xref: /linux/ipc/sem.c (revision 2dc0b9721956f4314364f68a99d8bef490870438)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	int	sempid;		/* pid of last operation */
96 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97 	struct list_head pending_alter; /* pending single-sop operations */
98 					/* that alter the semaphore */
99 	struct list_head pending_const; /* pending single-sop operations */
100 					/* that do not alter the semaphore*/
101 	time_t	sem_otime;	/* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103 
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 	struct list_head	list;	 /* queue of pending operations */
107 	struct task_struct	*sleeper; /* this process */
108 	struct sem_undo		*undo;	 /* undo structure */
109 	int			pid;	 /* process id of requesting process */
110 	int			status;	 /* completion status of operation */
111 	struct sembuf		*sops;	 /* array of pending operations */
112 	struct sembuf		*blocking; /* the operation that blocked */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init(void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * Wait until all currently ongoing simple ops have completed.
257  * Caller must own sem_perm.lock.
258  * New simple ops cannot start, because simple ops first check
259  * that sem_perm.lock is free.
260  * that a) sem_perm.lock is free and b) complex_count is 0.
261  */
262 static void sem_wait_array(struct sem_array *sma)
263 {
264 	int i;
265 	struct sem *sem;
266 
267 	if (sma->complex_count)  {
268 		/* The thread that increased sma->complex_count waited on
269 		 * all sem->lock locks. Thus we don't need to wait again.
270 		 */
271 		return;
272 	}
273 
274 	for (i = 0; i < sma->sem_nsems; i++) {
275 		sem = sma->sem_base + i;
276 		spin_unlock_wait(&sem->lock);
277 	}
278 }
279 
280 /*
281  * If the request contains only one semaphore operation, and there are
282  * no complex transactions pending, lock only the semaphore involved.
283  * Otherwise, lock the entire semaphore array, since we either have
284  * multiple semaphores in our own semops, or we need to look at
285  * semaphores from other pending complex operations.
286  */
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 			      int nsops)
289 {
290 	struct sem *sem;
291 
292 	if (nsops != 1) {
293 		/* Complex operation - acquire a full lock */
294 		ipc_lock_object(&sma->sem_perm);
295 
296 		/* And wait until all simple ops that are processed
297 		 * right now have dropped their locks.
298 		 */
299 		sem_wait_array(sma);
300 		return -1;
301 	}
302 
303 	/*
304 	 * Only one semaphore affected - try to optimize locking.
305 	 * The rules are:
306 	 * - optimized locking is possible if no complex operation
307 	 *   is either enqueued or processed right now.
308 	 * - The test for enqueued complex ops is simple:
309 	 *      sma->complex_count != 0
310 	 * - Testing for complex ops that are processed right now is
311 	 *   a bit more difficult. Complex ops acquire the full lock
312 	 *   and first wait that the running simple ops have completed.
313 	 *   (see above)
314 	 *   Thus: If we own a simple lock and the global lock is free
315 	 *	and complex_count is now 0, then it will stay 0 and
316 	 *	thus just locking sem->lock is sufficient.
317 	 */
318 	sem = sma->sem_base + sops->sem_num;
319 
320 	if (sma->complex_count == 0) {
321 		/*
322 		 * It appears that no complex operation is around.
323 		 * Acquire the per-semaphore lock.
324 		 */
325 		spin_lock(&sem->lock);
326 
327 		/* Then check that the global lock is free */
328 		if (!spin_is_locked(&sma->sem_perm.lock)) {
329 			/* spin_is_locked() is not a memory barrier */
330 			smp_mb();
331 
332 			/* Now repeat the test of complex_count:
333 			 * It can't change anymore until we drop sem->lock.
334 			 * Thus: if is now 0, then it will stay 0.
335 			 */
336 			if (sma->complex_count == 0) {
337 				/* fast path successful! */
338 				return sops->sem_num;
339 			}
340 		}
341 		spin_unlock(&sem->lock);
342 	}
343 
344 	/* slow path: acquire the full lock */
345 	ipc_lock_object(&sma->sem_perm);
346 
347 	if (sma->complex_count == 0) {
348 		/* False alarm:
349 		 * There is no complex operation, thus we can switch
350 		 * back to the fast path.
351 		 */
352 		spin_lock(&sem->lock);
353 		ipc_unlock_object(&sma->sem_perm);
354 		return sops->sem_num;
355 	} else {
356 		/* Not a false alarm, thus complete the sequence for a
357 		 * full lock.
358 		 */
359 		sem_wait_array(sma);
360 		return -1;
361 	}
362 }
363 
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
365 {
366 	if (locknum == -1) {
367 		unmerge_queues(sma);
368 		ipc_unlock_object(&sma->sem_perm);
369 	} else {
370 		struct sem *sem = sma->sem_base + locknum;
371 		spin_unlock(&sem->lock);
372 	}
373 }
374 
375 /*
376  * sem_lock_(check_) routines are called in the paths where the rwsem
377  * is not held.
378  *
379  * The caller holds the RCU read lock.
380  */
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 			int id, struct sembuf *sops, int nsops, int *locknum)
383 {
384 	struct kern_ipc_perm *ipcp;
385 	struct sem_array *sma;
386 
387 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 	if (IS_ERR(ipcp))
389 		return ERR_CAST(ipcp);
390 
391 	sma = container_of(ipcp, struct sem_array, sem_perm);
392 	*locknum = sem_lock(sma, sops, nsops);
393 
394 	/* ipc_rmid() may have already freed the ID while sem_lock
395 	 * was spinning: verify that the structure is still valid
396 	 */
397 	if (ipc_valid_object(ipcp))
398 		return container_of(ipcp, struct sem_array, sem_perm);
399 
400 	sem_unlock(sma, *locknum);
401 	return ERR_PTR(-EINVAL);
402 }
403 
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405 {
406 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407 
408 	if (IS_ERR(ipcp))
409 		return ERR_CAST(ipcp);
410 
411 	return container_of(ipcp, struct sem_array, sem_perm);
412 }
413 
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 							int id)
416 {
417 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418 
419 	if (IS_ERR(ipcp))
420 		return ERR_CAST(ipcp);
421 
422 	return container_of(ipcp, struct sem_array, sem_perm);
423 }
424 
425 static inline void sem_lock_and_putref(struct sem_array *sma)
426 {
427 	sem_lock(sma, NULL, -1);
428 	ipc_rcu_putref(sma, ipc_rcu_free);
429 }
430 
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432 {
433 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
434 }
435 
436 /*
437  * Lockless wakeup algorithm:
438  * Without the check/retry algorithm a lockless wakeup is possible:
439  * - queue.status is initialized to -EINTR before blocking.
440  * - wakeup is performed by
441  *	* unlinking the queue entry from the pending list
442  *	* setting queue.status to IN_WAKEUP
443  *	  This is the notification for the blocked thread that a
444  *	  result value is imminent.
445  *	* call wake_up_process
446  *	* set queue.status to the final value.
447  * - the previously blocked thread checks queue.status:
448  *	* if it's IN_WAKEUP, then it must wait until the value changes
449  *	* if it's not -EINTR, then the operation was completed by
450  *	  update_queue. semtimedop can return queue.status without
451  *	  performing any operation on the sem array.
452  *	* otherwise it must acquire the spinlock and check what's up.
453  *
454  * The two-stage algorithm is necessary to protect against the following
455  * races:
456  * - if queue.status is set after wake_up_process, then the woken up idle
457  *   thread could race forward and try (and fail) to acquire sma->lock
458  *   before update_queue had a chance to set queue.status
459  * - if queue.status is written before wake_up_process and if the
460  *   blocked process is woken up by a signal between writing
461  *   queue.status and the wake_up_process, then the woken up
462  *   process could return from semtimedop and die by calling
463  *   sys_exit before wake_up_process is called. Then wake_up_process
464  *   will oops, because the task structure is already invalid.
465  *   (yes, this happened on s390 with sysv msg).
