1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 int sempid; /* pid of last operation */ 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 97 struct list_head pending_alter; /* pending single-sop operations */ 98 /* that alter the semaphore */ 99 struct list_head pending_const; /* pending single-sop operations */ 100 /* that do not alter the semaphore*/ 101 time_t sem_otime; /* candidate for sem_otime */ 102 } ____cacheline_aligned_in_smp; 103 104 /* One queue for each sleeping process in the system. */ 105 struct sem_queue { 106 struct list_head list; /* queue of pending operations */ 107 struct task_struct *sleeper; /* this process */ 108 struct sem_undo *undo; /* undo structure */ 109 int pid; /* process id of requesting process */ 110 int status; /* completion status of operation */ 111 struct sembuf *sops; /* array of pending operations */ 112 struct sembuf *blocking; /* the operation that blocked */ 113 int nsops; /* number of operations */ 114 int alter; /* does *sops alter the array? */ 115 }; 116 117 /* Each task has a list of undo requests. They are executed automatically 118 * when the process exits. 119 */ 120 struct sem_undo { 121 struct list_head list_proc; /* per-process list: * 122 * all undos from one process 123 * rcu protected */ 124 struct rcu_head rcu; /* rcu struct for sem_undo */ 125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 126 struct list_head list_id; /* per semaphore array list: 127 * all undos for one array */ 128 int semid; /* semaphore set identifier */ 129 short *semadj; /* array of adjustments */ 130 /* one per semaphore */ 131 }; 132 133 /* sem_undo_list controls shared access to the list of sem_undo structures 134 * that may be shared among all a CLONE_SYSVSEM task group. 135 */ 136 struct sem_undo_list { 137 atomic_t refcnt; 138 spinlock_t lock; 139 struct list_head list_proc; 140 }; 141 142 143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 144 145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 146 147 static int newary(struct ipc_namespace *, struct ipc_params *); 148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 149 #ifdef CONFIG_PROC_FS 150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 151 #endif 152 153 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 155 156 /* 157 * Locking: 158 * sem_undo.id_next, 159 * sem_array.complex_count, 160 * sem_array.pending{_alter,_cont}, 161 * sem_array.sem_undo: global sem_lock() for read/write 162 * sem_undo.proc_next: only "current" is allowed to read/write that field. 163 * 164 * sem_array.sem_base[i].pending_{const,alter}: 165 * global or semaphore sem_lock() for read/write 166 */ 167 168 #define sc_semmsl sem_ctls[0] 169 #define sc_semmns sem_ctls[1] 170 #define sc_semopm sem_ctls[2] 171 #define sc_semmni sem_ctls[3] 172 173 void sem_init_ns(struct ipc_namespace *ns) 174 { 175 ns->sc_semmsl = SEMMSL; 176 ns->sc_semmns = SEMMNS; 177 ns->sc_semopm = SEMOPM; 178 ns->sc_semmni = SEMMNI; 179 ns->used_sems = 0; 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 181 } 182 183 #ifdef CONFIG_IPC_NS 184 void sem_exit_ns(struct ipc_namespace *ns) 185 { 186 free_ipcs(ns, &sem_ids(ns), freeary); 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 188 } 189 #endif 190 191 void __init sem_init(void) 192 { 193 sem_init_ns(&init_ipc_ns); 194 ipc_init_proc_interface("sysvipc/sem", 195 " key semid perms nsems uid gid cuid cgid otime ctime\n", 196 IPC_SEM_IDS, sysvipc_sem_proc_show); 197 } 198 199 /** 200 * unmerge_queues - unmerge queues, if possible. 201 * @sma: semaphore array 202 * 203 * The function unmerges the wait queues if complex_count is 0. 204 * It must be called prior to dropping the global semaphore array lock. 205 */ 206 static void unmerge_queues(struct sem_array *sma) 207 { 208 struct sem_queue *q, *tq; 209 210 /* complex operations still around? */ 211 if (sma->complex_count) 212 return; 213 /* 214 * We will switch back to simple mode. 215 * Move all pending operation back into the per-semaphore 216 * queues. 217 */ 218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 219 struct sem *curr; 220 curr = &sma->sem_base[q->sops[0].sem_num]; 221 222 list_add_tail(&q->list, &curr->pending_alter); 223 } 224 INIT_LIST_HEAD(&sma->pending_alter); 225 } 226 227 /** 228 * merge_queues - merge single semop queues into global queue 229 * @sma: semaphore array 230 * 231 * This function merges all per-semaphore queues into the global queue. 232 * It is necessary to achieve FIFO ordering for the pending single-sop 233 * operations when a multi-semop operation must sleep. 234 * Only the alter operations must be moved, the const operations can stay. 235 */ 236 static void merge_queues(struct sem_array *sma) 237 { 238 int i; 239 for (i = 0; i < sma->sem_nsems; i++) { 240 struct sem *sem = sma->sem_base + i; 241 242 list_splice_init(&sem->pending_alter, &sma->pending_alter); 243 } 244 } 245 246 static void sem_rcu_free(struct rcu_head *head) 247 { 248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 249 struct sem_array *sma = ipc_rcu_to_struct(p); 250 251 security_sem_free(sma); 252 ipc_rcu_free(head); 253 } 254 255 /* 256 * Wait until all currently ongoing simple ops have completed. 257 * Caller must own sem_perm.lock. 258 * New simple ops cannot start, because simple ops first check 259 * that sem_perm.lock is free. 260 * that a) sem_perm.lock is free and b) complex_count is 0. 261 */ 262 static void sem_wait_array(struct sem_array *sma) 263 { 264 int i; 265 struct sem *sem; 266 267 if (sma->complex_count) { 268 /* The thread that increased sma->complex_count waited on 269 * all sem->lock locks. Thus we don't need to wait again. 270 */ 271 return; 272 } 273 274 for (i = 0; i < sma->sem_nsems; i++) { 275 sem = sma->sem_base + i; 276 spin_unlock_wait(&sem->lock); 277 } 278 } 279 280 /* 281 * If the request contains only one semaphore operation, and there are 282 * no complex transactions pending, lock only the semaphore involved. 283 * Otherwise, lock the entire semaphore array, since we either have 284 * multiple semaphores in our own semops, or we need to look at 285 * semaphores from other pending complex operations. 286 */ 287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 288 int nsops) 289 { 290 struct sem *sem; 291 292 if (nsops != 1) { 293 /* Complex operation - acquire a full lock */ 294 ipc_lock_object(&sma->sem_perm); 295 296 /* And wait until all simple ops that are processed 297 * right now have dropped their locks. 298 */ 299 sem_wait_array(sma); 300 return -1; 301 } 302 303 /* 304 * Only one semaphore affected - try to optimize locking. 305 * The rules are: 306 * - optimized locking is possible if no complex operation 307 * is either enqueued or processed right now. 308 * - The test for enqueued complex ops is simple: 309 * sma->complex_count != 0 310 * - Testing for complex ops that are processed right now is 311 * a bit more difficult. Complex ops acquire the full lock 312 * and first wait that the running simple ops have completed. 313 * (see above) 314 * Thus: If we own a simple lock and the global lock is free 315 * and complex_count is now 0, then it will stay 0 and 316 * thus just locking sem->lock is sufficient. 