xref: /linux/ipc/sem.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90 
91 #include <linux/uaccess.h>
92 #include "util.h"
93 
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 	int	semval;		/* current value */
97 	/*
98 	 * PID of the process that last modified the semaphore. For
99 	 * Linux, specifically these are:
100 	 *  - semop
101 	 *  - semctl, via SETVAL and SETALL.
102 	 *  - at task exit when performing undo adjustments (see exit_sem).
103 	 */
104 	struct pid *sempid;
105 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
106 	struct list_head pending_alter; /* pending single-sop operations */
107 					/* that alter the semaphore */
108 	struct list_head pending_const; /* pending single-sop operations */
109 					/* that do not alter the semaphore*/
110 	time64_t	 sem_otime;	/* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112 
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
116 	time64_t		sem_ctime;	/* create/last semctl() time */
117 	struct list_head	pending_alter;	/* pending operations */
118 						/* that alter the array */
119 	struct list_head	pending_const;	/* pending complex operations */
120 						/* that do not alter semvals */
121 	struct list_head	list_id;	/* undo requests on this array */
122 	int			sem_nsems;	/* no. of semaphores in array */
123 	int			complex_count;	/* pending complex operations */
124 	unsigned int		use_global_lock;/* >0: global lock required */
125 
126 	struct sem		sems[];
127 } __randomize_layout;
128 
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 	struct list_head	list;	 /* queue of pending operations */
132 	struct task_struct	*sleeper; /* this process */
133 	struct sem_undo		*undo;	 /* undo structure */
134 	struct pid		*pid;	 /* process id of requesting process */
135 	int			status;	 /* completion status of operation */
136 	struct sembuf		*sops;	 /* array of pending operations */
137 	struct sembuf		*blocking; /* the operation that blocked */
138 	int			nsops;	 /* number of operations */
139 	bool			alter;	 /* does *sops alter the array? */
140 	bool                    dupsop;	 /* sops on more than one sem_num */
141 };
142 
143 /* Each task has a list of undo requests. They are executed automatically
144  * when the process exits.
145  */
146 struct sem_undo {
147 	struct list_head	list_proc;	/* per-process list: *
148 						 * all undos from one process
149 						 * rcu protected */
150 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
151 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
152 	struct list_head	list_id;	/* per semaphore array list:
153 						 * all undos for one array */
154 	int			semid;		/* semaphore set identifier */
155 	short			*semadj;	/* array of adjustments */
156 						/* one per semaphore */
157 };
158 
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160  * that may be shared among all a CLONE_SYSVSEM task group.
161  */
162 struct sem_undo_list {
163 	refcount_t		refcnt;
164 	spinlock_t		lock;
165 	struct list_head	list_proc;
166 };
167 
168 
169 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
170 
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176 
177 #define SEMMSL_FAST	256 /* 512 bytes on stack */
178 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
179 
180 /*
181  * Switching from the mode suitable for simple ops
182  * to the mode for complex ops is costly. Therefore:
183  * use some hysteresis
184  */
185 #define USE_GLOBAL_LOCK_HYSTERESIS	10
186 
187 /*
188  * Locking:
189  * a) global sem_lock() for read/write
190  *	sem_undo.id_next,
191  *	sem_array.complex_count,
192  *	sem_array.pending{_alter,_const},
193  *	sem_array.sem_undo
194  *
195  * b) global or semaphore sem_lock() for read/write:
196  *	sem_array.sems[i].pending_{const,alter}:
197  *
198  * c) special:
199  *	sem_undo_list.list_proc:
200  *	* undo_list->lock for write
201  *	* rcu for read
202  *	use_global_lock:
203  *	* global sem_lock() for write
204  *	* either local or global sem_lock() for read.
205  *
206  * Memory ordering:
207  * Most ordering is enforced by using spin_lock() and spin_unlock().
208  * The special case is use_global_lock:
209  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210  * using smp_store_release().
211  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212  * smp_load_acquire().
213  * Setting it from 0 to non-zero must be ordered with regards to
214  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215  * is inside a spin_lock() and after a write from 0 to non-zero a
216  * spin_lock()+spin_unlock() is done.
217  */
218 
219 #define sc_semmsl	sem_ctls[0]
220 #define sc_semmns	sem_ctls[1]
221 #define sc_semopm	sem_ctls[2]
222 #define sc_semmni	sem_ctls[3]
223 
224 void sem_init_ns(struct ipc_namespace *ns)
225 {
226 	ns->sc_semmsl = SEMMSL;
227 	ns->sc_semmns = SEMMNS;
228 	ns->sc_semopm = SEMOPM;
229 	ns->sc_semmni = SEMMNI;
230 	ns->used_sems = 0;
231 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 }
233 
234 #ifdef CONFIG_IPC_NS
235 void sem_exit_ns(struct ipc_namespace *ns)
236 {
237 	free_ipcs(ns, &sem_ids(ns), freeary);
238 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240 }
241 #endif
242 
243 void __init sem_init(void)
244 {
245 	sem_init_ns(&init_ipc_ns);
246 	ipc_init_proc_interface("sysvipc/sem",
247 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
248 				IPC_SEM_IDS, sysvipc_sem_proc_show);
249 }
250 
251 /**
252  * unmerge_queues - unmerge queues, if possible.
253  * @sma: semaphore array
254  *
255  * The function unmerges the wait queues if complex_count is 0.
256  * It must be called prior to dropping the global semaphore array lock.
257  */
258 static void unmerge_queues(struct sem_array *sma)
259 {
260 	struct sem_queue *q, *tq;
261 
262 	/* complex operations still around? */
263 	if (sma->complex_count)
264 		return;
265 	/*
266 	 * We will switch back to simple mode.
267 	 * Move all pending operation back into the per-semaphore
268 	 * queues.
269 	 */
270 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
271 		struct sem *curr;
272 		curr = &sma->sems[q->sops[0].sem_num];
273 
274 		list_add_tail(&q->list, &curr->pending_alter);
275 	}
276 	INIT_LIST_HEAD(&sma->pending_alter);
277 }
278 
279 /**
280  * merge_queues - merge single semop queues into global queue
281  * @sma: semaphore array
282  *
283  * This function merges all per-semaphore queues into the global queue.
284  * It is necessary to achieve FIFO ordering for the pending single-sop
285  * operations when a multi-semop operation must sleep.
286  * Only the alter operations must be moved, the const operations can stay.
287  */
288 static void merge_queues(struct sem_array *sma)
289 {
290 	int i;
291 	for (i = 0; i < sma->sem_nsems; i++) {
292 		struct sem *sem = &sma->sems[i];
293 
294 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
295 	}
296 }
297 
298 static void sem_rcu_free(struct rcu_head *head)
299 {
300 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
301 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
302 
303 	security_sem_free(&sma->sem_perm);
304 	kvfree(sma);
305 }
306 
307 /*
308  * Enter the mode suitable for non-simple operations:
309  * Caller must own sem_perm.lock.
310  */
311 static void complexmode_enter(struct sem_array *sma)
312 {
313 	int i;
314 	struct sem *sem;
315 
316 	if (sma->use_global_lock > 0)  {
317 		/*
318 		 * We are already in global lock mode.
319 		 * Nothing to do, just reset the
320 		 * counter until we return to simple mode.
321 		 */
322 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
323 		return;
324 	}
325 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
326 
327 	for (i = 0; i < sma->sem_nsems; i++) {
328 		sem = &sma->sems[i];
329 		spin_lock(&sem->lock);
330 		spin_unlock(&sem->lock);
331 	}
332 }
333 
334 /*
335  * Try to leave the mode that disallows simple operations:
336  * Caller must own sem_perm.lock.
337  */
338 static void complexmode_tryleave(struct sem_array *sma)
339 {
340 	if (sma->complex_count)  {
341 		/* Complex ops are sleeping.
342 		 * We must stay in complex mode
343 		 */
344 		return;
345 	}
346 	if (sma->use_global_lock == 1) {
347 		/*
348 		 * Immediately after setting use_global_lock to 0,
349 		 * a simple op can start. Thus: all memory writes
350 		 * performed by the current operation must be visible
351 		 * before we set use_global_lock to 0.
352 		 */
353 		smp_store_release(&sma->use_global_lock, 0);
354 	} else {
355 		sma->use_global_lock--;
356 	}
357 }
358 
359 #define SEM_GLOBAL_LOCK	(-1)
360 /*
361  * If the request contains only one semaphore operation, and there are
362  * no complex transactions pending, lock only the semaphore involved.
363  * Otherwise, lock the entire semaphore array, since we either have
364  * multiple semaphores in our own semops, or we need to look at
365  * semaphores from other pending complex operations.