466  *
467  */
468 #define IN_WAKEUP	1
469 
470 /**
471  * newary - Create a new semaphore set
472  * @ns: namespace
473  * @params: ptr to the structure that contains key, semflg and nsems
474  *
475  * Called with sem_ids.rwsem held (as a writer)
476  */
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
478 {
479 	int id;
480 	int retval;
481 	struct sem_array *sma;
482 	int size;
483 	key_t key = params->key;
484 	int nsems = params->u.nsems;
485 	int semflg = params->flg;
486 	int i;
487 
488 	if (!nsems)
489 		return -EINVAL;
490 	if (ns->used_sems + nsems > ns->sc_semmns)
491 		return -ENOSPC;
492 
493 	size = sizeof(*sma) + nsems * sizeof(struct sem);
494 	sma = ipc_rcu_alloc(size);
495 	if (!sma)
496 		return -ENOMEM;
497 
498 	memset(sma, 0, size);
499 
500 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 	sma->sem_perm.key = key;
502 
503 	sma->sem_perm.security = NULL;
504 	retval = security_sem_alloc(sma);
505 	if (retval) {
506 		ipc_rcu_putref(sma, ipc_rcu_free);
507 		return retval;
508 	}
509 
510 	sma->sem_base = (struct sem *) &sma[1];
511 
512 	for (i = 0; i < nsems; i++) {
513 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
514 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
515 		spin_lock_init(&sma->sem_base[i].lock);
516 	}
517 
518 	sma->complex_count = 0;
519 	INIT_LIST_HEAD(&sma->pending_alter);
520 	INIT_LIST_HEAD(&sma->pending_const);
521 	INIT_LIST_HEAD(&sma->list_id);
522 	sma->sem_nsems = nsems;
523 	sma->sem_ctime = get_seconds();
524 
525 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
526 	if (id < 0) {
527 		ipc_rcu_putref(sma, sem_rcu_free);
528 		return id;
529 	}
530 	ns->used_sems += nsems;
531 
532 	sem_unlock(sma, -1);
533 	rcu_read_unlock();
534 
535 	return sma->sem_perm.id;
536 }
537 
538 
539 /*
540  * Called with sem_ids.rwsem and ipcp locked.
541  */
542 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
543 {
544 	struct sem_array *sma;
545 
546 	sma = container_of(ipcp, struct sem_array, sem_perm);
547 	return security_sem_associate(sma, semflg);
548 }
549 
550 /*
551  * Called with sem_ids.rwsem and ipcp locked.
552  */
553 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
554 				struct ipc_params *params)
555 {
556 	struct sem_array *sma;
557 
558 	sma = container_of(ipcp, struct sem_array, sem_perm);
559 	if (params->u.nsems > sma->sem_nsems)
560 		return -EINVAL;
561 
562 	return 0;
563 }
564 
565 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
566 {
567 	struct ipc_namespace *ns;
568 	static const struct ipc_ops sem_ops = {
569 		.getnew = newary,
570 		.associate = sem_security,
571 		.more_checks = sem_more_checks,
572 	};
573 	struct ipc_params sem_params;
574 
575 	ns = current->nsproxy->ipc_ns;
576 
577 	if (nsems < 0 || nsems > ns->sc_semmsl)
578 		return -EINVAL;
579 
580 	sem_params.key = key;
581 	sem_params.flg = semflg;
582 	sem_params.u.nsems = nsems;
583 
584 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
585 }
586 
587 /**
588  * perform_atomic_semop - Perform (if possible) a semaphore operation
589  * @sma: semaphore array
590  * @q: struct sem_queue that describes the operation
591  *
592  * Returns 0 if the operation was possible.
593  * Returns 1 if the operation is impossible, the caller must sleep.
594  * Negative values are error codes.
595  */
596 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
597 {
598 	int result, sem_op, nsops, pid;
599 	struct sembuf *sop;
600 	struct sem *curr;
601 	struct sembuf *sops;
602 	struct sem_undo *un;
603 
604 	sops = q->sops;
605 	nsops = q->nsops;
606 	un = q->undo;
607 
608 	for (sop = sops; sop < sops + nsops; sop++) {
609 		curr = sma->sem_base + sop->sem_num;
610 		sem_op = sop->sem_op;
611 		result = curr->semval;
612 
613 		if (!sem_op && result)
614 			goto would_block;
615 
616 		result += sem_op;
617 		if (result < 0)
618 			goto would_block;
619 		if (result > SEMVMX)
620 			goto out_of_range;
621 
622 		if (sop->sem_flg & SEM_UNDO) {
623 			int undo = un->semadj[sop->sem_num] - sem_op;
624 			/* Exceeding the undo range is an error. */
625 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
626 				goto out_of_range;
627 			un->semadj[sop->sem_num] = undo;
628 		}
629 
630 		curr->semval = result;
631 	}
632 
633 	sop--;
634 	pid = q->pid;
635 	while (sop >= sops) {
636 		sma->sem_base[sop->sem_num].sempid = pid;
637 		sop--;
638 	}
639 
640 	return 0;
641 
642 out_of_range:
643 	result = -ERANGE;
644 	goto undo;
645 
646 would_block:
647 	q->blocking = sop;
648 
649 	if (sop->sem_flg & IPC_NOWAIT)
650 		result = -EAGAIN;
651 	else
652 		result = 1;
653 
654 undo:
655 	sop--;
656 	while (sop >= sops) {
657 		sem_op = sop->sem_op;
658 		sma->sem_base[sop->sem_num].semval -= sem_op;
659 		if (sop->sem_flg & SEM_UNDO)
660 			un->semadj[sop->sem_num] += sem_op;
661 		sop--;
662 	}
663 
664 	return result;
665 }
666 
667 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
668  * @q: queue entry that must be signaled
669  * @error: Error value for the signal
670  *
671  * Prepare the wake-up of the queue entry q.
672  */
673 static void wake_up_sem_queue_prepare(struct list_head *pt,
674 				struct sem_queue *q, int error)
675 {
676 	if (list_empty(pt)) {
677 		/*
678 		 * Hold preempt off so that we don't get preempted and have the
679 		 * wakee busy-wait until we're scheduled back on.
680 		 */
681 		preempt_disable();
682 	}
683 	q->status = IN_WAKEUP;
684 	q->pid = error;
685 
686 	list_add_tail(&q->list, pt);
687 }
688 
689 /**
690  * wake_up_sem_queue_do - do the actual wake-up
691  * @pt: list of tasks to be woken up
692  *
693  * Do the actual wake-up.
694  * The function is called without any locks held, thus the semaphore array
695  * could be destroyed already and the tasks can disappear as soon as the
696  * status is set to the actual return code.
697  */
698 static void wake_up_sem_queue_do(struct list_head *pt)
699 {
700 	struct sem_queue *q, *t;
701 	int did_something;
702 
703 	did_something = !list_empty(pt);
704 	list_for_each_entry_safe(q, t, pt, list) {
705 		wake_up_process(q->sleeper);
706 		/* q can disappear immediately after writing q->status. */
707 		smp_wmb();
708 		q->status = q->pid;
709 	}
710 	if (did_something)
711 		preempt_enable();
712 }
713 
714 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
715 {
716 	list_del(&q->list);
717 	if (q->nsops > 1)
718 		sma->complex_count--;
719 }
720 
721 /** check_restart(sma, q)
722  * @sma: semaphore array
723  * @q: the operation that just completed
724  *
725  * update_queue is O(N^2) when it restarts scanning the whole queue of
726  * waiting operations. Therefore this function checks if the restart is
727  * really necessary. It is called after a previously waiting operation
728  * modified the array.
729  * Note that wait-for-zero operations are handled without restart.