317 */ 318 sem = sma->sem_base + sops->sem_num; 319 320 if (sma->complex_count == 0) { 321 /* 322 * It appears that no complex operation is around. 323 * Acquire the per-semaphore lock. 324 */ 325 spin_lock(&sem->lock); 326 327 /* Then check that the global lock is free */ 328 if (!spin_is_locked(&sma->sem_perm.lock)) { 329 /* spin_is_locked() is not a memory barrier */ 330 smp_mb(); 331 332 /* Now repeat the test of complex_count: 333 * It can't change anymore until we drop sem->lock. 334 * Thus: if is now 0, then it will stay 0. 335 */ 336 if (sma->complex_count == 0) { 337 /* fast path successful! */ 338 return sops->sem_num; 339 } 340 } 341 spin_unlock(&sem->lock); 342 } 343 344 /* slow path: acquire the full lock */ 345 ipc_lock_object(&sma->sem_perm); 346 347 if (sma->complex_count == 0) { 348 /* False alarm: 349 * There is no complex operation, thus we can switch 350 * back to the fast path. 351 */ 352 spin_lock(&sem->lock); 353 ipc_unlock_object(&sma->sem_perm); 354 return sops->sem_num; 355 } else { 356 /* Not a false alarm, thus complete the sequence for a 357 * full lock. 358 */ 359 sem_wait_array(sma); 360 return -1; 361 } 362 } 363 364 static inline void sem_unlock(struct sem_array *sma, int locknum) 365 { 366 if (locknum == -1) { 367 unmerge_queues(sma); 368 ipc_unlock_object(&sma->sem_perm); 369 } else { 370 struct sem *sem = sma->sem_base + locknum; 371 spin_unlock(&sem->lock); 372 } 373 } 374 375 /* 376 * sem_lock_(check_) routines are called in the paths where the rwsem 377 * is not held. 378 * 379 * The caller holds the RCU read lock. 380 */ 381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 382 int id, struct sembuf *sops, int nsops, int *locknum) 383 { 384 struct kern_ipc_perm *ipcp; 385 struct sem_array *sma; 386 387 ipcp = ipc_obtain_object(&sem_ids(ns), id); 388 if (IS_ERR(ipcp)) 389 return ERR_CAST(ipcp); 390 391 sma = container_of(ipcp, struct sem_array, sem_perm); 392 *locknum = sem_lock(sma, sops, nsops); 393 394 /* ipc_rmid() may have already freed the ID while sem_lock 395 * was spinning: verify that the structure is still valid 396 */ 397 if (ipc_valid_object(ipcp)) 398 return container_of(ipcp, struct sem_array, sem_perm); 399 400 sem_unlock(sma, *locknum); 401 return ERR_PTR(-EINVAL); 402 } 403 404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 405 { 406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); 407 408 if (IS_ERR(ipcp)) 409 return ERR_CAST(ipcp); 410 411 return container_of(ipcp, struct sem_array, sem_perm); 412 } 413 414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 415 int id) 416 { 417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 418 419 if (IS_ERR(ipcp)) 420 return ERR_CAST(ipcp); 421 422 return container_of(ipcp, struct sem_array, sem_perm); 423 } 424 425 static inline void sem_lock_and_putref(struct sem_array *sma) 426 { 427 sem_lock(sma, NULL, -1); 428 ipc_rcu_putref(sma, ipc_rcu_free); 429 } 430 431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 432 { 433 ipc_rmid(&sem_ids(ns), &s->sem_perm); 434 } 435 436 /* 437 * Lockless wakeup algorithm: 438 * Without the check/retry algorithm a lockless wakeup is possible: 439 * - queue.status is initialized to -EINTR before blocking. 440 * - wakeup is performed by 441 * * unlinking the queue entry from the pending list 442 * * setting queue.status to IN_WAKEUP 443 * This is the notification for the blocked thread that a 444 * result value is imminent. 445 * * call wake_up_process 446 * * set queue.status to the final value. 447 * - the previously blocked thread checks queue.status: 448 * * if it's IN_WAKEUP, then it must wait until the value changes 449 * * if it's not -EINTR, then the operation was completed by 450 * update_queue. semtimedop can return queue.status without 451 * performing any operation on the sem array. 452 * * otherwise it must acquire the spinlock and check what's up. 453 * 454 * The two-stage algorithm is necessary to protect against the following 455 * races: 456 * - if queue.status is set after wake_up_process, then the woken up idle 457 * thread could race forward and try (and fail) to acquire sma->lock 458 * before update_queue had a chance to set queue.status 459 * - if queue.status is written before wake_up_process and if the 460 * blocked process is woken up by a signal between writing 461 * queue.status and the wake_up_process, then the woken up 462 * process could return from semtimedop and die by calling 463 * sys_exit before wake_up_process is called. Then wake_up_process 464 * will oops, because the task structure is already invalid. 465 * (yes, this happened on s390 with sysv msg). 466 * 467 */ 468 #define IN_WAKEUP 1 469 470 /** 471 * newary - Create a new semaphore set 472 * @ns: namespace 473 * @params: ptr to the structure that contains key, semflg and nsems 474 * 475 * Called with sem_ids.rwsem held (as a writer) 476 */ 477 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 478 { 479 int id; 480 int retval; 481 struct sem_array *sma; 482 int size; 483 key_t key = params->key; 484 int nsems = params->u.nsems; 485 int semflg = params->flg; 486 int i; 487 488 if (!nsems) 489 return -EINVAL; 490 if (ns->used_sems + nsems > ns->sc_semmns) 491 return -ENOSPC; 492 493 size = sizeof(*sma) + nsems * sizeof(struct sem); 494 sma = ipc_rcu_alloc(size); 495 if (!sma) 496 return -ENOMEM; 497 498 memset(sma, 0, size); 499 500 sma->sem_perm.mode = (semflg & S_IRWXUGO); 501 sma->sem_perm.key = key; 502 503 sma->sem_perm.security = NULL; 504 retval = security_sem_alloc(sma); 505 if (retval) { 506 ipc_rcu_putref(sma, ipc_rcu_free); 507 return retval; 508 } 509 510 sma->sem_base = (struct sem *) &sma[1]; 511 512 for (i = 0; i < nsems; i++) { 513 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 514 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 515 spin_lock_init(&sma->sem_base[i].lock); 516 } 517 518 sma->complex_count = 0; 519 INIT_LIST_HEAD(&sma->pending_alter); 520 INIT_LIST_HEAD(&sma->pending_const); 521 INIT_LIST_HEAD(&sma->list_id); 522 sma->sem_nsems = nsems; 523 sma->sem_ctime = get_seconds(); 524 525 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 526 if (id < 0) { 527 ipc_rcu_putref(sma, sem_rcu_free); 528 return id; 529 } 530 ns->used_sems += nsems; 531 532 sem_unlock(sma, -1); 533 rcu_read_unlock(); 534 535 return sma->sem_perm.id; 536 } 537 538 539 /* 540 * Called with sem_ids.rwsem and ipcp locked. 541 */ 542 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 543 { 544 struct sem_array *sma; 545 546 sma = container_of(ipcp, struct sem_array, sem_perm); 547 return security_sem_associate(sma, semflg); 548 } 549 550 /* 551 * Called with sem_ids.rwsem and ipcp locked. 552 */ 553 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 554 struct ipc_params *params) 555 { 556 struct sem_array *sma; 557 558 sma = container_of(ipcp, struct sem_array, sem_perm); 559 if (params->u.nsems > sma->sem_nsems) 560 return -EINVAL; 561 562 return 0; 563 } 564 565 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 566 { 567 struct ipc_namespace *ns; 568 static const struct ipc_ops sem_ops = { 569 .getnew = newary, 570 .associate = sem_security, 571 .more_checks = sem_more_checks, 572 }; 573 struct ipc_params sem_params; 574 575 ns = current->nsproxy->ipc_ns; 576 577 if (nsems < 0 || nsems > ns->sc_semmsl) 578 return -EINVAL; 579 580 sem_params.key = key; 581 sem_params.flg = semflg; 582 sem_params.u.nsems = nsems; 583 584 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 585 } 586 587 /** 588 * perform_atomic_semop - Perform (if possible) a semaphore operation 589 * @sma: semaphore array 590 * @q: struct sem_queue that describes the operation 591 * 592 * Returns 0 if the operation was possible. 