366  */
367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
368 			      int nsops)
369 {
370 	struct sem *sem;
371 	int idx;
372 
373 	if (nsops != 1) {
374 		/* Complex operation - acquire a full lock */
375 		ipc_lock_object(&sma->sem_perm);
376 
377 		/* Prevent parallel simple ops */
378 		complexmode_enter(sma);
379 		return SEM_GLOBAL_LOCK;
380 	}
381 
382 	/*
383 	 * Only one semaphore affected - try to optimize locking.
384 	 * Optimized locking is possible if no complex operation
385 	 * is either enqueued or processed right now.
386 	 *
387 	 * Both facts are tracked by use_global_mode.
388 	 */
389 	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
390 	sem = &sma->sems[idx];
391 
392 	/*
393 	 * Initial check for use_global_lock. Just an optimization,
394 	 * no locking, no memory barrier.
395 	 */
396 	if (!sma->use_global_lock) {
397 		/*
398 		 * It appears that no complex operation is around.
399 		 * Acquire the per-semaphore lock.
400 		 */
401 		spin_lock(&sem->lock);
402 
403 		/* pairs with smp_store_release() */
404 		if (!smp_load_acquire(&sma->use_global_lock)) {
405 			/* fast path successful! */
406 			return sops->sem_num;
407 		}
408 		spin_unlock(&sem->lock);
409 	}
410 
411 	/* slow path: acquire the full lock */
412 	ipc_lock_object(&sma->sem_perm);
413 
414 	if (sma->use_global_lock == 0) {
415 		/*
416 		 * The use_global_lock mode ended while we waited for
417 		 * sma->sem_perm.lock. Thus we must switch to locking
418 		 * with sem->lock.
419 		 * Unlike in the fast path, there is no need to recheck
420 		 * sma->use_global_lock after we have acquired sem->lock:
421 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
422 		 * change.
423 		 */
424 		spin_lock(&sem->lock);
425 
426 		ipc_unlock_object(&sma->sem_perm);
427 		return sops->sem_num;
428 	} else {
429 		/*
430 		 * Not a false alarm, thus continue to use the global lock
431 		 * mode. No need for complexmode_enter(), this was done by
432 		 * the caller that has set use_global_mode to non-zero.
433 		 */
434 		return SEM_GLOBAL_LOCK;
435 	}
436 }
437 
438 static inline void sem_unlock(struct sem_array *sma, int locknum)
439 {
440 	if (locknum == SEM_GLOBAL_LOCK) {
441 		unmerge_queues(sma);
442 		complexmode_tryleave(sma);
443 		ipc_unlock_object(&sma->sem_perm);
444 	} else {
445 		struct sem *sem = &sma->sems[locknum];
446 		spin_unlock(&sem->lock);
447 	}
448 }
449 
450 /*
451  * sem_lock_(check_) routines are called in the paths where the rwsem
452  * is not held.
453  *
454  * The caller holds the RCU read lock.
455  */
456 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
457 {
458 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
459 
460 	if (IS_ERR(ipcp))
461 		return ERR_CAST(ipcp);
462 
463 	return container_of(ipcp, struct sem_array, sem_perm);
464 }
465 
466 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
467 							int id)
468 {
469 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
470 
471 	if (IS_ERR(ipcp))
472 		return ERR_CAST(ipcp);
473 
474 	return container_of(ipcp, struct sem_array, sem_perm);
475 }
476 
477 static inline void sem_lock_and_putref(struct sem_array *sma)
478 {
479 	sem_lock(sma, NULL, -1);
480 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
481 }
482 
483 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
484 {
485 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
486 }
487 
488 static struct sem_array *sem_alloc(size_t nsems)
489 {
490 	struct sem_array *sma;
491 
492 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
493 		return NULL;
494 
495 	sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
496 	if (unlikely(!sma))
497 		return NULL;
498 
499 	return sma;
500 }
501 
502 /**
503  * newary - Create a new semaphore set
504  * @ns: namespace
505  * @params: ptr to the structure that contains key, semflg and nsems
506  *
507  * Called with sem_ids.rwsem held (as a writer)
508  */
509 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
510 {
511 	int retval;
512 	struct sem_array *sma;
513 	key_t key = params->key;
514 	int nsems = params->u.nsems;
515 	int semflg = params->flg;
516 	int i;
517 
518 	if (!nsems)
519 		return -EINVAL;
520 	if (ns->used_sems + nsems > ns->sc_semmns)
521 		return -ENOSPC;
522 
523 	sma = sem_alloc(nsems);
524 	if (!sma)
525 		return -ENOMEM;
526 
527 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
528 	sma->sem_perm.key = key;
529 
530 	sma->sem_perm.security = NULL;
531 	retval = security_sem_alloc(&sma->sem_perm);
532 	if (retval) {
533 		kvfree(sma);
534 		return retval;
535 	}
536 
537 	for (i = 0; i < nsems; i++) {
538 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
539 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
540 		spin_lock_init(&sma->sems[i].lock);
541 	}
542 
543 	sma->complex_count = 0;
544 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
545 	INIT_LIST_HEAD(&sma->pending_alter);
546 	INIT_LIST_HEAD(&sma->pending_const);
547 	INIT_LIST_HEAD(&sma->list_id);
548 	sma->sem_nsems = nsems;
549 	sma->sem_ctime = ktime_get_real_seconds();
550 
551 	/* ipc_addid() locks sma upon success. */
552 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
553 	if (retval < 0) {
554 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
555 		return retval;
556 	}
557 	ns->used_sems += nsems;
558 
559 	sem_unlock(sma, -1);
560 	rcu_read_unlock();
561 
562 	return sma->sem_perm.id;
563 }
564 
565 
566 /*
567  * Called with sem_ids.rwsem and ipcp locked.
568  */
569 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
570 				struct ipc_params *params)
571 {
572 	struct sem_array *sma;
573 
574 	sma = container_of(ipcp, struct sem_array, sem_perm);
575 	if (params->u.nsems > sma->sem_nsems)
576 		return -EINVAL;
577 
578 	return 0;
579 }
580 
581 long ksys_semget(key_t key, int nsems, int semflg)
582 {
583 	struct ipc_namespace *ns;
584 	static const struct ipc_ops sem_ops = {
585 		.getnew = newary,
586 		.associate = security_sem_associate,
587 		.more_checks = sem_more_checks,
588 	};
589 	struct ipc_params sem_params;
590 
591 	ns = current->nsproxy->ipc_ns;
592 
593 	if (nsems < 0 || nsems > ns->sc_semmsl)
594 		return -EINVAL;
595 
596 	sem_params.key = key;
597 	sem_params.flg = semflg;
598 	sem_params.u.nsems = nsems;
599 
600 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
601 }
602 
603 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
604 {
605 	return ksys_semget(key, nsems, semflg);
606 }
607 
608 /**
609  * perform_atomic_semop[_slow] - Attempt to perform semaphore
610  *                               operations on a given array.
611  * @sma: semaphore array
612  * @q: struct sem_queue that describes the operation
613  *
614  * Caller blocking are as follows, based the value
615  * indicated by the semaphore operation (sem_op):
616  *
617  *  (1) >0 never blocks.
618  *  (2)  0 (wait-for-zero operation): semval is non-zero.
619  *  (3) <0 attempting to decrement semval to a value smaller than zero.
620  *
621  * Returns 0 if the operation was possible.
622  * Returns 1 if the operation is impossible, the caller must sleep.
623  * Returns <0 for error codes.
