same id. Check and fail.
1883 	 * This case can be detected checking un->semid. The existence of
1884 	 * "un" itself is guaranteed by rcu.
1885 	 */
1886 	if (un && un->semid == -1)
1887 		goto out_unlock_free;
1888 
1889 	queue.sops = sops;
1890 	queue.nsops = nsops;
1891 	queue.undo = un;
1892 	queue.pid = task_tgid_vnr(current);
1893 	queue.alter = alter;
1894 
1895 	error = perform_atomic_semop(sma, &queue);
1896 	if (error == 0) {
1897 		/* If the operation was successful, then do
1898 		 * the required updates.
1899 		 */
1900 		if (alter)
1901 			do_smart_update(sma, sops, nsops, 1, &tasks);
1902 		else
1903 			set_semotime(sma, sops);
1904 	}
1905 	if (error <= 0)
1906 		goto out_unlock_free;
1907 
1908 	/* We need to sleep on this operation, so we put the current
1909 	 * task into the pending queue and go to sleep.
1910 	 */
1911 
1912 	if (nsops == 1) {
1913 		struct sem *curr;
1914 		curr = &sma->sem_base[sops->sem_num];
1915 
1916 		if (alter) {
1917 			if (sma->complex_count) {
1918 				list_add_tail(&queue.list,
1919 						&sma->pending_alter);
1920 			} else {
1921 
1922 				list_add_tail(&queue.list,
1923 						&curr->pending_alter);
1924 			}
1925 		} else {
1926 			list_add_tail(&queue.list, &curr->pending_const);
1927 		}
1928 	} else {
1929 		if (!sma->complex_count)
1930 			merge_queues(sma);
1931 
1932 		if (alter)
1933 			list_add_tail(&queue.list, &sma->pending_alter);
1934 		else
1935 			list_add_tail(&queue.list, &sma->pending_const);
1936 
1937 		sma->complex_count++;
1938 	}
1939 
1940 	queue.status = -EINTR;
1941 	queue.sleeper = current;
1942 
1943 sleep_again:
1944 	current->state = TASK_INTERRUPTIBLE;
1945 	sem_unlock(sma, locknum);
1946 	rcu_read_unlock();
1947 
1948 	if (timeout)
1949 		jiffies_left = schedule_timeout(jiffies_left);
1950 	else
1951 		schedule();
1952 
1953 	error = get_queue_result(&queue);
1954 
1955 	if (error != -EINTR) {
1956 		/* fast path: update_queue already obtained all requested
1957 		 * resources.
1958 		 * Perform a smp_mb(): User space could assume that semop()
1959 		 * is a memory barrier: Without the mb(), the cpu could
1960 		 * speculatively read in user space stale data that was
1961 		 * overwritten by the previous owner of the semaphore.
1962 		 */
1963 		smp_mb();
1964 
1965 		goto out_free;
1966 	}
1967 
1968 	rcu_read_lock();
1969 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1970 
1971 	/*
1972 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1973 	 */
1974 	error = get_queue_result(&queue);
1975 
1976 	/*
1977 	 * Array removed? If yes, leave without sem_unlock().
1978 	 */
1979 	if (IS_ERR(sma)) {
1980 		rcu_read_unlock();
1981 		goto out_free;
1982 	}
1983 
1984 
1985 	/*
1986 	 * If queue.status != -EINTR we are woken up by another process.
1987 	 * Leave without unlink_queue(), but with sem_unlock().
1988 	 */
1989 	if (error != -EINTR)
1990 		goto out_unlock_free;
1991 
1992 	/*
1993 	 * If an interrupt occurred we have to clean up the queue
1994 	 */
1995 	if (timeout && jiffies_left == 0)
1996 		error = -EAGAIN;
1997 
1998 	/*
1999 	 * If the wakeup was spurious, just retry
2000 	 */
2001 	if (error == -EINTR && !signal_pending(current))
2002 		goto sleep_again;
2003 
2004 	unlink_queue(sma, &queue);
2005 
2006 out_unlock_free:
2007 	sem_unlock(sma, locknum);
2008 out_rcu_wakeup:
2009 	rcu_read_unlock();
2010 	wake_up_sem_queue_do(&tasks);
2011 out_free:
2012 	if (sops != fast_sops)
2013 		kfree(sops);
2014 	return error;
2015 }
2016 
2017 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2018 		unsigned, nsops)
2019 {
2020 	return sys_semtimedop(semid, tsops, nsops, NULL);
2021 }
2022 
2023 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2024  * parent and child tasks.
2025  */
2026 
2027 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2028 {
2029 	struct sem_undo_list *undo_list;
2030 	int error;
2031 
2032 	if (clone_flags & CLONE_SYSVSEM) {
2033 		error = get_undo_list(&undo_list);
2034 		if (error)
2035 			return error;
2036 		atomic_inc(&undo_list->refcnt);
2037 		tsk->sysvsem.undo_list = undo_list;
2038 	} else
2039 		tsk->sysvsem.undo_list = NULL;
2040 
2041 	return 0;
2042 }
2043 
2044 /*
2045  * add semadj values to semaphores, free undo structures.
2046  * undo structures are not freed when semaphore arrays are destroyed
2047  * so some of them may be out of date.