593 * Returns 1 if the operation is impossible, the caller must sleep. 594 * Negative values are error codes. 595 */ 596 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 597 { 598 int result, sem_op, nsops, pid; 599 struct sembuf *sop; 600 struct sem *curr; 601 struct sembuf *sops; 602 struct sem_undo *un; 603 604 sops = q->sops; 605 nsops = q->nsops; 606 un = q->undo; 607 608 for (sop = sops; sop < sops + nsops; sop++) { 609 curr = sma->sem_base + sop->sem_num; 610 sem_op = sop->sem_op; 611 result = curr->semval; 612 613 if (!sem_op && result) 614 goto would_block; 615 616 result += sem_op; 617 if (result < 0) 618 goto would_block; 619 if (result > SEMVMX) 620 goto out_of_range; 621 622 if (sop->sem_flg & SEM_UNDO) { 623 int undo = un->semadj[sop->sem_num] - sem_op; 624 /* Exceeding the undo range is an error. */ 625 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 626 goto out_of_range; 627 un->semadj[sop->sem_num] = undo; 628 } 629 630 curr->semval = result; 631 } 632 633 sop--; 634 pid = q->pid; 635 while (sop >= sops) { 636 sma->sem_base[sop->sem_num].sempid = pid; 637 sop--; 638 } 639 640 return 0; 641 642 out_of_range: 643 result = -ERANGE; 644 goto undo; 645 646 would_block: 647 q->blocking = sop; 648 649 if (sop->sem_flg & IPC_NOWAIT) 650 result = -EAGAIN; 651 else 652 result = 1; 653 654 undo: 655 sop--; 656 while (sop >= sops) { 657 sem_op = sop->sem_op; 658 sma->sem_base[sop->sem_num].semval -= sem_op; 659 if (sop->sem_flg & SEM_UNDO) 660 un->semadj[sop->sem_num] += sem_op; 661 sop--; 662 } 663 664 return result; 665 } 666 667 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 668 * @q: queue entry that must be signaled 669 * @error: Error value for the signal 670 * 671 * Prepare the wake-up of the queue entry q. 672 */ 673 static void wake_up_sem_queue_prepare(struct list_head *pt, 674 struct sem_queue *q, int error) 675 { 676 if (list_empty(pt)) { 677 /* 678 * Hold preempt off so that we don't get preempted and have the 679 * wakee busy-wait until we're scheduled back on. 680 */ 681 preempt_disable(); 682 } 683 q->status = IN_WAKEUP; 684 q->pid = error; 685 686 list_add_tail(&q->list, pt); 687 } 688 689 /** 690 * wake_up_sem_queue_do - do the actual wake-up 691 * @pt: list of tasks to be woken up 692 * 693 * Do the actual wake-up. 694 * The function is called without any locks held, thus the semaphore array 695 * could be destroyed already and the tasks can disappear as soon as the 696 * status is set to the actual return code. 697 */ 698 static void wake_up_sem_queue_do(struct list_head *pt) 699 { 700 struct sem_queue *q, *t; 701 int did_something; 702 703 did_something = !list_empty(pt); 704 list_for_each_entry_safe(q, t, pt, list) { 705 wake_up_process(q->sleeper); 706 /* q can disappear immediately after writing q->status. */ 707 smp_wmb(); 708 q->status = q->pid; 709 } 710 if (did_something) 711 preempt_enable(); 712 } 713 714 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 715 { 716 list_del(&q->list); 717 if (q->nsops > 1) 718 sma->complex_count--; 719 } 720 721 /** check_restart(sma, q) 722 * @sma: semaphore array 723 * @q: the operation that just completed 724 * 725 * update_queue is O(N^2) when it restarts scanning the whole queue of 726 * waiting operations. Therefore this function checks if the restart is 727 * really necessary. It is called after a previously waiting operation 728 * modified the array. 729 * Note that wait-for-zero operations are handled without restart. 730 */ 731 static int check_restart(struct sem_array *sma, struct sem_queue *q) 732 { 733 /* pending complex alter operations are too difficult to analyse */ 734 if (!list_empty(&sma->pending_alter)) 735 return 1; 736 737 /* we were a sleeping complex operation. Too difficult */ 738 if (q->nsops > 1) 739 return 1; 740 741 /* It is impossible that someone waits for the new value: 742 * - complex operations always restart. 743 * - wait-for-zero are handled seperately. 744 * - q is a previously sleeping simple operation that 745 * altered the array. It must be a decrement, because 746 * simple increments never sleep. 747 * - If there are older (higher priority) decrements 748 * in the queue, then they have observed the original 749 * semval value and couldn't proceed. The operation 750 * decremented to value - thus they won't proceed either. 751 */ 752 return 0; 753 } 754 755 /** 756 * wake_const_ops - wake up non-alter tasks 757 * @sma: semaphore array. 758 * @semnum: semaphore that was modified. 759 * @pt: list head for the tasks that must be woken up. 760 * 761 * wake_const_ops must be called after a semaphore in a semaphore array 762 * was set to 0. If complex const operations are pending, wake_const_ops must 763 * be called with semnum = -1, as well as with the number of each modified 764 * semaphore. 765 * The tasks that must be woken up are added to @pt. The return code 766 * is stored in q->pid. 767 * The function returns 1 if at least one operation was completed successfully. 768 */ 769 static int wake_const_ops(struct sem_array *sma, int semnum, 770 struct list_head *pt) 771 { 772 struct sem_queue *q; 773 struct list_head *walk; 774 struct list_head *pending_list; 775 int semop_completed = 0; 776 777 if (semnum == -1) 778 pending_list = &sma->pending_const; 779 else 780 pending_list = &sma->sem_base[semnum].pending_const; 781 782 walk = pending_list->next; 783 while (walk != pending_list) { 784 int error; 785 786 q = container_of(walk, struct sem_queue, list); 787 walk = walk->next; 788 789 error = perform_atomic_semop(sma, q); 790 791 if (error <= 0) { 792 /* operation completed, remove from queue & wakeup */ 793 794 unlink_queue(sma, q); 795 796 wake_up_sem_queue_prepare(pt, q, error); 797 if (error == 0) 798 semop_completed = 1; 799 } 800 } 801 return semop_completed; 802 } 803 804 /** 805 * do_smart_wakeup_zero - wakeup all wait for zero tasks 806 * @sma: semaphore array 807 * @sops: operations that were performed 808 * @nsops: number of operations 809 * @pt: list head of the tasks that must be woken up. 810 * 811 * Checks all required queue for wait-for-zero operations, based 812 * on the actual changes that were performed on the semaphore array. 813 * The function returns 1 if at least one operation was completed successfully. 814 */ 815 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 816 int nsops, struct list_head *pt) 817 { 818 int i; 819 int semop_completed = 0; 820 int got_zero = 0; 821 822 /* first: the per-semaphore queues, if known */ 823 if (sops) { 824 for (i = 0; i < nsops; i++) { 825 int num = sops[i].sem_num; 826 827 if (sma->sem_base[num].semval == 0) { 828 got_zero = 1; 829 semop_completed |= wake_const_ops(sma, num, pt); 830 } 831 } 832 } else { 833 /* 834 * No sops means modified semaphores not known. 