624  */
625 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
626 {
627 	int result, sem_op, nsops;
628 	struct pid *pid;
629 	struct sembuf *sop;
630 	struct sem *curr;
631 	struct sembuf *sops;
632 	struct sem_undo *un;
633 
634 	sops = q->sops;
635 	nsops = q->nsops;
636 	un = q->undo;
637 
638 	for (sop = sops; sop < sops + nsops; sop++) {
639 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
640 		curr = &sma->sems[idx];
641 		sem_op = sop->sem_op;
642 		result = curr->semval;
643 
644 		if (!sem_op && result)
645 			goto would_block;
646 
647 		result += sem_op;
648 		if (result < 0)
649 			goto would_block;
650 		if (result > SEMVMX)
651 			goto out_of_range;
652 
653 		if (sop->sem_flg & SEM_UNDO) {
654 			int undo = un->semadj[sop->sem_num] - sem_op;
655 			/* Exceeding the undo range is an error. */
656 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 				goto out_of_range;
658 			un->semadj[sop->sem_num] = undo;
659 		}
660 
661 		curr->semval = result;
662 	}
663 
664 	sop--;
665 	pid = q->pid;
666 	while (sop >= sops) {
667 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
668 		sop--;
669 	}
670 
671 	return 0;
672 
673 out_of_range:
674 	result = -ERANGE;
675 	goto undo;
676 
677 would_block:
678 	q->blocking = sop;
679 
680 	if (sop->sem_flg & IPC_NOWAIT)
681 		result = -EAGAIN;
682 	else
683 		result = 1;
684 
685 undo:
686 	sop--;
687 	while (sop >= sops) {
688 		sem_op = sop->sem_op;
689 		sma->sems[sop->sem_num].semval -= sem_op;
690 		if (sop->sem_flg & SEM_UNDO)
691 			un->semadj[sop->sem_num] += sem_op;
692 		sop--;
693 	}
694 
695 	return result;
696 }
697 
698 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699 {
700 	int result, sem_op, nsops;
701 	struct sembuf *sop;
702 	struct sem *curr;
703 	struct sembuf *sops;
704 	struct sem_undo *un;
705 
706 	sops = q->sops;
707 	nsops = q->nsops;
708 	un = q->undo;
709 
710 	if (unlikely(q->dupsop))
711 		return perform_atomic_semop_slow(sma, q);
712 
713 	/*
714 	 * We scan the semaphore set twice, first to ensure that the entire
715 	 * operation can succeed, therefore avoiding any pointless writes
716 	 * to shared memory and having to undo such changes in order to block
717 	 * until the operations can go through.
718 	 */
719 	for (sop = sops; sop < sops + nsops; sop++) {
720 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
721 
722 		curr = &sma->sems[idx];
723 		sem_op = sop->sem_op;
724 		result = curr->semval;
725 
726 		if (!sem_op && result)
727 			goto would_block; /* wait-for-zero */
728 
729 		result += sem_op;
730 		if (result < 0)
731 			goto would_block;
732 
733 		if (result > SEMVMX)
734 			return -ERANGE;
735 
736 		if (sop->sem_flg & SEM_UNDO) {
737 			int undo = un->semadj[sop->sem_num] - sem_op;
738 
739 			/* Exceeding the undo range is an error. */
740 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
741 				return -ERANGE;
742 		}
743 	}
744 
745 	for (sop = sops; sop < sops + nsops; sop++) {
746 		curr = &sma->sems[sop->sem_num];
747 		sem_op = sop->sem_op;
748 		result = curr->semval;
749 
750 		if (sop->sem_flg & SEM_UNDO) {
751 			int undo = un->semadj[sop->sem_num] - sem_op;
752 
753 			un->semadj[sop->sem_num] = undo;
754 		}
755 		curr->semval += sem_op;
756 		ipc_update_pid(&curr->sempid, q->pid);
757 	}
758 
759 	return 0;
760 
761 would_block:
762 	q->blocking = sop;
763 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
764 }
765 
766 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
767 					     struct wake_q_head *wake_q)
768 {
769 	wake_q_add(wake_q, q->sleeper);
770 	/*
771 	 * Rely on the above implicit barrier, such that we can
772 	 * ensure that we hold reference to the task before setting
773 	 * q->status. Otherwise we could race with do_exit if the
774 	 * task is awoken by an external event before calling
775 	 * wake_up_process().
776 	 */
777 	WRITE_ONCE(q->status, error);
778 }
779 
780 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
781 {
782 	list_del(&q->list);
783 	if (q->nsops > 1)
784 		sma->complex_count--;
785 }
786 
787 /** check_restart(sma, q)
788  * @sma: semaphore array
789  * @q: the operation that just completed
790  *
791  * update_queue is O(N^2) when it restarts scanning the whole queue of
792  * waiting operations. Therefore this function checks if the restart is
793  * really necessary. It is called after a previously waiting operation
794  * modified the array.
795  * Note that wait-for-zero operations are handled without restart.
796  */
797 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
798 {
799 	/* pending complex alter operations are too difficult to analyse */
800 	if (!list_empty(&sma->pending_alter))
801 		return 1;
802 
803 	/* we were a sleeping complex operation. Too difficult */
804 	if (q->nsops > 1)
805 		return 1;
806 
807 	/* It is impossible that someone waits for the new value:
808 	 * - complex operations always restart.
809 	 * - wait-for-zero are handled seperately.
810 	 * - q is a previously sleeping simple operation that
811 	 *   altered the array. It must be a decrement, because
812 	 *   simple increments never sleep.
813 	 * - If there are older (higher priority) decrements
814 	 *   in the queue, then they have observed the original
815 	 *   semval value and couldn't proceed. The operation
816 	 *   decremented to value - thus they won't proceed either.
817 	 */
818 	return 0;
819 }
820 
821 /**
822  * wake_const_ops - wake up non-alter tasks
823  * @sma: semaphore array.
824  * @semnum: semaphore that was modified.
825  * @wake_q: lockless wake-queue head.
826  *
827  * wake_const_ops must be called after a semaphore in a semaphore array
828  * was set to 0. If complex const operations are pending, wake_const_ops must
829  * be called with semnum = -1, as well as with the number of each modified
830  * semaphore.
831  * The tasks that must be woken up are added to @wake_q. The return code
832  * is stored in q->pid.
833  * The function returns 1 if at least one operation was completed successfully.
834  */
835 static int wake_const_ops(struct sem_array *sma, int semnum,
836 			  struct wake_q_head *wake_q)
837 {
838 	struct sem_queue *q, *tmp;
839 	struct list_head *pending_list;
840 	int semop_completed = 0;
841 
842 	if (semnum == -1)
843 		pending_list = &sma->pending_const;
844 	else
845 		pending_list = &sma->sems[semnum].pending_const;
846 
847 	list_for_each_entry_safe(q, tmp, pending_list, list) {
848 		int error = perform_atomic_semop(sma, q);
849 
850 		if (error > 0)
851 			continue;
852 		/* operation completed, remove from queue & wakeup */
853 		unlink_queue(sma, q);
854 
855 		wake_up_sem_queue_prepare(q, error, wake_q);
856 		if (error == 0)
857 			semop_completed = 1;
858 	}
859 
860 	return semop_completed;
861 }
862 
863 /**
864  * do_smart_wakeup_zero - wakeup all wait for zero tasks
865  * @sma: semaphore array
866  * @sops: operations that were performed
867  * @nsops: number of operations
868  * @wake_q: lockless wake-queue head
869  *
870  * Checks all required queue for wait-for-zero operations, based
871  * on the actual changes that were performed on the semaphore array.
872  * The function returns 1 if at least one operation was completed successfully.
873  */
874 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
875 				int nsops, struct wake_q_head *wake_q)
876 {
877 	int i;
878 	int semop_completed = 0;
879 	int got_zero = 0;
880 
881 	/* first: the per-semaphore queues, if known */
882 	if (sops) {
883 		for (i = 0; i < nsops; i++) {
884 			int num = sops[i].sem_num;
885 
886 			if (sma->sems[num].semval == 0) {
887 				got_zero = 1;
888 				semop_completed |= wake_const_ops(sma, num, wake_q);
889 			}
890 		}
891 	} else {
892 		/*
893 		 * No sops means modified semaphores not known.
894 		 * Assume all were changed.
895 		 */
896 		for (i = 0; i < sma->sem_nsems; i++) {
897 			if (sma->sems[i].semval == 0) {
898 				got_zero = 1;
899 				semop_completed |= wake_const_ops(sma, i, wake_q);
900 			}
901 		}
902 	}
903 	/*
904 	 * If one of the modified semaphores got 0,
905 	 * then check the global queue, too.
906 	 */
907 	if (got_zero)
908 		semop_completed |= wake_const_ops(sma, -1, wake_q);
909 
910 	return semop_completed;
911 }
912 
913 
914 /**
915  * update_queue - look for tasks that can be completed.
916  * @sma: semaphore array.
917  * @semnum: semaphore that was modified.
918  * @wake_q: lockless wake-queue head.
919  *
920  * update_queue must be called after a semaphore in a semaphore array
921  * was modified. If multiple semaphores were modified, update_queue must
922  * be called with semnum = -1, as well as with the number of each modified
923  * semaphore.
924  * The tasks that must be woken up are added to @wake_q. The return code
925  * is stored in q->pid.
926  * The function internally checks if const operations can now succeed.
927  *
928  * The function return 1 if at least one semop was completed successfully.
929  */
930 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
931 {
932 	struct sem_queue *q, *tmp;
933 	struct list_head *pending_list;
934 	int semop_completed = 0;
935 
936 	if (semnum == -1)
937 		pending_list = &sma->pending_alter;
938 	else
939 		pending_list = &sma->sems[semnum].pending_alter;
940 
941 again:
942 	list_for_each_entry_safe(q, tmp, pending_list, list) {
943 		int error, restart;
944 
945 		/* If we are scanning the single sop, per-semaphore list of
946 		 * one semaphore and that semaphore is 0, then it is not
947 		 * necessary to scan further: simple increments
948 		 * that affect only one entry succeed immediately and cannot
949 		 * be in the  per semaphore pending queue, and decrements
950 		 * cannot be successful if the value is already 0.