730  */
731 static int check_restart(struct sem_array *sma, struct sem_queue *q)
732 {
733 	/* pending complex alter operations are too difficult to analyse */
734 	if (!list_empty(&sma->pending_alter))
735 		return 1;
736 
737 	/* we were a sleeping complex operation. Too difficult */
738 	if (q->nsops > 1)
739 		return 1;
740 
741 	/* It is impossible that someone waits for the new value:
742 	 * - complex operations always restart.
743 	 * - wait-for-zero are handled seperately.
744 	 * - q is a previously sleeping simple operation that
745 	 *   altered the array. It must be a decrement, because
746 	 *   simple increments never sleep.
747 	 * - If there are older (higher priority) decrements
748 	 *   in the queue, then they have observed the original
749 	 *   semval value and couldn't proceed. The operation
750 	 *   decremented to value - thus they won't proceed either.
751 	 */
752 	return 0;
753 }
754 
755 /**
756  * wake_const_ops - wake up non-alter tasks
757  * @sma: semaphore array.
758  * @semnum: semaphore that was modified.
759  * @pt: list head for the tasks that must be woken up.
760  *
761  * wake_const_ops must be called after a semaphore in a semaphore array
762  * was set to 0. If complex const operations are pending, wake_const_ops must
763  * be called with semnum = -1, as well as with the number of each modified
764  * semaphore.
765  * The tasks that must be woken up are added to @pt. The return code
766  * is stored in q->pid.
767  * The function returns 1 if at least one operation was completed successfully.
768  */
769 static int wake_const_ops(struct sem_array *sma, int semnum,
770 				struct list_head *pt)
771 {
772 	struct sem_queue *q;
773 	struct list_head *walk;
774 	struct list_head *pending_list;
775 	int semop_completed = 0;
776 
777 	if (semnum == -1)
778 		pending_list = &sma->pending_const;
779 	else
780 		pending_list = &sma->sem_base[semnum].pending_const;
781 
782 	walk = pending_list->next;
783 	while (walk != pending_list) {
784 		int error;
785 
786 		q = container_of(walk, struct sem_queue, list);
787 		walk = walk->next;
788 
789 		error = perform_atomic_semop(sma, q);
790 
791 		if (error <= 0) {
792 			/* operation completed, remove from queue & wakeup */
793 
794 			unlink_queue(sma, q);
795 
796 			wake_up_sem_queue_prepare(pt, q, error);
797 			if (error == 0)
798 				semop_completed = 1;
799 		}
800 	}
801 	return semop_completed;
802 }
803 
804 /**
805  * do_smart_wakeup_zero - wakeup all wait for zero tasks
806  * @sma: semaphore array
807  * @sops: operations that were performed
808  * @nsops: number of operations
809  * @pt: list head of the tasks that must be woken up.
810  *
811  * Checks all required queue for wait-for-zero operations, based
812  * on the actual changes that were performed on the semaphore array.
813  * The function returns 1 if at least one operation was completed successfully.
814  */
815 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
816 					int nsops, struct list_head *pt)
817 {
818 	int i;
819 	int semop_completed = 0;
820 	int got_zero = 0;
821 
822 	/* first: the per-semaphore queues, if known */
823 	if (sops) {
824 		for (i = 0; i < nsops; i++) {
825 			int num = sops[i].sem_num;
826 
827 			if (sma->sem_base[num].semval == 0) {
828 				got_zero = 1;
829 				semop_completed |= wake_const_ops(sma, num, pt);
830 			}
831 		}
832 	} else {
833 		/*
834 		 * No sops means modified semaphores not known.
835 		 * Assume all were changed.
836 		 */
837 		for (i = 0; i < sma->sem_nsems; i++) {
838 			if (sma->sem_base[i].semval == 0) {
839 				got_zero = 1;
840 				semop_completed |= wake_const_ops(sma, i, pt);
841 			}
842 		}
843 	}
844 	/*
845 	 * If one of the modified semaphores got 0,
846 	 * then check the global queue, too.
847 	 */
848 	if (got_zero)
849 		semop_completed |= wake_const_ops(sma, -1, pt);
850 
851 	return semop_completed;
852 }
853 
854 
855 /**
856  * update_queue - look for tasks that can be completed.
857  * @sma: semaphore array.
858  * @semnum: semaphore that was modified.
859  * @pt: list head for the tasks that must be woken up.
860  *
861  * update_queue must be called after a semaphore in a semaphore array
862  * was modified. If multiple semaphores were modified, update_queue must
863  * be called with semnum = -1, as well as with the number of each modified
864  * semaphore.
865  * The tasks that must be woken up are added to @pt. The return code
866  * is stored in q->pid.
867  * The function internally checks if const operations can now succeed.
868  *
869  * The function return 1 if at least one semop was completed successfully.
870  */
871 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
872 {
873 	struct sem_queue *q;
874 	struct list_head *walk;
875 	struct list_head *pending_list;
876 	int semop_completed = 0;
877 
878 	if (semnum == -1)
879 		pending_list = &sma->pending_alter;
880 	else
881 		pending_list = &sma->sem_base[semnum].pending_alter;
882 
883 again:
884 	walk = pending_list->next;
885 	while (walk != pending_list) {
886 		int error, restart;
887 
888 		q = container_of(walk, struct sem_queue, list);
889 		walk = walk->next;
890 
891 		/* If we are scanning the single sop, per-semaphore list of
892 		 * one semaphore and that semaphore is 0, then it is not
893 		 * necessary to scan further: simple increments
894 		 * that affect only one entry succeed immediately and cannot
895 		 * be in the  per semaphore pending queue, and decrements
896 		 * cannot be successful if the value is already 0.
897 		 */
898 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
899 			break;
900 
901 		error = perform_atomic_semop(sma, q);
902 
903 		/* Does q->sleeper still need to sleep? */
904 		if (error > 0)
905 			continue;
906 
907 		unlink_queue(sma, q);
908 
909 		if (error) {
910 			restart = 0;
911 		} else {
912 			semop_completed = 1;
913 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
914 			restart = check_restart(sma, q);
915 		}
916 
917 		wake_up_sem_queue_prepare(pt, q, error);
918 		if (restart)
919 			goto again;
920 	}
921 	return semop_completed;
922 }
923 
924 /**
925  * set_semotime - set sem_otime
926  * @sma: semaphore array
927  * @sops: operations that modified the array, may be NULL
928  *
929  * sem_otime is replicated to avoid cache line trashing.
930  * This function sets one instance to the current time.
931  */
932 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
933 {
934 	if (sops == NULL) {
935 		sma->sem_base[0].sem_otime = get_seconds();
936 	} else {
937 		sma->sem_base[sops[0].sem_num].sem_otime =
938 							get_seconds();
939 	}
940 }
941 
942 /**
943  * do_smart_update - optimized update_queue
944  * @sma: semaphore array
945  * @sops: operations that were performed
946  * @nsops: number of operations
947  * @otime: force setting otime
948  * @pt: list head of the tasks that must be woken up.
949  *
950  * do_smart_update() does the required calls to update_queue and wakeup_zero,
951  * based on the actual changes that were performed on the semaphore array.
952  * Note that the function does not do the actual wake-up: the caller is
953  * responsible for calling wake_up_sem_queue_do(@pt).
954  * It is safe to perform this call after dropping all locks.
955  */
956 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
957 			int otime, struct list_head *pt)
958 {
959 	int i;
960 
961 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
962 
963 	if (!list_empty(&sma->pending_alter)) {
964 		/* semaphore array uses the global queue - just process it. */
965 		otime |= update_queue(sma, -1, pt);
966 	} else {
967 		if (!sops) {
968 			/*
969 			 * No sops, thus the modified semaphores are not
970 			 * known. Check all.
971 			 */
972 			for (i = 0; i < sma->sem_nsems; i++)
973 				otime |= update_queue(sma, i, pt);
974 		} else {
975 			/*
976 			 * Check the semaphores that were increased:
977 			 * - No complex ops, thus all sleeping ops are
978 			 *   decrease.
979 			 * - if we decreased the value, then any sleeping
980 			 *   semaphore ops wont be able to run: If the
981 			 *   previous value was too small, then the new
982 			 *   value will be too small, too.