835 * Assume all were changed. 836 */ 837 for (i = 0; i < sma->sem_nsems; i++) { 838 if (sma->sem_base[i].semval == 0) { 839 got_zero = 1; 840 semop_completed |= wake_const_ops(sma, i, pt); 841 } 842 } 843 } 844 /* 845 * If one of the modified semaphores got 0, 846 * then check the global queue, too. 847 */ 848 if (got_zero) 849 semop_completed |= wake_const_ops(sma, -1, pt); 850 851 return semop_completed; 852 } 853 854 855 /** 856 * update_queue - look for tasks that can be completed. 857 * @sma: semaphore array. 858 * @semnum: semaphore that was modified. 859 * @pt: list head for the tasks that must be woken up. 860 * 861 * update_queue must be called after a semaphore in a semaphore array 862 * was modified. If multiple semaphores were modified, update_queue must 863 * be called with semnum = -1, as well as with the number of each modified 864 * semaphore. 865 * The tasks that must be woken up are added to @pt. The return code 866 * is stored in q->pid. 867 * The function internally checks if const operations can now succeed. 868 * 869 * The function return 1 if at least one semop was completed successfully. 870 */ 871 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 872 { 873 struct sem_queue *q; 874 struct list_head *walk; 875 struct list_head *pending_list; 876 int semop_completed = 0; 877 878 if (semnum == -1) 879 pending_list = &sma->pending_alter; 880 else 881 pending_list = &sma->sem_base[semnum].pending_alter; 882 883 again: 884 walk = pending_list->next; 885 while (walk != pending_list) { 886 int error, restart; 887 888 q = container_of(walk, struct sem_queue, list); 889 walk = walk->next; 890 891 /* If we are scanning the single sop, per-semaphore list of 892 * one semaphore and that semaphore is 0, then it is not 893 * necessary to scan further: simple increments 894 * that affect only one entry succeed immediately and cannot 895 * be in the per semaphore pending queue, and decrements 896 * cannot be successful if the value is already 0. 897 */ 898 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 899 break; 900 901 error = perform_atomic_semop(sma, q); 902 903 /* Does q->sleeper still need to sleep? */ 904 if (error > 0) 905 continue; 906 907 unlink_queue(sma, q); 908 909 if (error) { 910 restart = 0; 911 } else { 912 semop_completed = 1; 913 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 914 restart = check_restart(sma, q); 915 } 916 917 wake_up_sem_queue_prepare(pt, q, error); 918 if (restart) 919 goto again; 920 } 921 return semop_completed; 922 } 923 924 /** 925 * set_semotime - set sem_otime 926 * @sma: semaphore array 927 * @sops: operations that modified the array, may be NULL 928 * 929 * sem_otime is replicated to avoid cache line trashing. 930 * This function sets one instance to the current time. 931 */ 932 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 933 { 934 if (sops == NULL) { 935 sma->sem_base[0].sem_otime = get_seconds(); 936 } else { 937 sma->sem_base[sops[0].sem_num].sem_otime = 938 get_seconds(); 939 } 940 } 941 942 /** 943 * do_smart_update - optimized update_queue 944 * @sma: semaphore array 945 * @sops: operations that were performed 946 * @nsops: number of operations 947 * @otime: force setting otime 948 * @pt: list head of the tasks that must be woken up. 949 * 950 * do_smart_update() does the required calls to update_queue and wakeup_zero, 951 * based on the actual changes that were performed on the semaphore array. 952 * Note that the function does not do the actual wake-up: the caller is 953 * responsible for calling wake_up_sem_queue_do(@pt). 954 * It is safe to perform this call after dropping all locks. 955 */ 956 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 957 int otime, struct list_head *pt) 958 { 959 int i; 960 961 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 962 963 if (!list_empty(&sma->pending_alter)) { 964 /* semaphore array uses the global queue - just process it. */ 965 otime |= update_queue(sma, -1, pt); 966 } else { 967 if (!sops) { 968 /* 969 * No sops, thus the modified semaphores are not 970 * known. Check all. 971 */ 972 for (i = 0; i < sma->sem_nsems; i++) 973 otime |= update_queue(sma, i, pt); 974 } else { 975 /* 976 * Check the semaphores that were increased: 977 * - No complex ops, thus all sleeping ops are 978 * decrease. 979 * - if we decreased the value, then any sleeping 980 * semaphore ops wont be able to run: If the 981 * previous value was too small, then the new 982 * value will be too small, too. 983 */ 984 for (i = 0; i < nsops; i++) { 985 if (sops[i].sem_op > 0) { 986 otime |= update_queue(sma, 987 sops[i].sem_num, pt); 988 } 989 } 990 } 991 } 992 if (otime) 993 set_semotime(sma, sops); 994 } 995 996 /* 997 * check_qop: Test if a queued operation sleeps on the semaphore semnum 998 */ 999 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1000 bool count_zero) 1001 { 1002 struct sembuf *sop = q->blocking; 1003 1004 /* 1005 * Linux always (since 0.99.10) reported a task as sleeping on all 1006 * semaphores. This violates SUS, therefore it was changed to the 1007 * standard compliant behavior. 1008 * Give the administrators a chance to notice that an application 1009 * might misbehave because it relies on the Linux behavior. 1010 */ 1011 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1012 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1013 current->comm, task_pid_nr(current)); 1014 1015 if (sop->sem_num != semnum) 1016 return 0; 1017 1018 if (count_zero && sop->sem_op == 0) 1019 return 1; 1020 if (!count_zero && sop->sem_op < 0) 1021 return 1; 1022 1023 return 0; 1024 } 1025 1026 /* The following counts are associated to each semaphore: 1027 * semncnt number of tasks waiting on semval being nonzero 1028 * semzcnt number of tasks waiting on semval being zero 1029 * 1030 * Per definition, a task waits only on the semaphore of the first semop 1031 * that cannot proceed, even if additional operation would block, too. 1032 */ 1033 static int count_semcnt(struct sem_array *sma, ushort semnum, 1034 bool count_zero) 1035 { 1036 struct list_head *l; 1037 struct sem_queue *q; 1038 int semcnt; 1039 1040 semcnt = 0; 1041 /* First: check the simple operations. They are easy to evaluate */ 1042 if (count_zero) 1043 l = &sma->sem_base[semnum].pending_const; 1044 else 1045 l = &sma->sem_base[semnum].pending_alter; 1046 1047 list_for_each_entry(q, l, list) { 1048 /* all task on a per-semaphore list sleep on exactly 1049 * that semaphore 1050 */ 1051 semcnt++; 1052 } 1053 1054 /* Then: check the complex operations. */ 1055 list_for_each_entry(q, &sma->pending_alter, list) { 1056 semcnt += check_qop(sma, semnum, q, count_zero); 1057 } 1058 if (count_zero) { 1059 list_for_each_entry(q, &sma->pending_const, list) { 1060 semcnt += check_qop(sma, semnum, q, count_zero); 1061 } 1062 } 1063 return semcnt; 1064 } 1065 1066 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1067 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1068 * remains locked on exit. 1069 */ 1070 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1071 { 1072 struct sem_undo *un, *tu; 1073 struct sem_queue *q, *tq; 1074 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1075 struct list_head tasks; 1076 