951 		 */
952 		if (semnum != -1 && sma->sems[semnum].semval == 0)
953 			break;
954 
955 		error = perform_atomic_semop(sma, q);
956 
957 		/* Does q->sleeper still need to sleep? */
958 		if (error > 0)
959 			continue;
960 
961 		unlink_queue(sma, q);
962 
963 		if (error) {
964 			restart = 0;
965 		} else {
966 			semop_completed = 1;
967 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
968 			restart = check_restart(sma, q);
969 		}
970 
971 		wake_up_sem_queue_prepare(q, error, wake_q);
972 		if (restart)
973 			goto again;
974 	}
975 	return semop_completed;
976 }
977 
978 /**
979  * set_semotime - set sem_otime
980  * @sma: semaphore array
981  * @sops: operations that modified the array, may be NULL
982  *
983  * sem_otime is replicated to avoid cache line trashing.
984  * This function sets one instance to the current time.
985  */
986 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
987 {
988 	if (sops == NULL) {
989 		sma->sems[0].sem_otime = ktime_get_real_seconds();
990 	} else {
991 		sma->sems[sops[0].sem_num].sem_otime =
992 						ktime_get_real_seconds();
993 	}
994 }
995 
996 /**
997  * do_smart_update - optimized update_queue
998  * @sma: semaphore array
999  * @sops: operations that were performed
1000  * @nsops: number of operations
1001  * @otime: force setting otime
1002  * @wake_q: lockless wake-queue head
1003  *
1004  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1005  * based on the actual changes that were performed on the semaphore array.
1006  * Note that the function does not do the actual wake-up: the caller is
1007  * responsible for calling wake_up_q().
1008  * It is safe to perform this call after dropping all locks.
1009  */
1010 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1011 			    int otime, struct wake_q_head *wake_q)
1012 {
1013 	int i;
1014 
1015 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1016 
1017 	if (!list_empty(&sma->pending_alter)) {
1018 		/* semaphore array uses the global queue - just process it. */
1019 		otime |= update_queue(sma, -1, wake_q);
1020 	} else {
1021 		if (!sops) {
1022 			/*
1023 			 * No sops, thus the modified semaphores are not
1024 			 * known. Check all.
1025 			 */
1026 			for (i = 0; i < sma->sem_nsems; i++)
1027 				otime |= update_queue(sma, i, wake_q);
1028 		} else {
1029 			/*
1030 			 * Check the semaphores that were increased:
1031 			 * - No complex ops, thus all sleeping ops are
1032 			 *   decrease.
1033 			 * - if we decreased the value, then any sleeping
1034 			 *   semaphore ops wont be able to run: If the
1035 			 *   previous value was too small, then the new
1036 			 *   value will be too small, too.
1037 			 */
1038 			for (i = 0; i < nsops; i++) {
1039 				if (sops[i].sem_op > 0) {
1040 					otime |= update_queue(sma,
1041 							      sops[i].sem_num, wake_q);
1042 				}
1043 			}
1044 		}
1045 	}
1046 	if (otime)
1047 		set_semotime(sma, sops);
1048 }
1049 
1050 /*
1051  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1052  */
1053 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1054 			bool count_zero)
1055 {
1056 	struct sembuf *sop = q->blocking;
1057 
1058 	/*
1059 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1060 	 * semaphores. This violates SUS, therefore it was changed to the
1061 	 * standard compliant behavior.
1062 	 * Give the administrators a chance to notice that an application
1063 	 * might misbehave because it relies on the Linux behavior.
1064 	 */
1065 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1066 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1067 			current->comm, task_pid_nr(current));
1068 
1069 	if (sop->sem_num != semnum)
1070 		return 0;
1071 
1072 	if (count_zero && sop->sem_op == 0)
1073 		return 1;
1074 	if (!count_zero && sop->sem_op < 0)
1075 		return 1;
1076 
1077 	return 0;
1078 }
1079 
1080 /* The following counts are associated to each semaphore:
1081  *   semncnt        number of tasks waiting on semval being nonzero
1082  *   semzcnt        number of tasks waiting on semval being zero
1083  *
1084  * Per definition, a task waits only on the semaphore of the first semop
1085  * that cannot proceed, even if additional operation would block, too.
1086  */
1087 static int count_semcnt(struct sem_array *sma, ushort semnum,
1088 			bool count_zero)
1089 {
1090 	struct list_head *l;
1091 	struct sem_queue *q;
1092 	int semcnt;
1093 
1094 	semcnt = 0;
1095 	/* First: check the simple operations. They are easy to evaluate */
1096 	if (count_zero)
1097 		l = &sma->sems[semnum].pending_const;
1098 	else
1099 		l = &sma->sems[semnum].pending_alter;
1100 
1101 	list_for_each_entry(q, l, list) {
1102 		/* all task on a per-semaphore list sleep on exactly
1103 		 * that semaphore
1104 		 */
1105 		semcnt++;
1106 	}
1107 
1108 	/* Then: check the complex operations. */
1109 	list_for_each_entry(q, &sma->pending_alter, list) {
1110 		semcnt += check_qop(sma, semnum, q, count_zero);
1111 	}
1112 	if (count_zero) {
1113 		list_for_each_entry(q, &sma->pending_const, list) {
1114 			semcnt += check_qop(sma, semnum, q, count_zero);
1115 		}
1116 	}
1117 	return semcnt;
1118 }
1119 
1120 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1121  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1122  * remains locked on exit.
1123  */
1124 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1125 {
1126 	struct sem_undo *un, *tu;
1127 	struct sem_queue *q, *tq;
1128 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1129 	int i;
1130 	DEFINE_WAKE_Q(wake_q);
1131 
1132 	/* Free the existing undo structures for this semaphore set.  */
1133 	ipc_assert_locked_object(&sma->sem_perm);
1134 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1135 		list_del(&un->list_id);
1136 		spin_lock(&un->ulp->lock);
1137 		un->semid = -1;
1138 		list_del_rcu(&un->list_proc);
1139 		spin_unlock(&un->ulp->lock);
1140 		kfree_rcu(un, rcu);
1141 	}
1142 
1143 	/* Wake up all pending processes and let them fail with EIDRM. */
1144 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1145 		unlink_queue(sma, q);
1146 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1147 	}
1148 
1149 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1150 		unlink_queue(sma, q);
1151 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1152 	}
1153 	for (i = 0; i < sma->sem_nsems; i++) {
1154 		struct sem *sem = &sma->sems[i];
1155 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1156 			unlink_queue(sma, q);
1157 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158 		}
1159 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1160 			unlink_queue(sma, q);
1161 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1162 		}
1163 		ipc_update_pid(&sem->sempid, NULL);
1164 	}
1165 
1166 	/* Remove the semaphore set from the IDR */
1167 	sem_rmid(ns, sma);
1168 	sem_unlock(sma, -1);
1169 	rcu_read_unlock();
1170 
1171 	wake_up_q(&wake_q);
1172 	ns->used_sems -= sma->sem_nsems;
1173 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1174 }
1175 
1176 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1177 {
1178 	switch (version) {
1179 	case IPC_64:
1180 		return copy_to_user(buf, in, sizeof(*in));
1181 	case IPC_OLD:
1182 	    {
1183 		struct semid_ds out;
1184 
1185 		memset(&out, 0, sizeof(out));
1186 
1187 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1188 
1189 		out.sem_otime	= in->sem_otime;
1190 		out.sem_ctime	= in->sem_ctime;
1191 		out.sem_nsems	= in->sem_nsems;
1192 
1193 		return copy_to_user(buf, &out, sizeof(out));
1194 	    }
1195 	default:
1196 		return -EINVAL;
1197 	}
1198 }
1199 
1200 static time64_t get_semotime(struct sem_array *sma)
1201 {
1202 	int i;
1203 	time64_t res;
1204 
1205 	res = sma->sems[0].sem_otime;
1206 	for (i = 1; i < sma->sem_nsems; i++) {
1207 		time64_t to = sma->sems[i].sem_otime;
1208 
1209 		if (to > res)
1210 			res = to;
1211 	}
1212 	return res;
1213 }
1214 
1215 static int semctl_stat(struct ipc_namespace *ns, int semid,
1216 			 int cmd, struct semid64_ds *semid64)
1217 {
1218 	struct sem_array *sma;
1219 	time64_t semotime;
1220 	int err;
1221 
1222 	memset(semid64, 0, sizeof(*semid64));
1223 
1224 	rcu_read_lock();