983 			 */
984 			for (i = 0; i < nsops; i++) {
985 				if (sops[i].sem_op > 0) {
986 					otime |= update_queue(sma,
987 							sops[i].sem_num, pt);
988 				}
989 			}
990 		}
991 	}
992 	if (otime)
993 		set_semotime(sma, sops);
994 }
995 
996 /*
997  * check_qop: Test if a queued operation sleeps on the semaphore semnum
998  */
999 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1000 			bool count_zero)
1001 {
1002 	struct sembuf *sop = q->blocking;
1003 
1004 	/*
1005 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1006 	 * semaphores. This violates SUS, therefore it was changed to the
1007 	 * standard compliant behavior.
1008 	 * Give the administrators a chance to notice that an application
1009 	 * might misbehave because it relies on the Linux behavior.
1010 	 */
1011 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1012 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1013 			current->comm, task_pid_nr(current));
1014 
1015 	if (sop->sem_num != semnum)
1016 		return 0;
1017 
1018 	if (count_zero && sop->sem_op == 0)
1019 		return 1;
1020 	if (!count_zero && sop->sem_op < 0)
1021 		return 1;
1022 
1023 	return 0;
1024 }
1025 
1026 /* The following counts are associated to each semaphore:
1027  *   semncnt        number of tasks waiting on semval being nonzero
1028  *   semzcnt        number of tasks waiting on semval being zero
1029  *
1030  * Per definition, a task waits only on the semaphore of the first semop
1031  * that cannot proceed, even if additional operation would block, too.
1032  */
1033 static int count_semcnt(struct sem_array *sma, ushort semnum,
1034 			bool count_zero)
1035 {
1036 	struct list_head *l;
1037 	struct sem_queue *q;
1038 	int semcnt;
1039 
1040 	semcnt = 0;
1041 	/* First: check the simple operations. They are easy to evaluate */
1042 	if (count_zero)
1043 		l = &sma->sem_base[semnum].pending_const;
1044 	else
1045 		l = &sma->sem_base[semnum].pending_alter;
1046 
1047 	list_for_each_entry(q, l, list) {
1048 		/* all task on a per-semaphore list sleep on exactly
1049 		 * that semaphore
1050 		 */
1051 		semcnt++;
1052 	}
1053 
1054 	/* Then: check the complex operations. */
1055 	list_for_each_entry(q, &sma->pending_alter, list) {
1056 		semcnt += check_qop(sma, semnum, q, count_zero);
1057 	}
1058 	if (count_zero) {
1059 		list_for_each_entry(q, &sma->pending_const, list) {
1060 			semcnt += check_qop(sma, semnum, q, count_zero);
1061 		}
1062 	}
1063 	return semcnt;
1064 }
1065 
1066 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1067  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1068  * remains locked on exit.
1069  */
1070 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1071 {
1072 	struct sem_undo *un, *tu;
1073 	struct sem_queue *q, *tq;
1074 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1075 	struct list_head tasks;
1076 	int i;
1077 
1078 	/* Free the existing undo structures for this semaphore set.  */
1079 	ipc_assert_locked_object(&sma->sem_perm);
1080 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1081 		list_del(&un->list_id);
1082 		spin_lock(&un->ulp->lock);
1083 		un->semid = -1;
1084 		list_del_rcu(&un->list_proc);
1085 		spin_unlock(&un->ulp->lock);
1086 		kfree_rcu(un, rcu);
1087 	}
1088 
1089 	/* Wake up all pending processes and let them fail with EIDRM. */
1090 	INIT_LIST_HEAD(&tasks);
1091 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1092 		unlink_queue(sma, q);
1093 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1094 	}
1095 
1096 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1097 		unlink_queue(sma, q);
1098 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1099 	}
1100 	for (i = 0; i < sma->sem_nsems; i++) {
1101 		struct sem *sem = sma->sem_base + i;
1102 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1103 			unlink_queue(sma, q);
1104 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1105 		}
1106 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1107 			unlink_queue(sma, q);
1108 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1109 		}
1110 	}
1111 
1112 	/* Remove the semaphore set from the IDR */
1113 	sem_rmid(ns, sma);
1114 	sem_unlock(sma, -1);
1115 	rcu_read_unlock();
1116 
1117 	wake_up_sem_queue_do(&tasks);
1118 	ns->used_sems -= sma->sem_nsems;
1119 	ipc_rcu_putref(sma, sem_rcu_free);
1120 }
1121 
1122 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1123 {
1124 	switch (version) {
1125 	case IPC_64:
1126 		return copy_to_user(buf, in, sizeof(*in));
1127 	case IPC_OLD:
1128 	    {
1129 		struct semid_ds out;
1130 
1131 		memset(&out, 0, sizeof(out));
1132 
1133 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1134 
1135 		out.sem_otime	= in->sem_otime;
1136 		out.sem_ctime	= in->sem_ctime;
1137 		out.sem_nsems	= in->sem_nsems;
1138 
1139 		return copy_to_user(buf, &out, sizeof(out));
1140 	    }
1141 	default:
1142 		return -EINVAL;
1143 	}
1144 }
1145 
1146 static time_t get_semotime(struct sem_array *sma)
1147 {
1148 	int i;
1149 	time_t res;
1150 
1151 	res = sma->sem_base[0].sem_otime;
1152 	for (i = 1; i < sma->sem_nsems; i++) {
1153 		time_t to = sma->sem_base[i].sem_otime;
1154 
1155 		if (to > res)
1156 			res = to;
1157 	}
1158 	return res;
1159 }
1160 
1161 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1162 			 int cmd, int version, void __user *p)
1163 {
1164 	int err;
1165 	struct sem_array *sma;
1166 
1167 	switch (cmd) {
1168 	case IPC_INFO:
1169 	case SEM_INFO:
1170 	{
1171 		struct seminfo seminfo;
1172 		int max_id;
1173 
1174 		err = security_sem_semctl(NULL, cmd);
1175 		if (err)
1176 			return err;
1177 
1178 		memset(&seminfo, 0, sizeof(seminfo));
1179 		seminfo.semmni = ns->sc_semmni;
1180 		seminfo.semmns = ns->sc_semmns;
1181 		seminfo.semmsl = ns->sc_semmsl;
1182 		seminfo.semopm = ns->sc_semopm;
1183 		seminfo.semvmx = SEMVMX;
1184 		seminfo.semmnu = SEMMNU;
1185 		seminfo.semmap = SEMMAP;
1186 		seminfo.semume = SEMUME;
1187 		down_read(&sem_ids(ns).rwsem);
1188 		if (cmd == SEM_INFO) {
1189 			seminfo.semusz = sem_ids(ns).in_use;
1190 			seminfo.semaem = ns->used_sems;
1191 		} else {
1192 			seminfo.semusz = SEMUSZ;
1193 			seminfo.semaem = SEMAEM;
1194 		}
1195 		max_id = ipc_get_maxid(&sem_ids(ns));
1196 		up_read(&sem_ids(ns).rwsem);
1197 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1198 			return -EFAULT;
1199 		return (max_id < 0) ? 0 : max_id;
1200 	}
1201 	case IPC_STAT:
1202 	case SEM_STAT:
1203 	{
1204 		struct semid64_ds tbuf;
1205 		int id = 0;
1206 
1207 		memset(&tbuf, 0, sizeof(tbuf));
1208 
1209 		rcu_read_lock();
1210 		if (cmd == SEM_STAT) {
1211 			sma = sem_obtain_object(ns, semid);
1212 			if (IS_ERR(sma)) {
1213 				err = PTR_ERR(sma);
1214 				goto out_unlock;
1215 			}
1216 			id = sma->sem_perm.id;
1217 		} else {
1218 			sma = sem_obtain_object_check(ns, semid);
1219 			if (IS_ERR(sma)) {
1220 				err = PTR_ERR(sma);
1221 				goto out_unlock;
1222 			}
1223 		}
1224 
1225 		err = -EACCES;
1226 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1227 			goto out_unlock;
1228 
1229 		err = security_sem_semctl(sma, cmd);
1230 		if (err)