int i; 1077 1078 /* Free the existing undo structures for this semaphore set. */ 1079 ipc_assert_locked_object(&sma->sem_perm); 1080 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1081 list_del(&un->list_id); 1082 spin_lock(&un->ulp->lock); 1083 un->semid = -1; 1084 list_del_rcu(&un->list_proc); 1085 spin_unlock(&un->ulp->lock); 1086 kfree_rcu(un, rcu); 1087 } 1088 1089 /* Wake up all pending processes and let them fail with EIDRM. */ 1090 INIT_LIST_HEAD(&tasks); 1091 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1092 unlink_queue(sma, q); 1093 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1094 } 1095 1096 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1097 unlink_queue(sma, q); 1098 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1099 } 1100 for (i = 0; i < sma->sem_nsems; i++) { 1101 struct sem *sem = sma->sem_base + i; 1102 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1103 unlink_queue(sma, q); 1104 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1105 } 1106 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1107 unlink_queue(sma, q); 1108 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1109 } 1110 } 1111 1112 /* Remove the semaphore set from the IDR */ 1113 sem_rmid(ns, sma); 1114 sem_unlock(sma, -1); 1115 rcu_read_unlock(); 1116 1117 wake_up_sem_queue_do(&tasks); 1118 ns->used_sems -= sma->sem_nsems; 1119 ipc_rcu_putref(sma, sem_rcu_free); 1120 } 1121 1122 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1123 { 1124 switch (version) { 1125 case IPC_64: 1126 return copy_to_user(buf, in, sizeof(*in)); 1127 case IPC_OLD: 1128 { 1129 struct semid_ds out; 1130 1131 memset(&out, 0, sizeof(out)); 1132 1133 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1134 1135 out.sem_otime = in->sem_otime; 1136 out.sem_ctime = in->sem_ctime; 1137 out.sem_nsems = in->sem_nsems; 1138 1139 return copy_to_user(buf, &out, sizeof(out)); 1140 } 1141 default: 1142 return -EINVAL; 1143 } 1144 } 1145 1146 static time_t get_semotime(struct sem_array *sma) 1147 { 1148 int i; 1149 time_t res; 1150 1151 res = sma->sem_base[0].sem_otime; 1152 for (i = 1; i < sma->sem_nsems; i++) { 1153 time_t to = sma->sem_base[i].sem_otime; 1154 1155 if (to > res) 1156 res = to; 1157 } 1158 return res; 1159 } 1160 1161 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1162 int cmd, int version, void __user *p) 1163 { 1164 int err; 1165 struct sem_array *sma; 1166 1167 switch (cmd) { 1168 case IPC_INFO: 1169 case SEM_INFO: 1170 { 1171 struct seminfo seminfo; 1172 int max_id; 1173 1174 err = security_sem_semctl(NULL, cmd); 1175 if (err) 1176 return err; 1177 1178 memset(&seminfo, 0, sizeof(seminfo)); 1179 seminfo.semmni = ns->sc_semmni; 1180 seminfo.semmns = ns->sc_semmns; 1181 seminfo.semmsl = ns->sc_semmsl; 1182 seminfo.semopm = ns->sc_semopm; 1183 seminfo.semvmx = SEMVMX; 1184 seminfo.semmnu = SEMMNU; 1185 seminfo.semmap = SEMMAP; 1186 seminfo.semume = SEMUME; 1187 down_read(&sem_ids(ns).rwsem); 1188 if (cmd == SEM_INFO) { 1189 seminfo.semusz = sem_ids(ns).in_use; 1190 seminfo.semaem = ns->used_sems; 1191 } else { 1192 seminfo.semusz = SEMUSZ; 1193 seminfo.semaem = SEMAEM; 1194 } 1195 max_id = ipc_get_maxid(&sem_ids(ns)); 1196 up_read(&sem_ids(ns).rwsem); 1197 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1198 return -EFAULT; 1199 return (max_id < 0) ? 0 : max_id; 1200 } 1201 case IPC_STAT: 1202 case SEM_STAT: 1203 { 1204 struct semid64_ds tbuf; 1205 int id = 0; 1206 1207 memset(&tbuf, 0, sizeof(tbuf)); 1208 1209 rcu_read_lock(); 1210 if (cmd == SEM_STAT) { 1211 sma = sem_obtain_object(ns, semid); 1212 if (IS_ERR(sma)) { 1213 err = PTR_ERR(sma); 1214 goto out_unlock; 1215 } 1216 id = sma->sem_perm.id; 1217 } else { 1218 sma = sem_obtain_object_check(ns, semid); 1219 if (IS_ERR(sma)) { 1220 err = PTR_ERR(sma); 1221 goto out_unlock; 1222 } 1223 } 1224 1225 err = -EACCES; 1226 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1227 goto out_unlock; 1228 1229 err = security_sem_semctl(sma, cmd); 1230 if (err) 1231 goto out_unlock; 1232 1233 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1234 tbuf.sem_otime = get_semotime(sma); 1235 tbuf.sem_ctime = sma->sem_ctime; 1236 tbuf.sem_nsems = sma->sem_nsems; 1237 rcu_read_unlock(); 1238 if (copy_semid_to_user(p, &tbuf, version)) 1239 return -EFAULT; 1240 return id; 1241 } 1242 default: 1243 return -EINVAL; 1244 } 1245 out_unlock: 1246 rcu_read_unlock(); 1247 return err; 1248 } 1249 1250 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1251 unsigned long arg) 1252 { 1253 struct sem_undo *un; 1254 struct sem_array *sma; 1255 struct sem *curr; 1256 int err; 1257 struct list_head tasks; 1258 int val; 1259 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1260 /* big-endian 64bit */ 1261 val = arg >> 32; 1262 #else 1263 /* 32bit or little-endian 64bit */ 1264 val = arg; 1265 #endif 1266 1267 if (val > SEMVMX || val < 0) 1268 return -ERANGE; 1269 1270 INIT_LIST_HEAD(&tasks); 1271 1272 rcu_read_lock(); 1273 sma = sem_obtain_object_check(ns, semid); 1274 if (IS_ERR(sma)) { 1275 rcu_read_unlock(); 1276 return PTR_ERR(sma); 1277 } 1278 1279 if (semnum < 0 || semnum >= sma->sem_nsems) { 1280 rcu_read_unlock(); 1281 return -EINVAL; 1282 } 1283 1284 1285 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1286 rcu_read_unlock(); 1287 return -EACCES; 1288 } 1289 1290 err = security_sem_semctl(sma, SETVAL); 1291 if (err) { 1292 rcu_read_unlock(); 1293 return -EACCES; 1294 } 1295 1296 sem_lock(sma, NULL, -1); 1297 1298 if (!ipc_valid_object(&sma->sem_perm)) { 1299 sem_unlock(sma, -1); 1300 rcu_read_unlock(); 1301 return -EIDRM; 1302 } 1303 1304 curr = &sma->sem_base[semnum]; 1305 1306 ipc_assert_locked_object(&sma->sem_perm); 1307 list_for_each_entry(un, &sma->list_id, list_id) 1308 un->semadj[semnum] = 0; 1309 1310 curr->semval = val; 1311 curr->sempid = task_tgid_vnr(current); 1312 sma->sem_ctime = get_seconds(); 1313 /* maybe some queued-up processes were waiting for this */ 1314 do_smart_update(sma, NULL, 0, 0, &tasks); 1315 sem_unlock(sma, -1); 1316 rcu_read_unlock(); 1317 wake_up_sem_queue_do(&tasks); 1318 return 0; 1319 } 1320 1321 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1322 int cmd, void __user *p) 1323 { 1324 struct sem_array *sma; 1325 struct sem *curr; 1326 int err, nsems; 1327 ushort fast_sem_io[SEMMSL_FAST]; 1328 ushort *sem_io = fast_sem_io; 1329 struct list_head tasks; 1330 1331 INIT_LIST_HEAD(&tasks); 1332 1333 rcu_read_lock(); 1334 sma = sem_obtain_object_check(ns, semid); 1335 if (IS_ERR(sma)) { 1336 rcu_read_unlock(); 1337 return PTR_ERR(sma); 1338 } 1339 1340 nsems = sma->sem_nsems; 1341 1342 err = -EACCES; 1343 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1344 goto out_rcu_wakeup; 1345 1346 err = security_sem_semctl(sma, cmd); 1347 if (err) 1348 goto out_rcu_wakeup; 1349 1350 err = -EACCES; 1351 switch (cmd) { 1352 case GETALL: 1353 { 1354 ushort __user *array = p; 1355 int i; 1356 1357 sem_lock(sma, NULL, -1); 1358 if (!ipc_valid_object(&sma->sem_perm)) { 1359 err = -EIDRM; 1360 goto out_unlock; 1361 } 1362 if (nsems > SEMMSL_FAST) { 1363 if (!ipc_rcu_getref(sma)) { 1364 err = -EIDRM; 1365 goto out_unlock; 1366 } 1367 sem_unlock(sma, -1); 1368 rcu_read_unlock(); 1369 