1225 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1226 		sma = sem_obtain_object(ns, semid);
1227 		if (IS_ERR(sma)) {
1228 			err = PTR_ERR(sma);
1229 			goto out_unlock;
1230 		}
1231 	} else { /* IPC_STAT */
1232 		sma = sem_obtain_object_check(ns, semid);
1233 		if (IS_ERR(sma)) {
1234 			err = PTR_ERR(sma);
1235 			goto out_unlock;
1236 		}
1237 	}
1238 
1239 	/* see comment for SHM_STAT_ANY */
1240 	if (cmd == SEM_STAT_ANY)
1241 		audit_ipc_obj(&sma->sem_perm);
1242 	else {
1243 		err = -EACCES;
1244 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1245 			goto out_unlock;
1246 	}
1247 
1248 	err = security_sem_semctl(&sma->sem_perm, cmd);
1249 	if (err)
1250 		goto out_unlock;
1251 
1252 	ipc_lock_object(&sma->sem_perm);
1253 
1254 	if (!ipc_valid_object(&sma->sem_perm)) {
1255 		ipc_unlock_object(&sma->sem_perm);
1256 		err = -EIDRM;
1257 		goto out_unlock;
1258 	}
1259 
1260 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1261 	semotime = get_semotime(sma);
1262 	semid64->sem_otime = semotime;
1263 	semid64->sem_ctime = sma->sem_ctime;
1264 #ifndef CONFIG_64BIT
1265 	semid64->sem_otime_high = semotime >> 32;
1266 	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1267 #endif
1268 	semid64->sem_nsems = sma->sem_nsems;
1269 
1270 	if (cmd == IPC_STAT) {
1271 		/*
1272 		 * As defined in SUS:
1273 		 * Return 0 on success
1274 		 */
1275 		err = 0;
1276 	} else {
1277 		/*
1278 		 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1279 		 * Return the full id, including the sequence number
1280 		 */
1281 		err = sma->sem_perm.id;
1282 	}
1283 	ipc_unlock_object(&sma->sem_perm);
1284 out_unlock:
1285 	rcu_read_unlock();
1286 	return err;
1287 }
1288 
1289 static int semctl_info(struct ipc_namespace *ns, int semid,
1290 			 int cmd, void __user *p)
1291 {
1292 	struct seminfo seminfo;
1293 	int max_idx;
1294 	int err;
1295 
1296 	err = security_sem_semctl(NULL, cmd);
1297 	if (err)
1298 		return err;
1299 
1300 	memset(&seminfo, 0, sizeof(seminfo));
1301 	seminfo.semmni = ns->sc_semmni;
1302 	seminfo.semmns = ns->sc_semmns;
1303 	seminfo.semmsl = ns->sc_semmsl;
1304 	seminfo.semopm = ns->sc_semopm;
1305 	seminfo.semvmx = SEMVMX;
1306 	seminfo.semmnu = SEMMNU;
1307 	seminfo.semmap = SEMMAP;
1308 	seminfo.semume = SEMUME;
1309 	down_read(&sem_ids(ns).rwsem);
1310 	if (cmd == SEM_INFO) {
1311 		seminfo.semusz = sem_ids(ns).in_use;
1312 		seminfo.semaem = ns->used_sems;
1313 	} else {
1314 		seminfo.semusz = SEMUSZ;
1315 		seminfo.semaem = SEMAEM;
1316 	}
1317 	max_idx = ipc_get_maxidx(&sem_ids(ns));
1318 	up_read(&sem_ids(ns).rwsem);
1319 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1320 		return -EFAULT;
1321 	return (max_idx < 0) ? 0 : max_idx;
1322 }
1323 
1324 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1325 		int val)
1326 {
1327 	struct sem_undo *un;
1328 	struct sem_array *sma;
1329 	struct sem *curr;
1330 	int err;
1331 	DEFINE_WAKE_Q(wake_q);
1332 
1333 	if (val > SEMVMX || val < 0)
1334 		return -ERANGE;
1335 
1336 	rcu_read_lock();
1337 	sma = sem_obtain_object_check(ns, semid);
1338 	if (IS_ERR(sma)) {
1339 		rcu_read_unlock();
1340 		return PTR_ERR(sma);
1341 	}
1342 
1343 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1344 		rcu_read_unlock();
1345 		return -EINVAL;
1346 	}
1347 
1348 
1349 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1350 		rcu_read_unlock();
1351 		return -EACCES;
1352 	}
1353 
1354 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1355 	if (err) {
1356 		rcu_read_unlock();
1357 		return -EACCES;
1358 	}
1359 
1360 	sem_lock(sma, NULL, -1);
1361 
1362 	if (!ipc_valid_object(&sma->sem_perm)) {
1363 		sem_unlock(sma, -1);
1364 		rcu_read_unlock();
1365 		return -EIDRM;
1366 	}
1367 
1368 	semnum = array_index_nospec(semnum, sma->sem_nsems);
1369 	curr = &sma->sems[semnum];
1370 
1371 	ipc_assert_locked_object(&sma->sem_perm);
1372 	list_for_each_entry(un, &sma->list_id, list_id)
1373 		un->semadj[semnum] = 0;
1374 
1375 	curr->semval = val;
1376 	ipc_update_pid(&curr->sempid, task_tgid(current));
1377 	sma->sem_ctime = ktime_get_real_seconds();
1378 	/* maybe some queued-up processes were waiting for this */
1379 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1380 	sem_unlock(sma, -1);
1381 	rcu_read_unlock();
1382 	wake_up_q(&wake_q);
1383 	return 0;
1384 }
1385 
1386 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1387 		int cmd, void __user *p)
1388 {
1389 	struct sem_array *sma;
1390 	struct sem *curr;
1391 	int err, nsems;
1392 	ushort fast_sem_io[SEMMSL_FAST];
1393 	ushort *sem_io = fast_sem_io;
1394 	DEFINE_WAKE_Q(wake_q);
1395 
1396 	rcu_read_lock();
1397 	sma = sem_obtain_object_check(ns, semid);
1398 	if (IS_ERR(sma)) {
1399 		rcu_read_unlock();
1400 		return PTR_ERR(sma);
1401 	}
1402 
1403 	nsems = sma->sem_nsems;
1404 
1405 	err = -EACCES;
1406 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1407 		goto out_rcu_wakeup;
1408 
1409 	err = security_sem_semctl(&sma->sem_perm, cmd);
1410 	if (err)
1411 		goto out_rcu_wakeup;
1412 
1413 	err = -EACCES;
1414 	switch (cmd) {
1415 	case GETALL:
1416 	{
1417 		ushort __user *array = p;
1418 		int i;
1419 
1420 		sem_lock(sma, NULL, -1);
1421 		if (!ipc_valid_object(&sma->sem_perm)) {
1422 			err = -EIDRM;
1423 			goto out_unlock;
1424 		}
1425 		if (nsems > SEMMSL_FAST) {
1426 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1427 				err = -EIDRM;
1428 				goto out_unlock;
1429 			}
1430 			sem_unlock(sma, -1);
1431 			rcu_read_unlock();
1432 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1433 						GFP_KERNEL);
1434 			if (sem_io == NULL) {
1435 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1436 				return -ENOMEM;
1437 			}
1438 
1439 			rcu_read_lock();
1440 			sem_lock_and_putref(sma);
1441 			if (!ipc_valid_object(&sma->sem_perm)) {
1442 				err = -EIDRM;
1443 				goto out_unlock;
1444 			}
1445 		}
1446 		for (i = 0; i < sma->sem_nsems; i++)
1447 			sem_io[i] = sma->sems[i].semval;
1448 		sem_unlock(sma, -1);
1449 		rcu_read_unlock();
1450 		err = 0;
1451 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1452 			err = -EFAULT;
1453 		goto out_free;
1454 	}
1455 	case SETALL:
1456 	{
1457 		int i;
1458 		struct sem_undo *un;
1459 
1460 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1461 			err = -EIDRM;
1462 			goto out_rcu_wakeup;
1463 		}
1464 		rcu_read_unlock();
1465 
1466 		if (nsems > SEMMSL_FAST) {
1467 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1468 						GFP_KERNEL);
1469 			if (sem_io == NULL) {
1470 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1471 				return -ENOMEM;
1472 			}
1473 		}
1474 
1475 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1476 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1477 			err = -EFAULT;
1478 			goto out_free;
1479 		}
1480 
1481 		for (i = 0; i < nsems; i++) {
1482 			if (sem_io[i] > SEMVMX) {
1483 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1484 				err = -ERANGE;
1485 				goto out_free;
1486 			}
1487 		}
1488 		rcu_read_lock();
1489 		sem_lock_and_putref(sma);
1490 		if (!ipc_valid_object(&sma->sem_perm)) {
1491 			err = -EIDRM;
1492 			goto out_unlock;
1493 		}
1494 
1495 		for (i = 0; i < nsems; i++) {
1496 			sma->sems[i].semval = sem_io[i];
1497 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1498 		}
1499 
1500 		ipc_assert_locked_object(&sma->sem_perm);
1501 		list_for_each_entry(un, &sma->list_id, list_id) {
1502 			for (i = 0; i < nsems; i++)
1503 				un->semadj[i] = 0;
1504 		}
1505 		sma->sem_ctime = ktime_get_real_seconds();
1506 		/* maybe some queued-up processes were waiting for this */
1507 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1508 		err = 0;
1509 		goto out_unlock;
1510 	}
1511 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1512 	}
1513 	err = -EINVAL;
1514 	if (semnum < 0 || semnum >= nsems)
1515 		goto out_rcu_wakeup;
1516 
1517 	sem_lock(sma, NULL, -1);
1518 	if (!ipc_valid_object(&sma->sem_perm)) {
1519 		err = -EIDRM;
1520 		goto out_unlock;
1521 	}
1522 
1523 	semnum = array_index_nospec(semnum, nsems);
1524 	curr = &sma->sems[semnum];
1525 
1526 	switch (cmd) {
1527 	case GETVAL:
1528 		err = curr->semval;
1529 		goto out_unlock;