1231 			goto out_unlock;
1232 
1233 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1234 		tbuf.sem_otime = get_semotime(sma);
1235 		tbuf.sem_ctime = sma->sem_ctime;
1236 		tbuf.sem_nsems = sma->sem_nsems;
1237 		rcu_read_unlock();
1238 		if (copy_semid_to_user(p, &tbuf, version))
1239 			return -EFAULT;
1240 		return id;
1241 	}
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 out_unlock:
1246 	rcu_read_unlock();
1247 	return err;
1248 }
1249 
1250 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1251 		unsigned long arg)
1252 {
1253 	struct sem_undo *un;
1254 	struct sem_array *sma;
1255 	struct sem *curr;
1256 	int err;
1257 	struct list_head tasks;
1258 	int val;
1259 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1260 	/* big-endian 64bit */
1261 	val = arg >> 32;
1262 #else
1263 	/* 32bit or little-endian 64bit */
1264 	val = arg;
1265 #endif
1266 
1267 	if (val > SEMVMX || val < 0)
1268 		return -ERANGE;
1269 
1270 	INIT_LIST_HEAD(&tasks);
1271 
1272 	rcu_read_lock();
1273 	sma = sem_obtain_object_check(ns, semid);
1274 	if (IS_ERR(sma)) {
1275 		rcu_read_unlock();
1276 		return PTR_ERR(sma);
1277 	}
1278 
1279 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1280 		rcu_read_unlock();
1281 		return -EINVAL;
1282 	}
1283 
1284 
1285 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1286 		rcu_read_unlock();
1287 		return -EACCES;
1288 	}
1289 
1290 	err = security_sem_semctl(sma, SETVAL);
1291 	if (err) {
1292 		rcu_read_unlock();
1293 		return -EACCES;
1294 	}
1295 
1296 	sem_lock(sma, NULL, -1);
1297 
1298 	if (!ipc_valid_object(&sma->sem_perm)) {
1299 		sem_unlock(sma, -1);
1300 		rcu_read_unlock();
1301 		return -EIDRM;
1302 	}
1303 
1304 	curr = &sma->sem_base[semnum];
1305 
1306 	ipc_assert_locked_object(&sma->sem_perm);
1307 	list_for_each_entry(un, &sma->list_id, list_id)
1308 		un->semadj[semnum] = 0;
1309 
1310 	curr->semval = val;
1311 	curr->sempid = task_tgid_vnr(current);
1312 	sma->sem_ctime = get_seconds();
1313 	/* maybe some queued-up processes were waiting for this */
1314 	do_smart_update(sma, NULL, 0, 0, &tasks);
1315 	sem_unlock(sma, -1);
1316 	rcu_read_unlock();
1317 	wake_up_sem_queue_do(&tasks);
1318 	return 0;
1319 }
1320 
1321 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1322 		int cmd, void __user *p)
1323 {
1324 	struct sem_array *sma;
1325 	struct sem *curr;
1326 	int err, nsems;
1327 	ushort fast_sem_io[SEMMSL_FAST];
1328 	ushort *sem_io = fast_sem_io;
1329 	struct list_head tasks;
1330 
1331 	INIT_LIST_HEAD(&tasks);
1332 
1333 	rcu_read_lock();
1334 	sma = sem_obtain_object_check(ns, semid);
1335 	if (IS_ERR(sma)) {
1336 		rcu_read_unlock();
1337 		return PTR_ERR(sma);
1338 	}
1339 
1340 	nsems = sma->sem_nsems;
1341 
1342 	err = -EACCES;
1343 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1344 		goto out_rcu_wakeup;
1345 
1346 	err = security_sem_semctl(sma, cmd);
1347 	if (err)
1348 		goto out_rcu_wakeup;
1349 
1350 	err = -EACCES;
1351 	switch (cmd) {
1352 	case GETALL:
1353 	{
1354 		ushort __user *array = p;
1355 		int i;
1356 
1357 		sem_lock(sma, NULL, -1);
1358 		if (!ipc_valid_object(&sma->sem_perm)) {
1359 			err = -EIDRM;
1360 			goto out_unlock;
1361 		}
1362 		if (nsems > SEMMSL_FAST) {
1363 			if (!ipc_rcu_getref(sma)) {
1364 				err = -EIDRM;
1365 				goto out_unlock;
1366 			}
1367 			sem_unlock(sma, -1);
1368 			rcu_read_unlock();
1369 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1370 			if (sem_io == NULL) {
1371 				ipc_rcu_putref(sma, ipc_rcu_free);
1372 				return -ENOMEM;
1373 			}
1374 
1375 			rcu_read_lock();
1376 			sem_lock_and_putref(sma);
1377 			if (!ipc_valid_object(&sma->sem_perm)) {
1378 				err = -EIDRM;
1379 				goto out_unlock;
1380 			}
1381 		}
1382 		for (i = 0; i < sma->sem_nsems; i++)
1383 			sem_io[i] = sma->sem_base[i].semval;
1384 		sem_unlock(sma, -1);
1385 		rcu_read_unlock();
1386 		err = 0;
1387 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1388 			err = -EFAULT;
1389 		goto out_free;
1390 	}
1391 	case SETALL:
1392 	{
1393 		int i;
1394 		struct sem_undo *un;
1395 
1396 		if (!ipc_rcu_getref(sma)) {
1397 			err = -EIDRM;
1398 			goto out_rcu_wakeup;
1399 		}
1400 		rcu_read_unlock();
1401 
1402 		if (nsems > SEMMSL_FAST) {
1403 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1404 			if (sem_io == NULL) {
1405 				ipc_rcu_putref(sma, ipc_rcu_free);
1406 				return -ENOMEM;
1407 			}
1408 		}
1409 
1410 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1411 			ipc_rcu_putref(sma, ipc_rcu_free);
1412 			err = -EFAULT;
1413 			goto out_free;
1414 		}
1415 
1416 		for (i = 0; i < nsems; i++) {
1417 			if (sem_io[i] > SEMVMX) {
1418 				ipc_rcu_putref(sma, ipc_rcu_free);
1419 				err = -ERANGE;
1420 				goto out_free;
1421 			}
1422 		}
1423 		rcu_read_lock();
1424 		sem_lock_and_putref(sma);
1425 		if (!ipc_valid_object(&sma->sem_perm)) {
1426 			err = -EIDRM;
1427 			goto out_unlock;
1428 		}
1429 
1430 		for (i = 0; i < nsems; i++)
1431 			sma->sem_base[i].semval = sem_io[i];
1432 
1433 		ipc_assert_locked_object(&sma->sem_perm);
1434 		list_for_each_entry(un, &sma->list_id, list_id) {
1435 			for (i = 0; i < nsems; i++)
1436 				un->semadj[i] = 0;
1437 		}
1438 		sma->sem_ctime = get_seconds();
1439 		/* maybe some queued-up processes were waiting for this */
1440 		do_smart_update(sma, NULL, 0, 0, &tasks);
1441 		err = 0;
1442 		goto out_unlock;
1443 	}
1444 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1445 	}
1446 	err = -EINVAL;
1447 	if (semnum < 0 || semnum >= nsems)
1448 		goto out_rcu_wakeup;
1449 
1450 	sem_lock(sma, NULL, -1);
1451 	if (!ipc_valid_object(&sma->sem_perm)) {
1452 		err = -EIDRM;
1453 		goto out_unlock;
1454 	}
1455 	curr = &sma->sem_base[semnum];
1456 
1457 	switch (cmd) {
1458 	case GETVAL:
1459 		err = curr->semval;
1460 		goto out_unlock;
1461 	case GETPID:
1462 		err = curr->sempid;
1463 		goto out_unlock;
1464 	case GETNCNT:
1465 		err = count_semcnt(sma, semnum, 0);
1466 		goto out_unlock;
1467 	case GETZCNT:
1468 		err = count_semcnt(sma, semnum, 1);
1469 		goto out_unlock;
1470 	}
1471 
1472 out_unlock:
1473 	sem_unlock(sma, -1);
1474 out_rcu_wakeup:
1475 	rcu_read_unlock();
1476 	wake_up_sem_queue_do(&tasks);
1477 out_free:
1478 	if (sem_io != fast_sem_io)
1479 		ipc_free(sem_io, sizeof(ushort)*nsems);
1480 	return err;
1481 }
1482 
1483 static inline unsigned long
1484 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1485 {
1486 	switch (version) {
1487 	case IPC_64:
1488 		if (copy_from_user(out, buf, sizeof(*out)))
1489 			return -EFAULT;
1490 		return 0;
1491 	case IPC_OLD:
1492 	    {
1493 		struct semid_ds tbuf_old;
1494 
1495 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1496 			return -EFAULT;
1497 
1498 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1499 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1500 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1501 
1502 		return 0;
1503 	    }
1504 	default:
1505 		return -EINVAL;
1506 	}
1507 }
1508 
1509 /*
1510  * This function handles some semctl commands which require the rwsem
1511  * to be held in write mode.