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1370 if (sem_io == NULL) { 1371 ipc_rcu_putref(sma, ipc_rcu_free); 1372 return -ENOMEM; 1373 } 1374 1375 rcu_read_lock(); 1376 sem_lock_and_putref(sma); 1377 if (!ipc_valid_object(&sma->sem_perm)) { 1378 err = -EIDRM; 1379 goto out_unlock; 1380 } 1381 } 1382 for (i = 0; i < sma->sem_nsems; i++) 1383 sem_io[i] = sma->sem_base[i].semval; 1384 sem_unlock(sma, -1); 1385 rcu_read_unlock(); 1386 err = 0; 1387 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1388 err = -EFAULT; 1389 goto out_free; 1390 } 1391 case SETALL: 1392 { 1393 int i; 1394 struct sem_undo *un; 1395 1396 if (!ipc_rcu_getref(sma)) { 1397 err = -EIDRM; 1398 goto out_rcu_wakeup; 1399 } 1400 rcu_read_unlock(); 1401 1402 if (nsems > SEMMSL_FAST) { 1403 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1404 if (sem_io == NULL) { 1405 ipc_rcu_putref(sma, ipc_rcu_free); 1406 return -ENOMEM; 1407 } 1408 } 1409 1410 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1411 ipc_rcu_putref(sma, ipc_rcu_free); 1412 err = -EFAULT; 1413 goto out_free; 1414 } 1415 1416 for (i = 0; i < nsems; i++) { 1417 if (sem_io[i] > SEMVMX) { 1418 ipc_rcu_putref(sma, ipc_rcu_free); 1419 err = -ERANGE; 1420 goto out_free; 1421 } 1422 } 1423 rcu_read_lock(); 1424 sem_lock_and_putref(sma); 1425 if (!ipc_valid_object(&sma->sem_perm)) { 1426 err = -EIDRM; 1427 goto out_unlock; 1428 } 1429 1430 for (i = 0; i < nsems; i++) 1431 sma->sem_base[i].semval = sem_io[i]; 1432 1433 ipc_assert_locked_object(&sma->sem_perm); 1434 list_for_each_entry(un, &sma->list_id, list_id) { 1435 for (i = 0; i < nsems; i++) 1436 un->semadj[i] = 0; 1437 } 1438 sma->sem_ctime = get_seconds(); 1439 /* maybe some queued-up processes were waiting for this */ 1440 do_smart_update(sma, NULL, 0, 0, &tasks); 1441 err = 0; 1442 goto out_unlock; 1443 } 1444 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1445 } 1446 err = -EINVAL; 1447 if (semnum < 0 || semnum >= nsems) 1448 goto out_rcu_wakeup; 1449 1450 sem_lock(sma, NULL, -1); 1451 if (!ipc_valid_object(&sma->sem_perm)) { 1452 err = -EIDRM; 1453 goto out_unlock; 1454 } 1455 curr = &sma->sem_base[semnum]; 1456 1457 switch (cmd) { 1458 case GETVAL: 1459 err = curr->semval; 1460 goto out_unlock; 1461 case GETPID: 1462 err = curr->sempid; 1463 goto out_unlock; 1464 case GETNCNT: 1465 err = count_semcnt(sma, semnum, 0); 1466 goto out_unlock; 1467 case GETZCNT: 1468 err = count_semcnt(sma, semnum, 1); 1469 goto out_unlock; 1470 } 1471 1472 out_unlock: 1473 sem_unlock(sma, -1); 1474 out_rcu_wakeup: 1475 rcu_read_unlock(); 1476 wake_up_sem_queue_do(&tasks); 1477 out_free: 1478 if (sem_io != fast_sem_io) 1479 ipc_free(sem_io, sizeof(ushort)*nsems); 1480 return err; 1481 } 1482 1483 static inline unsigned long 1484 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1485 { 1486 switch (version) { 1487 case IPC_64: 1488 if (copy_from_user(out, buf, sizeof(*out))) 1489 return -EFAULT; 1490 return 0; 1491 case IPC_OLD: 1492 { 1493 struct semid_ds tbuf_old; 1494 1495 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1496 return -EFAULT; 1497 1498 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1499 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1500 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1501 1502 return 0; 1503 } 1504 default: 1505 return -EINVAL; 1506 } 1507 } 1508 1509 /* 1510 * This function handles some semctl commands which require the rwsem 1511 * to be held in write mode. 1512 * NOTE: no locks must be held, the rwsem is taken inside this function. 1513 */ 1514 static int semctl_down(struct ipc_namespace *ns, int semid, 1515 int cmd, int version, void __user *p) 1516 { 1517 struct sem_array *sma; 1518 int err; 1519 struct semid64_ds semid64; 1520 struct kern_ipc_perm *ipcp; 1521 1522 if (cmd == IPC_SET) { 1523 if (copy_semid_from_user(&semid64, p, version)) 1524 return -EFAULT; 1525 } 1526 1527 down_write(&sem_ids(ns).rwsem); 1528 rcu_read_lock(); 1529 1530 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1531 &semid64.sem_perm, 0); 1532 if (IS_ERR(ipcp)) { 1533 err = PTR_ERR(ipcp); 1534 goto out_unlock1; 1535 } 1536 1537 sma = container_of(ipcp, struct sem_array, sem_perm); 1538 1539 err = security_sem_semctl(sma, cmd); 1540 if (err) 1541 goto out_unlock1; 1542 1543 switch (cmd) { 1544 case IPC_RMID: 1545 sem_lock(sma, NULL, -1); 1546 /* freeary unlocks the ipc object and rcu */ 1547 freeary(ns, ipcp); 1548 goto out_up; 1549 case IPC_SET: 1550 sem_lock(sma, NULL, -1); 1551 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1552 if (err) 1553 goto out_unlock0; 1554 sma->sem_ctime = get_seconds(); 1555 break; 1556 default: 1557 err = -EINVAL; 1558 goto out_unlock1; 1559 } 1560 1561 out_unlock0: 1562 sem_unlock(sma, -1); 1563 out_unlock1: 1564 rcu_read_unlock(); 1565 out_up: 1566 up_write(&sem_ids(ns).rwsem); 1567 return err; 1568 } 1569 1570 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1571 { 1572 int version; 1573 struct ipc_namespace *ns; 1574 void __user *p = (void __user *)arg; 1575 1576 if (semid < 0) 1577 return -EINVAL; 1578 1579 version = ipc_parse_version(&cmd); 1580 ns = current->nsproxy->ipc_ns; 1581 1582 switch (cmd) { 1583 case IPC_INFO: 1584 case SEM_INFO: 1585 case IPC_STAT: 1586 case SEM_STAT: 1587 return semctl_nolock(ns, semid, cmd, version, p); 1588 case GETALL: 1589 case GETVAL: 1590 case GETPID: 1591 case GETNCNT: 1592 case GETZCNT: 1593 case SETALL: 1594 return semctl_main(ns, semid, semnum, cmd, p); 1595 case SETVAL: 1596 return semctl_setval(ns, semid, semnum, arg); 1597 case IPC_RMID: 1598 case IPC_SET: 1599 return semctl_down(ns, semid, cmd, version, p); 1600 default: 1601 return -EINVAL; 1602 } 1603 } 1604 1605 /* If the task doesn't already have a undo_list, then allocate one 1606 * here. We guarantee there is only one thread using this undo list, 1607 * and current is THE ONE 1608 * 1609 * If this allocation and assignment succeeds, but later 1610 * portions of this code fail, there is no need to free the sem_undo_list. 1611 * Just let it stay associated with the task, and it'll be freed later 1612 * at exit time. 1613 * 1614 * This can block, so callers must hold no locks. 1615 */ 1616 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1617 { 1618 struct sem_undo_list *undo_list; 1619 1620 undo_list = current->sysvsem.undo_list; 1621 if (!undo_list) { 1622 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1623 if (undo_list == NULL) 1624 return -ENOMEM; 1625 spin_lock_init(&undo_list->lock); 1626 atomic_set(&undo_list->refcnt, 1); 1627 INIT_LIST_HEAD(&undo_list->list_proc); 1628 1629 current->sysvsem.undo_list = undo_list; 1630 } 1631 *undo_listp = undo_list; 1632 return 0; 1633 } 1634 1635 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1636 { 1637 struct sem_undo *un; 1638 1639 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1640 if (un->semid == semid) 1641 return un; 1642 } 1643 return NULL; 1644 } 1645 1646 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1647 { 1648 struct sem_undo *un; 1649 1650 assert_spin_locked(&ulp->lock); 1651 1652 un = __lookup_undo(ulp, semid); 1653 if (un) { 1654 list_del_rcu(&un->list_proc); 1655 list_add_rcu(&un->list_proc, &ulp->list_proc); 1656 } 1657 return un; 1658 } 1659 1660 /** 1661 * find_alloc_undo - lookup (and if not present create) undo array 1662 * @ns: namespace 1663 * @semid: semaphore array id 1664 * 1665 * The function looks up (and if not present creates) the undo structure. 