1530 	case GETPID:
1531 		err = pid_vnr(curr->sempid);
1532 		goto out_unlock;
1533 	case GETNCNT:
1534 		err = count_semcnt(sma, semnum, 0);
1535 		goto out_unlock;
1536 	case GETZCNT:
1537 		err = count_semcnt(sma, semnum, 1);
1538 		goto out_unlock;
1539 	}
1540 
1541 out_unlock:
1542 	sem_unlock(sma, -1);
1543 out_rcu_wakeup:
1544 	rcu_read_unlock();
1545 	wake_up_q(&wake_q);
1546 out_free:
1547 	if (sem_io != fast_sem_io)
1548 		kvfree(sem_io);
1549 	return err;
1550 }
1551 
1552 static inline unsigned long
1553 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1554 {
1555 	switch (version) {
1556 	case IPC_64:
1557 		if (copy_from_user(out, buf, sizeof(*out)))
1558 			return -EFAULT;
1559 		return 0;
1560 	case IPC_OLD:
1561 	    {
1562 		struct semid_ds tbuf_old;
1563 
1564 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1565 			return -EFAULT;
1566 
1567 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1568 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1569 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1570 
1571 		return 0;
1572 	    }
1573 	default:
1574 		return -EINVAL;
1575 	}
1576 }
1577 
1578 /*
1579  * This function handles some semctl commands which require the rwsem
1580  * to be held in write mode.
1581  * NOTE: no locks must be held, the rwsem is taken inside this function.
1582  */
1583 static int semctl_down(struct ipc_namespace *ns, int semid,
1584 		       int cmd, struct semid64_ds *semid64)
1585 {
1586 	struct sem_array *sma;
1587 	int err;
1588 	struct kern_ipc_perm *ipcp;
1589 
1590 	down_write(&sem_ids(ns).rwsem);
1591 	rcu_read_lock();
1592 
1593 	ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1594 				      &semid64->sem_perm, 0);
1595 	if (IS_ERR(ipcp)) {
1596 		err = PTR_ERR(ipcp);
1597 		goto out_unlock1;
1598 	}
1599 
1600 	sma = container_of(ipcp, struct sem_array, sem_perm);
1601 
1602 	err = security_sem_semctl(&sma->sem_perm, cmd);
1603 	if (err)
1604 		goto out_unlock1;
1605 
1606 	switch (cmd) {
1607 	case IPC_RMID:
1608 		sem_lock(sma, NULL, -1);
1609 		/* freeary unlocks the ipc object and rcu */
1610 		freeary(ns, ipcp);
1611 		goto out_up;
1612 	case IPC_SET:
1613 		sem_lock(sma, NULL, -1);
1614 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1615 		if (err)
1616 			goto out_unlock0;
1617 		sma->sem_ctime = ktime_get_real_seconds();
1618 		break;
1619 	default:
1620 		err = -EINVAL;
1621 		goto out_unlock1;
1622 	}
1623 
1624 out_unlock0:
1625 	sem_unlock(sma, -1);
1626 out_unlock1:
1627 	rcu_read_unlock();
1628 out_up:
1629 	up_write(&sem_ids(ns).rwsem);
1630 	return err;
1631 }
1632 
1633 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1634 {
1635 	struct ipc_namespace *ns;
1636 	void __user *p = (void __user *)arg;
1637 	struct semid64_ds semid64;
1638 	int err;
1639 
1640 	if (semid < 0)
1641 		return -EINVAL;
1642 
1643 	ns = current->nsproxy->ipc_ns;
1644 
1645 	switch (cmd) {
1646 	case IPC_INFO:
1647 	case SEM_INFO:
1648 		return semctl_info(ns, semid, cmd, p);
1649 	case IPC_STAT:
1650 	case SEM_STAT:
1651 	case SEM_STAT_ANY:
1652 		err = semctl_stat(ns, semid, cmd, &semid64);
1653 		if (err < 0)
1654 			return err;
1655 		if (copy_semid_to_user(p, &semid64, version))
1656 			err = -EFAULT;
1657 		return err;
1658 	case GETALL:
1659 	case GETVAL:
1660 	case GETPID:
1661 	case GETNCNT:
1662 	case GETZCNT:
1663 	case SETALL:
1664 		return semctl_main(ns, semid, semnum, cmd, p);
1665 	case SETVAL: {
1666 		int val;
1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668 		/* big-endian 64bit */
1669 		val = arg >> 32;
1670 #else
1671 		/* 32bit or little-endian 64bit */
1672 		val = arg;
1673 #endif
1674 		return semctl_setval(ns, semid, semnum, val);
1675 	}
1676 	case IPC_SET:
1677 		if (copy_semid_from_user(&semid64, p, version))
1678 			return -EFAULT;
1679 		/* fall through */
1680 	case IPC_RMID:
1681 		return semctl_down(ns, semid, cmd, &semid64);
1682 	default:
1683 		return -EINVAL;
1684 	}
1685 }
1686 
1687 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1688 {
1689 	return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1690 }
1691 
1692 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1693 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1694 {
1695 	int version = ipc_parse_version(&cmd);
1696 
1697 	return ksys_semctl(semid, semnum, cmd, arg, version);
1698 }
1699 
1700 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1701 {
1702 	return ksys_old_semctl(semid, semnum, cmd, arg);
1703 }
1704 #endif
1705 
1706 #ifdef CONFIG_COMPAT
1707 
1708 struct compat_semid_ds {
1709 	struct compat_ipc_perm sem_perm;
1710 	old_time32_t sem_otime;
1711 	old_time32_t sem_ctime;
1712 	compat_uptr_t sem_base;
1713 	compat_uptr_t sem_pending;
1714 	compat_uptr_t sem_pending_last;
1715 	compat_uptr_t undo;
1716 	unsigned short sem_nsems;
1717 };
1718 
1719 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1720 					int version)
1721 {
1722 	memset(out, 0, sizeof(*out));
1723 	if (version == IPC_64) {
1724 		struct compat_semid64_ds __user *p = buf;
1725 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1726 	} else {
1727 		struct compat_semid_ds __user *p = buf;
1728 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1729 	}
1730 }
1731 
1732 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1733 					int version)
1734 {
1735 	if (version == IPC_64) {
1736 		struct compat_semid64_ds v;
1737 		memset(&v, 0, sizeof(v));
1738 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1739 		v.sem_otime	 = lower_32_bits(in->sem_otime);
1740 		v.sem_otime_high = upper_32_bits(in->sem_otime);
1741 		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1742 		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1743 		v.sem_nsems = in->sem_nsems;
1744 		return copy_to_user(buf, &v, sizeof(v));
1745 	} else {
1746 		struct compat_semid_ds v;
1747 		memset(&v, 0, sizeof(v));
1748 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1749 		v.sem_otime = in->sem_otime;
1750 		v.sem_ctime = in->sem_ctime;
1751 		v.sem_nsems = in->sem_nsems;
1752 		return copy_to_user(buf, &v, sizeof(v));
1753 	}
1754 }
1755 
1756 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1757 {
1758 	void __user *p = compat_ptr(arg);
1759 	struct ipc_namespace *ns;
1760 	struct semid64_ds semid64;
1761 	int err;
1762 
1763 	ns = current->nsproxy->ipc_ns;
1764 
1765 	if (semid < 0)
1766 		return -EINVAL;
1767 
1768 	switch (cmd & (~IPC_64)) {
1769 	case IPC_INFO:
1770 	case SEM_INFO:
1771 		return semctl_info(ns, semid, cmd, p);
1772 	case IPC_STAT:
1773 	case SEM_STAT:
1774 	case SEM_STAT_ANY:
1775 		err = semctl_stat(ns, semid, cmd, &semid64);
1776 		if (err < 0)
1777 			return err;
1778 		if (copy_compat_semid_to_user(p, &semid64, version))
1779 			err = -EFAULT;
1780 		return err;
1781 	case GETVAL:
1782 	case GETPID:
1783 	case GETNCNT:
1784 	case GETZCNT:
1785 	case GETALL:
1786 	case SETALL:
1787 		return semctl_main(ns, semid, semnum, cmd, p);
1788 	case SETVAL:
1789 		return semctl_setval(ns, semid, semnum, arg);
1790 	case IPC_SET:
1791 		if (copy_compat_semid_from_user(&semid64, p, version))
1792 			return -EFAULT;
1793 		/* fallthru */
1794 	case IPC_RMID:
1795 		return semctl_down(ns, semid, cmd, &semid64);
1796 	default:
1797 		return -EINVAL;
1798 	}
1799 }
1800 
1801 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1802 {
1803 	return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1804 }
1805 
1806 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1807 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1808 {
1809 	int version = compat_ipc_parse_version(&cmd);
1810 
1811 	return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1812 }
1813 
1814 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1815 {
1816 	return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1817 }
1818 #endif
1819 #endif
1820 
1821 /* If the task doesn't already have a undo_list, then allocate one
1822  * here.  We guarantee there is only one thread using this undo list,
1823  * and current is THE ONE
1824  *
1825  * If this allocation and assignment succeeds, but later
1826  * portions of this code fail, there is no need to free the sem_undo_list.