1512  * NOTE: no locks must be held, the rwsem is taken inside this function.
1513  */
1514 static int semctl_down(struct ipc_namespace *ns, int semid,
1515 		       int cmd, int version, void __user *p)
1516 {
1517 	struct sem_array *sma;
1518 	int err;
1519 	struct semid64_ds semid64;
1520 	struct kern_ipc_perm *ipcp;
1521 
1522 	if (cmd == IPC_SET) {
1523 		if (copy_semid_from_user(&semid64, p, version))
1524 			return -EFAULT;
1525 	}
1526 
1527 	down_write(&sem_ids(ns).rwsem);
1528 	rcu_read_lock();
1529 
1530 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1531 				      &semid64.sem_perm, 0);
1532 	if (IS_ERR(ipcp)) {
1533 		err = PTR_ERR(ipcp);
1534 		goto out_unlock1;
1535 	}
1536 
1537 	sma = container_of(ipcp, struct sem_array, sem_perm);
1538 
1539 	err = security_sem_semctl(sma, cmd);
1540 	if (err)
1541 		goto out_unlock1;
1542 
1543 	switch (cmd) {
1544 	case IPC_RMID:
1545 		sem_lock(sma, NULL, -1);
1546 		/* freeary unlocks the ipc object and rcu */
1547 		freeary(ns, ipcp);
1548 		goto out_up;
1549 	case IPC_SET:
1550 		sem_lock(sma, NULL, -1);
1551 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1552 		if (err)
1553 			goto out_unlock0;
1554 		sma->sem_ctime = get_seconds();
1555 		break;
1556 	default:
1557 		err = -EINVAL;
1558 		goto out_unlock1;
1559 	}
1560 
1561 out_unlock0:
1562 	sem_unlock(sma, -1);
1563 out_unlock1:
1564 	rcu_read_unlock();
1565 out_up:
1566 	up_write(&sem_ids(ns).rwsem);
1567 	return err;
1568 }
1569 
1570 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1571 {
1572 	int version;
1573 	struct ipc_namespace *ns;
1574 	void __user *p = (void __user *)arg;
1575 
1576 	if (semid < 0)
1577 		return -EINVAL;
1578 
1579 	version = ipc_parse_version(&cmd);
1580 	ns = current->nsproxy->ipc_ns;
1581 
1582 	switch (cmd) {
1583 	case IPC_INFO:
1584 	case SEM_INFO:
1585 	case IPC_STAT:
1586 	case SEM_STAT:
1587 		return semctl_nolock(ns, semid, cmd, version, p);
1588 	case GETALL:
1589 	case GETVAL:
1590 	case GETPID:
1591 	case GETNCNT:
1592 	case GETZCNT:
1593 	case SETALL:
1594 		return semctl_main(ns, semid, semnum, cmd, p);
1595 	case SETVAL:
1596 		return semctl_setval(ns, semid, semnum, arg);
1597 	case IPC_RMID:
1598 	case IPC_SET:
1599 		return semctl_down(ns, semid, cmd, version, p);
1600 	default:
1601 		return -EINVAL;
1602 	}
1603 }
1604 
1605 /* If the task doesn't already have a undo_list, then allocate one
1606  * here.  We guarantee there is only one thread using this undo list,
1607  * and current is THE ONE
1608  *
1609  * If this allocation and assignment succeeds, but later
1610  * portions of this code fail, there is no need to free the sem_undo_list.
1611  * Just let it stay associated with the task, and it'll be freed later
1612  * at exit time.
1613  *
1614  * This can block, so callers must hold no locks.
1615  */
1616 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1617 {
1618 	struct sem_undo_list *undo_list;
1619 
1620 	undo_list = current->sysvsem.undo_list;
1621 	if (!undo_list) {
1622 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1623 		if (undo_list == NULL)
1624 			return -ENOMEM;
1625 		spin_lock_init(&undo_list->lock);
1626 		atomic_set(&undo_list->refcnt, 1);
1627 		INIT_LIST_HEAD(&undo_list->list_proc);
1628 
1629 		current->sysvsem.undo_list = undo_list;
1630 	}
1631 	*undo_listp = undo_list;
1632 	return 0;
1633 }
1634 
1635 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1636 {
1637 	struct sem_undo *un;
1638 
1639 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1640 		if (un->semid == semid)
1641 			return un;
1642 	}
1643 	return NULL;
1644 }
1645 
1646 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1647 {
1648 	struct sem_undo *un;
1649 
1650 	assert_spin_locked(&ulp->lock);
1651 
1652 	un = __lookup_undo(ulp, semid);
1653 	if (un) {
1654 		list_del_rcu(&un->list_proc);
1655 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1656 	}
1657 	return un;
1658 }
1659 
1660 /**
1661  * find_alloc_undo - lookup (and if not present create) undo array
1662  * @ns: namespace
1663  * @semid: semaphore array id
1664  *
1665  * The function looks up (and if not present creates) the undo structure.
1666  * The size of the undo structure depends on the size of the semaphore
1667  * array, thus the alloc path is not that straightforward.
1668  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1669  * performs a rcu_read_lock().
1670  */
1671 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1672 {
1673 	struct sem_array *sma;
1674 	struct sem_undo_list *ulp;
1675 	struct sem_undo *un, *new;
1676 	int nsems, error;
1677 
1678 	error = get_undo_list(&ulp);
1679 	if (error)
1680 		return ERR_PTR(error);
1681 
1682 	rcu_read_lock();
1683 	spin_lock(&ulp->lock);
1684 	un = lookup_undo(ulp, semid);
1685 	spin_unlock(&ulp->lock);
1686 	if (likely(un != NULL))
1687 		goto out;
1688 
1689 	/* no undo structure around - allocate one. */
1690 	/* step 1: figure out the size of the semaphore array */
1691 	sma = sem_obtain_object_check(ns, semid);
1692 	if (IS_ERR(sma)) {
1693 		rcu_read_unlock();
1694 		return ERR_CAST(sma);
1695 	}
1696 
1697 	nsems = sma->sem_nsems;
1698 	if (!ipc_rcu_getref(sma)) {
1699 		rcu_read_unlock();
1700 		un = ERR_PTR(-EIDRM);
1701 		goto out;
1702 	}
1703 	rcu_read_unlock();
1704 
1705 	/* step 2: allocate new undo structure */
1706 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1707 	if (!new) {
1708 		ipc_rcu_putref(sma, ipc_rcu_free);
1709 		return ERR_PTR(-ENOMEM);
1710 	}
1711 
1712 	/* step 3: Acquire the lock on semaphore array */
1713 	rcu_read_lock();
1714 	sem_lock_and_putref(sma);
1715 	if (!ipc_valid_object(&sma->sem_perm)) {
1716 		sem_unlock(sma, -1);
1717 		rcu_read_unlock();
1718 		kfree(new);
1719 		un = ERR_PTR(-EIDRM);
1720 		goto out;
1721 	}
1722 	spin_lock(&ulp->lock);
1723 
1724 	/*
1725 	 * step 4: check for races: did someone else allocate the undo struct?