1666 * The size of the undo structure depends on the size of the semaphore 1667 * array, thus the alloc path is not that straightforward. 1668 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1669 * performs a rcu_read_lock(). 1670 */ 1671 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1672 { 1673 struct sem_array *sma; 1674 struct sem_undo_list *ulp; 1675 struct sem_undo *un, *new; 1676 int nsems, error; 1677 1678 error = get_undo_list(&ulp); 1679 if (error) 1680 return ERR_PTR(error); 1681 1682 rcu_read_lock(); 1683 spin_lock(&ulp->lock); 1684 un = lookup_undo(ulp, semid); 1685 spin_unlock(&ulp->lock); 1686 if (likely(un != NULL)) 1687 goto out; 1688 1689 /* no undo structure around - allocate one. */ 1690 /* step 1: figure out the size of the semaphore array */ 1691 sma = sem_obtain_object_check(ns, semid); 1692 if (IS_ERR(sma)) { 1693 rcu_read_unlock(); 1694 return ERR_CAST(sma); 1695 } 1696 1697 nsems = sma->sem_nsems; 1698 if (!ipc_rcu_getref(sma)) { 1699 rcu_read_unlock(); 1700 un = ERR_PTR(-EIDRM); 1701 goto out; 1702 } 1703 rcu_read_unlock(); 1704 1705 /* step 2: allocate new undo structure */ 1706 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1707 if (!new) { 1708 ipc_rcu_putref(sma, ipc_rcu_free); 1709 return ERR_PTR(-ENOMEM); 1710 } 1711 1712 /* step 3: Acquire the lock on semaphore array */ 1713 rcu_read_lock(); 1714 sem_lock_and_putref(sma); 1715 if (!ipc_valid_object(&sma->sem_perm)) { 1716 sem_unlock(sma, -1); 1717 rcu_read_unlock(); 1718 kfree(new); 1719 un = ERR_PTR(-EIDRM); 1720 goto out; 1721 } 1722 spin_lock(&ulp->lock); 1723 1724 /* 1725 * step 4: check for races: did someone else allocate the undo struct? 1726 */ 1727 un = lookup_undo(ulp, semid); 1728 if (un) { 1729 kfree(new); 1730 goto success; 1731 } 1732 /* step 5: initialize & link new undo structure */ 1733 new->semadj = (short *) &new[1]; 1734 new->ulp = ulp; 1735 new->semid = semid; 1736 assert_spin_locked(&ulp->lock); 1737 list_add_rcu(&new->list_proc, &ulp->list_proc); 1738 ipc_assert_locked_object(&sma->sem_perm); 1739 list_add(&new->list_id, &sma->list_id); 1740 un = new; 1741 1742 success: 1743 spin_unlock(&ulp->lock); 1744 sem_unlock(sma, -1); 1745 out: 1746 return un; 1747 } 1748 1749 1750 /** 1751 * get_queue_result - retrieve the result code from sem_queue 1752 * @q: Pointer to queue structure 1753 * 1754 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1755 * q->status, then we must loop until the value is replaced with the final 1756 * value: This may happen if a task is woken up by an unrelated event (e.g. 1757 * signal) and in parallel the task is woken up by another task because it got 1758 * the requested semaphores. 1759 * 1760 * The function can be called with or without holding the semaphore spinlock. 1761 */ 1762 static int get_queue_result(struct sem_queue *q) 1763 { 1764 int error; 1765 1766 error = q->status; 1767 while (unlikely(error == IN_WAKEUP)) { 1768 cpu_relax(); 1769 error = q->status; 1770 } 1771 1772 return error; 1773 } 1774 1775 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1776 unsigned, nsops, const struct timespec __user *, timeout) 1777 { 1778 int error = -EINVAL; 1779 struct sem_array *sma; 1780 struct sembuf fast_sops[SEMOPM_FAST]; 1781 struct sembuf *sops = fast_sops, *sop; 1782 struct sem_undo *un; 1783 int undos = 0, alter = 0, max, locknum; 1784 struct sem_queue queue; 1785 unsigned long jiffies_left = 0; 1786 struct ipc_namespace *ns; 1787 struct list_head tasks; 1788 1789 ns = current->nsproxy->ipc_ns; 1790 1791 if (nsops < 1 || semid < 0) 1792 return -EINVAL; 1793 if (nsops > ns->sc_semopm) 1794 return -E2BIG; 1795 if (nsops > SEMOPM_FAST) { 1796 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1797 if (sops == NULL) 1798 return -ENOMEM; 1799 } 1800 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1801 error = -EFAULT; 1802 goto out_free; 1803 } 1804 if (timeout) { 1805 struct timespec _timeout; 1806 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1807 error = -EFAULT; 1808 goto out_free; 1809 } 1810 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1811 _timeout.tv_nsec >= 1000000000L) { 1812 error = -EINVAL; 1813 goto out_free; 1814 } 1815 jiffies_left = timespec_to_jiffies(&_timeout); 1816 } 1817 max = 0; 1818 for (sop = sops; sop < sops + nsops; sop++) { 1819 if (sop->sem_num >= max) 1820 max = sop->sem_num; 1821 if (sop->sem_flg & SEM_UNDO) 1822 undos = 1; 1823 if (sop->sem_op != 0) 1824 alter = 1; 1825 } 1826 1827 INIT_LIST_HEAD(&tasks); 1828 1829 if (undos) { 1830 /* On success, find_alloc_undo takes the rcu_read_lock */ 1831 un = find_alloc_undo(ns, semid); 1832 if (IS_ERR(un)) { 1833 error = PTR_ERR(un); 1834 goto out_free; 1835 } 1836 } else { 1837 un = NULL; 1838 rcu_read_lock(); 1839 } 1840 1841 sma = sem_obtain_object_check(ns, semid); 1842 if (IS_ERR(sma)) { 1843 rcu_read_unlock(); 1844 error = PTR_ERR(sma); 1845 goto out_free; 1846 } 1847 1848 error = -EFBIG; 1849 if (max >= sma->sem_nsems) 1850 goto out_rcu_wakeup; 1851 1852 error = -EACCES; 1853 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1854 goto out_rcu_wakeup; 1855 1856 error = security_sem_semop(sma, sops, nsops, alter); 1857 if (error) 1858 goto out_rcu_wakeup; 1859 1860 error = -EIDRM; 1861 locknum = sem_lock(sma, sops, nsops); 1862 /* 1863 * We eventually might perform the following check in a lockless 1864 * fashion, considering ipc_valid_object() locking constraints. 1865 * If nsops == 1 and there is no contention for sem_perm.lock, then 1866 * only a per-semaphore lock is held and it's OK to proceed with the 1867 * check below. More details on the fine grained locking scheme 1868 * entangled here and why it's RMID race safe on comments at sem_lock() 1869 */ 1870 if (!ipc_valid_object(&sma->sem_perm)) 1871 goto out_unlock_free; 1872 /* 1873 * semid identifiers are not unique - find_alloc_undo may have 1874 * allocated an undo structure, it was invalidated by an RMID 1875 * and now a new array with received the same id. Check and fail. 1876 * This case can be detected checking un->semid. The existence of 1877 * "un" itself is guaranteed by rcu. 1878 */ 1879 if (un && un->semid == -1) 1880 goto out_unlock_free; 1881 1882 queue.sops = sops; 1883 queue.nsops = nsops; 1884 queue.undo = un; 1885 queue.pid = task_tgid_vnr(current); 1886 queue.alter = alter; 1887 1888 error = perform_atomic_semop(sma, &queue); 1889 if (error == 0) { 1890 /* If the operation was successful, then do 1891 * the required updates. 1892 */ 1893 if (alter) 1894 do_smart_update(sma, sops, nsops, 1, &tasks); 1895 else 1896 set_semotime(sma, sops); 1897 } 1898 if (error <= 0) 1899 goto out_unlock_free; 1900 1901 /* We need to sleep on this operation, so we put the current 1902 * task into the pending queue and go to sleep. 