1827  * Just let it stay associated with the task, and it'll be freed later
1828  * at exit time.
1829  *
1830  * This can block, so callers must hold no locks.
1831  */
1832 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1833 {
1834 	struct sem_undo_list *undo_list;
1835 
1836 	undo_list = current->sysvsem.undo_list;
1837 	if (!undo_list) {
1838 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1839 		if (undo_list == NULL)
1840 			return -ENOMEM;
1841 		spin_lock_init(&undo_list->lock);
1842 		refcount_set(&undo_list->refcnt, 1);
1843 		INIT_LIST_HEAD(&undo_list->list_proc);
1844 
1845 		current->sysvsem.undo_list = undo_list;
1846 	}
1847 	*undo_listp = undo_list;
1848 	return 0;
1849 }
1850 
1851 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1852 {
1853 	struct sem_undo *un;
1854 
1855 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1856 		if (un->semid == semid)
1857 			return un;
1858 	}
1859 	return NULL;
1860 }
1861 
1862 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1863 {
1864 	struct sem_undo *un;
1865 
1866 	assert_spin_locked(&ulp->lock);
1867 
1868 	un = __lookup_undo(ulp, semid);
1869 	if (un) {
1870 		list_del_rcu(&un->list_proc);
1871 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1872 	}
1873 	return un;
1874 }
1875 
1876 /**
1877  * find_alloc_undo - lookup (and if not present create) undo array
1878  * @ns: namespace
1879  * @semid: semaphore array id
1880  *
1881  * The function looks up (and if not present creates) the undo structure.
1882  * The size of the undo structure depends on the size of the semaphore
1883  * array, thus the alloc path is not that straightforward.
1884  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1885  * performs a rcu_read_lock().
1886  */
1887 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1888 {
1889 	struct sem_array *sma;
1890 	struct sem_undo_list *ulp;
1891 	struct sem_undo *un, *new;
1892 	int nsems, error;
1893 
1894 	error = get_undo_list(&ulp);
1895 	if (error)
1896 		return ERR_PTR(error);
1897 
1898 	rcu_read_lock();
1899 	spin_lock(&ulp->lock);
1900 	un = lookup_undo(ulp, semid);
1901 	spin_unlock(&ulp->lock);
1902 	if (likely(un != NULL))
1903 		goto out;
1904 
1905 	/* no undo structure around - allocate one. */
1906 	/* step 1: figure out the size of the semaphore array */
1907 	sma = sem_obtain_object_check(ns, semid);
1908 	if (IS_ERR(sma)) {
1909 		rcu_read_unlock();
1910 		return ERR_CAST(sma);
1911 	}
1912 
1913 	nsems = sma->sem_nsems;
1914 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1915 		rcu_read_unlock();
1916 		un = ERR_PTR(-EIDRM);
1917 		goto out;
1918 	}
1919 	rcu_read_unlock();
1920 
1921 	/* step 2: allocate new undo structure */
1922 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1923 	if (!new) {
1924 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1925 		return ERR_PTR(-ENOMEM);
1926 	}
1927 
1928 	/* step 3: Acquire the lock on semaphore array */
1929 	rcu_read_lock();
1930 	sem_lock_and_putref(sma);
1931 	if (!ipc_valid_object(&sma->sem_perm)) {
1932 		sem_unlock(sma, -1);
1933 		rcu_read_unlock();
1934 		kfree(new);
1935 		un = ERR_PTR(-EIDRM);
1936 		goto out;
1937 	}
1938 	spin_lock(&ulp->lock);
1939 
1940 	/*
1941 	 * step 4: check for races: did someone else allocate the undo struct?
1942 	 */
1943 	un = lookup_undo(ulp, semid);
1944 	if (un) {
1945 		kfree(new);
1946 		goto success;
1947 	}
1948 	/* step 5: initialize & link new undo structure */
1949 	new->semadj = (short *) &new[1];
1950 	new->ulp = ulp;
1951 	new->semid = semid;
1952 	assert_spin_locked(&ulp->lock);
1953 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1954 	ipc_assert_locked_object(&sma->sem_perm);
1955 	list_add(&new->list_id, &sma->list_id);
1956 	un = new;
1957 
1958 success:
1959 	spin_unlock(&ulp->lock);
1960 	sem_unlock(sma, -1);
1961 out:
1962 	return un;
1963 }
1964 
1965 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1966 		unsigned nsops, const struct timespec64 *timeout)
1967 {
1968 	int error = -EINVAL;
1969 	struct sem_array *sma;
1970 	struct sembuf fast_sops[SEMOPM_FAST];
1971 	struct sembuf *sops = fast_sops, *sop;
1972 	struct sem_undo *un;
1973 	int max, locknum;
1974 	bool undos = false, alter = false, dupsop = false;
1975 	struct sem_queue queue;
1976 	unsigned long dup = 0, jiffies_left = 0;
1977 	struct ipc_namespace *ns;
1978 
1979 	ns = current->nsproxy->ipc_ns;
1980 
1981 	if (nsops < 1 || semid < 0)
1982 		return -EINVAL;
1983 	if (nsops > ns->sc_semopm)
1984 		return -E2BIG;
1985 	if (nsops > SEMOPM_FAST) {
1986 		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1987 		if (sops == NULL)
1988 			return -ENOMEM;
1989 	}
1990 
1991 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1992 		error =  -EFAULT;
1993 		goto out_free;
1994 	}
1995 
1996 	if (timeout) {
1997 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1998 			timeout->tv_nsec >= 1000000000L) {
1999 			error = -EINVAL;
2000 			goto out_free;
2001 		}
2002 		jiffies_left = timespec64_to_jiffies(timeout);
2003 	}
2004 
2005 	max = 0;
2006 	for (sop = sops; sop < sops + nsops; sop++) {
2007 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2008 
2009 		if (sop->sem_num >= max)
2010 			max = sop->sem_num;
2011 		if (sop->sem_flg & SEM_UNDO)
2012 			undos = true;
2013 		if (dup & mask) {
2014 			/*
2015 			 * There was a previous alter access that appears
2016 			 * to have accessed the same semaphore, thus use
2017 			 * the dupsop logic. "appears", because the detection
2018 			 * can only check % BITS_PER_LONG.