2048  * IMPLEMENTATION NOTE: There is some confusion over whether the
2049  * set of adjustments that needs to be done should be done in an atomic
2050  * manner or not. That is, if we are attempting to decrement the semval
2051  * should we queue up and wait until we can do so legally?
2052  * The original implementation attempted to do this (queue and wait).
2053  * The current implementation does not do so. The POSIX standard
2054  * and SVID should be consulted to determine what behavior is mandated.
2055  */
2056 void exit_sem(struct task_struct *tsk)
2057 {
2058 	struct sem_undo_list *ulp;
2059 
2060 	ulp = tsk->sysvsem.undo_list;
2061 	if (!ulp)
2062 		return;
2063 	tsk->sysvsem.undo_list = NULL;
2064 
2065 	if (!atomic_dec_and_test(&ulp->refcnt))
2066 		return;
2067 
2068 	for (;;) {
2069 		struct sem_array *sma;
2070 		struct sem_undo *un;
2071 		struct list_head tasks;
2072 		int semid, i;
2073 
2074 		rcu_read_lock();
2075 		un = list_entry_rcu(ulp->list_proc.next,
2076 				    struct sem_undo, list_proc);
2077 		if (&un->list_proc == &ulp->list_proc)
2078 			semid = -1;
2079 		 else
2080 			semid = un->semid;
2081 
2082 		if (semid == -1) {
2083 			rcu_read_unlock();
2084 			break;
2085 		}
2086 
2087 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2088 		/* exit_sem raced with IPC_RMID, nothing to do */
2089 		if (IS_ERR(sma)) {
2090 			rcu_read_unlock();
2091 			continue;
2092 		}
2093 
2094 		sem_lock(sma, NULL, -1);
2095 		/* exit_sem raced with IPC_RMID, nothing to do */
2096 		if (!ipc_valid_object(&sma->sem_perm)) {
2097 			sem_unlock(sma, -1);
2098 			rcu_read_unlock();
2099 			continue;
2100 		}
2101 		un = __lookup_undo(ulp, semid);
2102 		if (un == NULL) {
2103 			/* exit_sem raced with IPC_RMID+semget() that created
2104 			 * exactly the same semid. Nothing to do.
2105 			 */
2106 			sem_unlock(sma, -1);
2107 			rcu_read_unlock();
2108 			continue;
2109 		}
2110 
2111 		/* remove un from the linked lists */
2112 		ipc_assert_locked_object(&sma->sem_perm);
2113 		list_del(&un->list_id);
2114 
2115 		spin_lock(&ulp->lock);
2116 		list_del_rcu(&un->list_proc);
2117 		spin_unlock(&ulp->lock);
2118 
2119 		/* perform adjustments registered in un */
2120 		for (i = 0; i < sma->sem_nsems; i++) {
2121 			struct sem *semaphore = &sma->sem_base[i];
2122 			if (un->semadj[i]) {
2123 				semaphore->semval += un->semadj[i];
2124 				/*
2125 				 * Range checks of the new semaphore value,
2126 				 * not defined by sus:
2127 				 * - Some unices ignore the undo entirely
2128 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2129 				 * - some cap the value (e.g. FreeBSD caps
2130 				 *   at 0, but doesn't enforce SEMVMX)
2131 				 *
2132 				 * Linux caps the semaphore value, both at 0
2133 				 * and at SEMVMX.
2134 				 *
2135 				 *	Manfred <manfred@colorfullife.com>
2136 				 */
2137 				if (semaphore->semval < 0)
2138 					semaphore->semval = 0;
2139 				if (semaphore->semval > SEMVMX)
2140 					semaphore->semval = SEMVMX;
2141 				semaphore->sempid = task_tgid_vnr(current);
2142 			}
2143 		}
2144 		/* maybe some queued-up processes were waiting for this */
2145 		INIT_LIST_HEAD(&tasks);
2146 		do_smart_update(sma, NULL, 0, 1, &tasks);
2147 		sem_unlock(sma, -1);
2148 		rcu_read_unlock();
2149 		wake_up_sem_queue_do(&tasks);
2150 
2151 		kfree_rcu(un, rcu);
2152 	}
2153 	kfree(ulp);
2154 }
2155 
2156 #ifdef CONFIG_PROC_FS
2157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2158 {
2159 	struct user_namespace *user_ns = seq_user_ns(s);
2160 	struct sem_array *sma = it;
2161 	time_t sem_otime;
2162 
2163 	/*
2164 	 * The proc interface isn't aware of sem_lock(), it calls
2165 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2166 	 * In order to stay compatible with sem_lock(), we must wait until
2167 	 * all simple semop() calls have left their critical regions.
2168 	 */
2169 	sem_wait_array(sma);
2170 
2171 	sem_otime = get_semotime(sma);
2172 
2173 	return seq_printf(s,
2174 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2175 			  sma->sem_perm.key,
2176 			  sma->sem_perm.id,
2177 			  sma->sem_perm.mode,
2178 			  sma->sem_nsems,
2179 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2180 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2181 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2182 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2183 			  sem_otime,
2184 			  sma->sem_ctime);
2185 }
2186 #endif
2187