1726 	 */
1727 	un = lookup_undo(ulp, semid);
1728 	if (un) {
1729 		kfree(new);
1730 		goto success;
1731 	}
1732 	/* step 5: initialize & link new undo structure */
1733 	new->semadj = (short *) &new[1];
1734 	new->ulp = ulp;
1735 	new->semid = semid;
1736 	assert_spin_locked(&ulp->lock);
1737 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1738 	ipc_assert_locked_object(&sma->sem_perm);
1739 	list_add(&new->list_id, &sma->list_id);
1740 	un = new;
1741 
1742 success:
1743 	spin_unlock(&ulp->lock);
1744 	sem_unlock(sma, -1);
1745 out:
1746 	return un;
1747 }
1748 
1749 
1750 /**
1751  * get_queue_result - retrieve the result code from sem_queue
1752  * @q: Pointer to queue structure
1753  *
1754  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1755  * q->status, then we must loop until the value is replaced with the final
1756  * value: This may happen if a task is woken up by an unrelated event (e.g.
1757  * signal) and in parallel the task is woken up by another task because it got
1758  * the requested semaphores.
1759  *
1760  * The function can be called with or without holding the semaphore spinlock.
1761  */
1762 static int get_queue_result(struct sem_queue *q)
1763 {
1764 	int error;
1765 
1766 	error = q->status;
1767 	while (unlikely(error == IN_WAKEUP)) {
1768 		cpu_relax();
1769 		error = q->status;
1770 	}
1771 
1772 	return error;
1773 }
1774 
1775 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1776 		unsigned, nsops, const struct timespec __user *, timeout)
1777 {
1778 	int error = -EINVAL;
1779 	struct sem_array *sma;
1780 	struct sembuf fast_sops[SEMOPM_FAST];
1781 	struct sembuf *sops = fast_sops, *sop;
1782 	struct sem_undo *un;
1783 	int undos = 0, alter = 0, max, locknum;
1784 	struct sem_queue queue;
1785 	unsigned long jiffies_left = 0;
1786 	struct ipc_namespace *ns;
1787 	struct list_head tasks;
1788 
1789 	ns = current->nsproxy->ipc_ns;
1790 
1791 	if (nsops < 1 || semid < 0)
1792 		return -EINVAL;
1793 	if (nsops > ns->sc_semopm)
1794 		return -E2BIG;
1795 	if (nsops > SEMOPM_FAST) {
1796 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1797 		if (sops == NULL)
1798 			return -ENOMEM;
1799 	}
1800 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1801 		error =  -EFAULT;
1802 		goto out_free;
1803 	}
1804 	if (timeout) {
1805 		struct timespec _timeout;
1806 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1807 			error = -EFAULT;
1808 			goto out_free;
1809 		}
1810 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1811 			_timeout.tv_nsec >= 1000000000L) {
1812 			error = -EINVAL;
1813 			goto out_free;
1814 		}
1815 		jiffies_left = timespec_to_jiffies(&_timeout);
1816 	}
1817 	max = 0;
1818 	for (sop = sops; sop < sops + nsops; sop++) {
1819 		if (sop->sem_num >= max)
1820 			max = sop->sem_num;
1821 		if (sop->sem_flg & SEM_UNDO)
1822 			undos = 1;
1823 		if (sop->sem_op != 0)
1824 			alter = 1;
1825 	}
1826 
1827 	INIT_LIST_HEAD(&tasks);
1828 
1829 	if (undos) {
1830 		/* On success, find_alloc_undo takes the rcu_read_lock */
1831 		un = find_alloc_undo(ns, semid);
1832 		if (IS_ERR(un)) {
1833 			error = PTR_ERR(un);
1834 			goto out_free;
1835 		}
1836 	} else {
1837 		un = NULL;
1838 		rcu_read_lock();
1839 	}
1840 
1841 	sma = sem_obtain_object_check(ns, semid);
1842 	if (IS_ERR(sma)) {
1843 		rcu_read_unlock();
1844 		error = PTR_ERR(sma);
1845 		goto out_free;
1846 	}
1847 
1848 	error = -EFBIG;
1849 	if (max >= sma->sem_nsems)
1850 		goto out_rcu_wakeup;
1851 
1852 	error = -EACCES;
1853 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1854 		goto out_rcu_wakeup;
1855 
1856 	error = security_sem_semop(sma, sops, nsops, alter);
1857 	if (error)
1858 		goto out_rcu_wakeup;
1859 
1860 	error = -EIDRM;
1861 	locknum = sem_lock(sma, sops, nsops);
1862 	/*
1863 	 * We eventually might perform the following check in a lockless
1864 	 * fashion, considering ipc_valid_object() locking constraints.
1865 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1866 	 * only a per-semaphore lock is held and it's OK to proceed with the
1867 	 * check below. More details on the fine grained locking scheme
1868 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1869 	 */
1870 	if (!ipc_valid_object(&sma->sem_perm))
1871 		goto out_unlock_free;
1872 	/*
1873 	 * semid identifiers are not unique - find_alloc_undo may have
1874 	 * allocated an undo structure, it was invalidated by an RMID
1875 	 * and now a new array with received the same id. Check and fail.
1876 	 * This case can be detected checking un->semid. The existence of
1877 	 * "un" itself is guaranteed by rcu.
1878 	 */
1879 	if (un && un->semid == -1)
1880 		goto out_unlock_free;
1881 
1882 	queue.sops = sops;
1883 	queue.nsops = nsops;
1884 	queue.undo = un;
1885 	queue.pid = task_tgid_vnr(current);
1886 	queue.alter = alter;
1887 
1888 	error = perform_atomic_semop(sma, &queue);
1889 	if (error == 0) {
1890 		/* If the operation was successful, then do
1891 		 * the required updates.
1892 		 */
1893 		if (alter)
1894 			do_smart_update(sma, sops, nsops, 1, &tasks);
1895 		else
1896 			set_semotime(sma, sops);
1897 	}
1898 	if (error <= 0)
1899 		goto out_unlock_free;
1900 
1901 	/* We need to sleep on this operation, so we put the current
1902 	 * task into the pending queue and go to sleep.
1903 	 */
1904 
1905 	if (nsops == 1) {
1906 		struct sem *curr;
1907 		curr = &sma->sem_base[sops->sem_num];
1908 
1909 		if (alter) {
1910 			if (sma->complex_count) {
1911 				list_add_tail(&queue.list,
1912 						&sma->pending_alter);
1913 			} else {
1914 
1915 				list_add_tail(&queue.list,
1916 						&curr->pending_alter);
1917 			}
1918 		} else {
1919 			list_add_tail(&queue.list, &curr->pending_const);
1920 		}
1921 	} else {
1922 		if (!sma->complex_count)
1923 			merge_queues(sma);
1924 
1925 		if (alter)
1926 			list_add_tail(&queue.list, &sma->pending_alter);
1927 		else
1928 			list_add_tail(&queue.list, &sma->pending_const);
1929 
1930 		sma->complex_count++;
1931 	}
1932 
1933 	queue.status = -EINTR;
1934 	queue.sleeper = current;
1935 
1936 sleep_again:
1937 	current->state = TASK_INTERRUPTIBLE;
1938 	sem_unlock(sma, locknum);
1939 	rcu_read_unlock();
1940 
1941 	if (timeout)
1942 		jiffies_left = schedule_timeout(jiffies_left);
1943 	else
1944 		schedule();
1945 
1946 	error = get_queue_result(&queue);
1947 
1948 	if (error != -EINTR) {
1949 		/* fast path: update_queue already obtained all requested
1950 		 * resources.