1903 */ 1904 1905 if (nsops == 1) { 1906 struct sem *curr; 1907 curr = &sma->sem_base[sops->sem_num]; 1908 1909 if (alter) { 1910 if (sma->complex_count) { 1911 list_add_tail(&queue.list, 1912 &sma->pending_alter); 1913 } else { 1914 1915 list_add_tail(&queue.list, 1916 &curr->pending_alter); 1917 } 1918 } else { 1919 list_add_tail(&queue.list, &curr->pending_const); 1920 } 1921 } else { 1922 if (!sma->complex_count) 1923 merge_queues(sma); 1924 1925 if (alter) 1926 list_add_tail(&queue.list, &sma->pending_alter); 1927 else 1928 list_add_tail(&queue.list, &sma->pending_const); 1929 1930 sma->complex_count++; 1931 } 1932 1933 queue.status = -EINTR; 1934 queue.sleeper = current; 1935 1936 sleep_again: 1937 current->state = TASK_INTERRUPTIBLE; 1938 sem_unlock(sma, locknum); 1939 rcu_read_unlock(); 1940 1941 if (timeout) 1942 jiffies_left = schedule_timeout(jiffies_left); 1943 else 1944 schedule(); 1945 1946 error = get_queue_result(&queue); 1947 1948 if (error != -EINTR) { 1949 /* fast path: update_queue already obtained all requested 1950 * resources. 1951 * Perform a smp_mb(): User space could assume that semop() 1952 * is a memory barrier: Without the mb(), the cpu could 1953 * speculatively read in user space stale data that was 1954 * overwritten by the previous owner of the semaphore. 1955 */ 1956 smp_mb(); 1957 1958 goto out_free; 1959 } 1960 1961 rcu_read_lock(); 1962 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1963 1964 /* 1965 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1966 */ 1967 error = get_queue_result(&queue); 1968 1969 /* 1970 * Array removed? If yes, leave without sem_unlock(). 1971 */ 1972 if (IS_ERR(sma)) { 1973 rcu_read_unlock(); 1974 goto out_free; 1975 } 1976 1977 1978 /* 1979 * If queue.status != -EINTR we are woken up by another process. 1980 * Leave without unlink_queue(), but with sem_unlock(). 1981 */ 1982 if (error != -EINTR) 1983 goto out_unlock_free; 1984 1985 /* 1986 * If an interrupt occurred we have to clean up the queue 1987 */ 1988 if (timeout && jiffies_left == 0) 1989 error = -EAGAIN; 1990 1991 /* 1992 * If the wakeup was spurious, just retry 1993 */ 1994 if (error == -EINTR && !signal_pending(current)) 1995 goto sleep_again; 1996 1997 unlink_queue(sma, &queue); 1998 1999 out_unlock_free: 2000 sem_unlock(sma, locknum); 2001 out_rcu_wakeup: 2002 rcu_read_unlock(); 2003 wake_up_sem_queue_do(&tasks); 2004 out_free: 2005 if (sops != fast_sops) 2006 kfree(sops); 2007 return error; 2008 } 2009 2010 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2011 unsigned, nsops) 2012 { 2013 return sys_semtimedop(semid, tsops, nsops, NULL); 2014 } 2015 2016 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2017 * parent and child tasks. 2018 */ 2019 2020 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2021 { 2022 struct sem_undo_list *undo_list; 2023 int error; 2024 2025 if (clone_flags & CLONE_SYSVSEM) { 2026 error = get_undo_list(&undo_list); 2027 if (error) 2028 return error; 2029 atomic_inc(&undo_list->refcnt); 2030 tsk->sysvsem.undo_list = undo_list; 2031 } else 2032 tsk->sysvsem.undo_list = NULL; 2033 2034 return 0; 2035 } 2036 2037 /* 2038 * add semadj values to semaphores, free undo structures. 2039 * undo structures are not freed when semaphore arrays are destroyed 2040 * so some of them may be out of date. 2041 * IMPLEMENTATION NOTE: There is some confusion over whether the 2042 * set of adjustments that needs to be done should be done in an atomic 2043 * manner or not. That is, if we are attempting to decrement the semval 2044 * should we queue up and wait until we can do so legally? 2045 * The original implementation attempted to do this (queue and wait). 2046 * The current implementation does not do so. The POSIX standard 2047 * and SVID should be consulted to determine what behavior is mandated. 2048 */ 2049 void exit_sem(struct task_struct *tsk) 2050 { 2051 struct sem_undo_list *ulp; 2052 2053 ulp = tsk->sysvsem.undo_list; 2054 if (!ulp) 2055 return; 2056 tsk->sysvsem.undo_list = NULL; 2057 2058 if (!atomic_dec_and_test(&ulp->refcnt)) 2059 return; 2060 2061 for (;;) { 2062 struct sem_array *sma; 2063 struct sem_undo *un; 2064 struct list_head tasks; 2065 int semid, i; 2066 2067 rcu_read_lock(); 2068 un = list_entry_rcu(ulp->list_proc.next, 2069 struct sem_undo, list_proc); 2070 if (&un->list_proc == &ulp->list_proc) 2071 semid = -1; 2072 else 2073 semid = un->semid; 2074 2075 if (semid == -1) { 2076 rcu_read_unlock(); 2077 break; 2078 } 2079 2080 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); 2081 /* exit_sem raced with IPC_RMID, nothing to do */ 2082 if (IS_ERR(sma)) { 2083 rcu_read_unlock(); 2084 continue; 2085 } 2086 2087 sem_lock(sma, NULL, -1); 2088 /* exit_sem raced with IPC_RMID, nothing to do */ 2089 if (!ipc_valid_object(&sma->sem_perm)) { 2090 sem_unlock(sma, -1); 2091 rcu_read_unlock(); 2092 continue; 2093 } 2094 un = __lookup_undo(ulp, semid); 2095 if (un == NULL) { 2096 /* exit_sem raced with IPC_RMID+semget() that created 2097 * exactly the same semid. Nothing to do. 2098 */ 2099 sem_unlock(sma, -1); 2100 rcu_read_unlock(); 2101 continue; 2102 } 2103 2104 /* remove un from the linked lists */ 2105 ipc_assert_locked_object(&sma->sem_perm); 2106 list_del(&un->list_id); 2107 2108 spin_lock(&ulp->lock); 2109 list_del_rcu(&un->list_proc); 2110 spin_unlock(&ulp->lock); 2111 2112 /* perform adjustments registered in un */ 2113 for (i = 0; i < sma->sem_nsems; i++) { 2114 struct sem *semaphore = &sma->sem_base[i]; 2115 if (un->semadj[i]) { 2116 semaphore->semval += un->semadj[i]; 2117 /* 2118 * Range checks of the new semaphore value, 2119 * not defined by sus: 2120 * - Some unices ignore the undo entirely 2121 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2122 * - some cap the value (e.g. FreeBSD caps 2123 * at 0, but doesn't enforce SEMVMX) 2124 * 2125 * Linux caps the semaphore value, both at 0 2126 * and at SEMVMX. 2127 * 2128 * Manfred <manfred@colorfullife.com> 2129 */ 2130 if (semaphore->semval < 0) 2131 semaphore->semval = 0; 2132 if (semaphore->semval > SEMVMX) 2133 semaphore->semval = SEMVMX; 2134 semaphore->sempid = task_tgid_vnr(current); 2135 } 2136 } 2137 /* maybe some queued-up processes were waiting for this */ 2138 INIT_LIST_HEAD(&tasks); 2139 do_smart_update(sma, NULL, 0, 1, &tasks); 2140 sem_unlock(sma, -1); 2141 rcu_read_unlock(); 2142 wake_up_sem_queue_do(&tasks); 2143 2144 kfree_rcu(un, rcu); 2145 } 2146 kfree(ulp); 2147 } 2148 2149 #ifdef CONFIG_PROC_FS 2150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2151 { 2152 struct user_namespace *user_ns = seq_user_ns(s); 2153 struct sem_array *sma = it; 2154 time_t sem_otime; 2155 2156 /* 2157 * The proc interface isn't aware of sem_lock(), it calls 2158 * ipc_lock_object() directly (in sysvipc_find_ipc). 2159 * In order to stay compatible with sem_lock(), we must wait until 2160 * all simple semop() calls have left their critical regions. 2161 */ 2162 sem_wait_array(sma); 2163 2164 sem_otime = get_semotime(sma); 2165 2166 return seq_printf(s, 2167 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2168 sma->sem_perm.key, 2169 sma->sem_perm.id, 2170 sma->sem_perm.mode, 2171 sma->sem_nsems, 2172 from_kuid_munged(user_ns, sma->sem_perm.uid), 2173 from_kgid_munged(user_ns, sma->sem_perm.gid), 2174 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2175 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2176 sem_otime, 2177 sma->sem_ctime); 2178 } 2179 #endif 2180