1951 		 * Perform a smp_mb(): User space could assume that semop()
1952 		 * is a memory barrier: Without the mb(), the cpu could
1953 		 * speculatively read in user space stale data that was
1954 		 * overwritten by the previous owner of the semaphore.
1955 		 */
1956 		smp_mb();
1957 
1958 		goto out_free;
1959 	}
1960 
1961 	rcu_read_lock();
1962 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1963 
1964 	/*
1965 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1966 	 */
1967 	error = get_queue_result(&queue);
1968 
1969 	/*
1970 	 * Array removed? If yes, leave without sem_unlock().
1971 	 */
1972 	if (IS_ERR(sma)) {
1973 		rcu_read_unlock();
1974 		goto out_free;
1975 	}
1976 
1977 
1978 	/*
1979 	 * If queue.status != -EINTR we are woken up by another process.
1980 	 * Leave without unlink_queue(), but with sem_unlock().
1981 	 */
1982 	if (error != -EINTR)
1983 		goto out_unlock_free;
1984 
1985 	/*
1986 	 * If an interrupt occurred we have to clean up the queue
1987 	 */
1988 	if (timeout && jiffies_left == 0)
1989 		error = -EAGAIN;
1990 
1991 	/*
1992 	 * If the wakeup was spurious, just retry
1993 	 */
1994 	if (error == -EINTR && !signal_pending(current))
1995 		goto sleep_again;
1996 
1997 	unlink_queue(sma, &queue);
1998 
1999 out_unlock_free:
2000 	sem_unlock(sma, locknum);
2001 out_rcu_wakeup:
2002 	rcu_read_unlock();
2003 	wake_up_sem_queue_do(&tasks);
2004 out_free:
2005 	if (sops != fast_sops)
2006 		kfree(sops);
2007 	return error;
2008 }
2009 
2010 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2011 		unsigned, nsops)
2012 {
2013 	return sys_semtimedop(semid, tsops, nsops, NULL);
2014 }
2015 
2016 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2017  * parent and child tasks.
2018  */
2019 
2020 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2021 {
2022 	struct sem_undo_list *undo_list;
2023 	int error;
2024 
2025 	if (clone_flags & CLONE_SYSVSEM) {
2026 		error = get_undo_list(&undo_list);
2027 		if (error)
2028 			return error;
2029 		atomic_inc(&undo_list->refcnt);
2030 		tsk->sysvsem.undo_list = undo_list;
2031 	} else
2032 		tsk->sysvsem.undo_list = NULL;
2033 
2034 	return 0;
2035 }
2036 
2037 /*
2038  * add semadj values to semaphores, free undo structures.
2039  * undo structures are not freed when semaphore arrays are destroyed
2040  * so some of them may be out of date.
2041  * IMPLEMENTATION NOTE: There is some confusion over whether the
2042  * set of adjustments that needs to be done should be done in an atomic
2043  * manner or not. That is, if we are attempting to decrement the semval
2044  * should we queue up and wait until we can do so legally?
2045  * The original implementation attempted to do this (queue and wait).
2046  * The current implementation does not do so. The POSIX standard
2047  * and SVID should be consulted to determine what behavior is mandated.
2048  */
2049 void exit_sem(struct task_struct *tsk)
2050 {
2051 	struct sem_undo_list *ulp;
2052 
2053 	ulp = tsk->sysvsem.undo_list;
2054 	if (!ulp)
2055 		return;
2056 	tsk->sysvsem.undo_list = NULL;
2057 
2058 	if (!atomic_dec_and_test(&ulp->refcnt))
2059 		return;
2060 
2061 	for (;;) {
2062 		struct sem_array *sma;
2063 		struct sem_undo *un;
2064 		struct list_head tasks;
2065 		int semid, i;
2066 
2067 		rcu_read_lock();
2068 		un = list_entry_rcu(ulp->list_proc.next,
2069 				    struct sem_undo, list_proc);
2070 		if (&un->list_proc == &ulp->list_proc)
2071 			semid = -1;
2072 		 else
2073 			semid = un->semid;
2074 
2075 		if (semid == -1) {
2076 			rcu_read_unlock();
2077 			break;
2078 		}
2079 
2080 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2081 		/* exit_sem raced with IPC_RMID, nothing to do */
2082 		if (IS_ERR(sma)) {
2083 			rcu_read_unlock();
2084 			continue;
2085 		}
2086 
2087 		sem_lock(sma, NULL, -1);
2088 		/* exit_sem raced with IPC_RMID, nothing to do */
2089 		if (!ipc_valid_object(&sma->sem_perm)) {
2090 			sem_unlock(sma, -1);
2091 			rcu_read_unlock();
2092 			continue;
2093 		}
2094 		un = __lookup_undo(ulp, semid);
2095 		if (un == NULL) {
2096 			/* exit_sem raced with IPC_RMID+semget() that created
2097 			 * exactly the same semid. Nothing to do.
2098 			 */
2099 			sem_unlock(sma, -1);
2100 			rcu_read_unlock();
2101 			continue;
2102 		}
2103 
2104 		/* remove un from the linked lists */
2105 		ipc_assert_locked_object(&sma->sem_perm);
2106 		list_del(&un->list_id);
2107 
2108 		spin_lock(&ulp->lock);
2109 		list_del_rcu(&un->list_proc);
2110 		spin_unlock(&ulp->lock);
2111 
2112 		/* perform adjustments registered in un */
2113 		for (i = 0; i < sma->sem_nsems; i++) {
2114 			struct sem *semaphore = &sma->sem_base[i];
2115 			if (un->semadj[i]) {
2116 				semaphore->semval += un->semadj[i];
2117 				/*
2118 				 * Range checks of the new semaphore value,
2119 				 * not defined by sus:
2120 				 * - Some unices ignore the undo entirely
2121 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2122 				 * - some cap the value (e.g. FreeBSD caps
2123 				 *   at 0, but doesn't enforce SEMVMX)
2124 				 *
2125 				 * Linux caps the semaphore value, both at 0
2126 				 * and at SEMVMX.
2127 				 *
2128 				 *	Manfred <manfred@colorfullife.com>
2129 				 */
2130 				if (semaphore->semval < 0)
2131 					semaphore->semval = 0;
2132 				if (semaphore->semval > SEMVMX)
2133 					semaphore->semval = SEMVMX;
2134 				semaphore->sempid = task_tgid_vnr(current);
2135 			}
2136 		}
2137 		/* maybe some queued-up processes were waiting for this */
2138 		INIT_LIST_HEAD(&tasks);
2139 		do_smart_update(sma, NULL, 0, 1, &tasks);
2140 		sem_unlock(sma, -1);
2141 		rcu_read_unlock();
2142 		wake_up_sem_queue_do(&tasks);
2143 
2144 		kfree_rcu(un, rcu);
2145 	}
2146 	kfree(ulp);
2147 }
2148 
2149 #ifdef CONFIG_PROC_FS
2150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2151 {
2152 	struct user_namespace *user_ns = seq_user_ns(s);
2153 	struct sem_array *sma = it;
2154 	time_t sem_otime;
2155 
2156 	/*
2157 	 * The proc interface isn't aware of sem_lock(), it calls
2158 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2159 	 * In order to stay compatible with sem_lock(), we must wait until
2160 	 * all simple semop() calls have left their critical regions.
2161 	 */
2162 	sem_wait_array(sma);
2163 
2164 	sem_otime = get_semotime(sma);
2165 
2166 	return seq_printf(s,
2167 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2168 			  sma->sem_perm.key,
2169 			  sma->sem_perm.id,
2170 			  sma->sem_perm.mode,
2171 			  sma->sem_nsems,
2172 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2173 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2174 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2175 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2176 			  sem_otime,
2177 			  sma->sem_ctime);
2178 }
2179 #endif
2180