2019 			 */
2020 			dupsop = true;
2021 		}
2022 		if (sop->sem_op != 0) {
2023 			alter = true;
2024 			dup |= mask;
2025 		}
2026 	}
2027 
2028 	if (undos) {
2029 		/* On success, find_alloc_undo takes the rcu_read_lock */
2030 		un = find_alloc_undo(ns, semid);
2031 		if (IS_ERR(un)) {
2032 			error = PTR_ERR(un);
2033 			goto out_free;
2034 		}
2035 	} else {
2036 		un = NULL;
2037 		rcu_read_lock();
2038 	}
2039 
2040 	sma = sem_obtain_object_check(ns, semid);
2041 	if (IS_ERR(sma)) {
2042 		rcu_read_unlock();
2043 		error = PTR_ERR(sma);
2044 		goto out_free;
2045 	}
2046 
2047 	error = -EFBIG;
2048 	if (max >= sma->sem_nsems) {
2049 		rcu_read_unlock();
2050 		goto out_free;
2051 	}
2052 
2053 	error = -EACCES;
2054 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2055 		rcu_read_unlock();
2056 		goto out_free;
2057 	}
2058 
2059 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2060 	if (error) {
2061 		rcu_read_unlock();
2062 		goto out_free;
2063 	}
2064 
2065 	error = -EIDRM;
2066 	locknum = sem_lock(sma, sops, nsops);
2067 	/*
2068 	 * We eventually might perform the following check in a lockless
2069 	 * fashion, considering ipc_valid_object() locking constraints.
2070 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2071 	 * only a per-semaphore lock is held and it's OK to proceed with the
2072 	 * check below. More details on the fine grained locking scheme
2073 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2074 	 */
2075 	if (!ipc_valid_object(&sma->sem_perm))
2076 		goto out_unlock_free;
2077 	/*
2078 	 * semid identifiers are not unique - find_alloc_undo may have
2079 	 * allocated an undo structure, it was invalidated by an RMID
2080 	 * and now a new array with received the same id. Check and fail.
2081 	 * This case can be detected checking un->semid. The existence of
2082 	 * "un" itself is guaranteed by rcu.
2083 	 */
2084 	if (un && un->semid == -1)
2085 		goto out_unlock_free;
2086 
2087 	queue.sops = sops;
2088 	queue.nsops = nsops;
2089 	queue.undo = un;
2090 	queue.pid = task_tgid(current);
2091 	queue.alter = alter;
2092 	queue.dupsop = dupsop;
2093 
2094 	error = perform_atomic_semop(sma, &queue);
2095 	if (error == 0) { /* non-blocking succesfull path */
2096 		DEFINE_WAKE_Q(wake_q);
2097 
2098 		/*
2099 		 * If the operation was successful, then do
2100 		 * the required updates.
2101 		 */
2102 		if (alter)
2103 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2104 		else
2105 			set_semotime(sma, sops);
2106 
2107 		sem_unlock(sma, locknum);
2108 		rcu_read_unlock();
2109 		wake_up_q(&wake_q);
2110 
2111 		goto out_free;
2112 	}
2113 	if (error < 0) /* non-blocking error path */
2114 		goto out_unlock_free;
2115 
2116 	/*
2117 	 * We need to sleep on this operation, so we put the current
2118 	 * task into the pending queue and go to sleep.
2119 	 */
2120 	if (nsops == 1) {
2121 		struct sem *curr;
2122 		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2123 		curr = &sma->sems[idx];
2124 
2125 		if (alter) {
2126 			if (sma->complex_count) {
2127 				list_add_tail(&queue.list,
2128 						&sma->pending_alter);
2129 			} else {
2130 
2131 				list_add_tail(&queue.list,
2132 						&curr->pending_alter);
2133 			}
2134 		} else {
2135 			list_add_tail(&queue.list, &curr->pending_const);
2136 		}
2137 	} else {
2138 		if (!sma->complex_count)
2139 			merge_queues(sma);
2140 
2141 		if (alter)
2142 			list_add_tail(&queue.list, &sma->pending_alter);
2143 		else
2144 			list_add_tail(&queue.list, &sma->pending_const);
2145 
2146 		sma->complex_count++;
2147 	}
2148 
2149 	do {
2150 		WRITE_ONCE(queue.status, -EINTR);
2151 		queue.sleeper = current;
2152 
2153 		__set_current_state(TASK_INTERRUPTIBLE);
2154 		sem_unlock(sma, locknum);
2155 		rcu_read_unlock();
2156 
2157 		if (timeout)
2158 			jiffies_left = schedule_timeout(jiffies_left);
2159 		else
2160 			schedule();
2161 
2162 		/*
2163 		 * fastpath: the semop has completed, either successfully or
2164 		 * not, from the syscall pov, is quite irrelevant to us at this
2165 		 * point; we're done.
2166 		 *
2167 		 * We _do_ care, nonetheless, about being awoken by a signal or
2168 		 * spuriously.  The queue.status is checked again in the
2169 		 * slowpath (aka after taking sem_lock), such that we can detect
2170 		 * scenarios where we were awakened externally, during the
2171 		 * window between wake_q_add() and wake_up_q().
2172 		 */
2173 		error = READ_ONCE(queue.status);
2174 		if (error != -EINTR) {
2175 			/*
2176 			 * User space could assume that semop() is a memory
2177 			 * barrier: Without the mb(), the cpu could
2178 			 * speculatively read in userspace stale data that was
2179 			 * overwritten by the previous owner of the semaphore.
2180 			 */
2181 			smp_mb();
2182 			goto out_free;
2183 		}
2184 
2185 		rcu_read_lock();
2186 		locknum = sem_lock(sma, sops, nsops);
2187 
2188 		if (!ipc_valid_object(&sma->sem_perm))
2189 			goto out_unlock_free;
2190 
2191 		error = READ_ONCE(queue.status);
2192 
2193 		/*
2194 		 * If queue.status != -EINTR we are woken up by another process.
2195 		 * Leave without unlink_queue(), but with sem_unlock().
2196 		 */
2197 		if (error != -EINTR)
2198 			goto out_unlock_free;
2199 
2200 		/*
2201 		 * If an interrupt occurred we have to clean up the queue.
2202 		 */
2203 		if (timeout && jiffies_left == 0)
2204 			error = -EAGAIN;
2205 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2206 
2207 	unlink_queue(sma, &queue);
2208 
2209 out_unlock_free:
2210 	sem_unlock(sma, locknum);
2211 	rcu_read_unlock();
2212 out_free:
2213 	if (sops != fast_sops)
2214 		kvfree(sops);
2215 	return error;
2216 }
2217 
2218 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2219 		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2220 {
2221 	if (timeout) {
2222 		struct timespec64 ts;
2223 		if (get_timespec64(&ts, timeout))
2224 			return -EFAULT;
2225 		return do_semtimedop(semid, tsops, nsops, &ts);
2226 	}
2227 	return do_semtimedop(semid, tsops, nsops, NULL);
2228 }
2229 
2230 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2231 		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2232 {
2233 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2234 }
2235 
2236 #ifdef CONFIG_COMPAT_32BIT_TIME
2237 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2238 			    unsigned int nsops,
2239 			    const struct old_timespec32 __user *timeout)
2240 {
2241 	if (timeout) {
2242 		struct timespec64 ts;
2243 		if (get_old_timespec32(&ts, timeout))
2244 			return -EFAULT;
2245 		return do_semtimedop(semid, tsems, nsops, &ts);
2246 	}
2247 	return do_semtimedop(semid, tsems, nsops, NULL);
2248 }
2249 
2250 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2251 		       unsigned int, nsops,
2252 		       const struct old_timespec32 __user *, timeout)
2253 {
2254 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2255 }
2256 #endif
2257 
2258 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2259 		unsigned, nsops)
2260 {
2261 	return do_semtimedop(semid, tsops, nsops, NULL);
2262 }
2263 
2264 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2265  * parent and child tasks.
2266  */
2267 
2268 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2269 {
2270 	struct sem_undo_list *undo_list;
2271 	int error;
2272 
2273 	if (clone_flags & CLONE_SYSVSEM) {
2274 		error = get_undo_list(&undo_list);
2275 		if (error)
2276 			return error;
2277 		refcount_inc(&undo_list->refcnt);
2278 		tsk->sysvsem.undo_list = undo_list;
2279 	} else
2280 		tsk->sysvsem.undo_list = NULL;
2281 
2282 	return 0;
2283 }
2284 
2285 /*
2286  * add semadj values to semaphores, free undo structures.
2287  * undo structures are not freed when semaphore arrays are destroyed
2288  * so some of them may be out of date.
2289  * IMPLEMENTATION NOTE: There is some confusion over whether the
2290  * set of adjustments that needs to be done should be done in an atomic
2291  * manner or not. That is, if we are attempting to decrement the semval
2292  * should we queue up and wait until we can do so legally?
2293  * The original implementation attempted to do this (queue and wait).
2294  * The current implementation does not do so. The POSIX standard
2295  * and SVID should be consulted to determine what behavior is mandated.
2296  */
2297 void exit_sem(struct task_struct *tsk)
2298 {
2299 	struct sem_undo_list *ulp;
2300 
2301 	ulp = tsk->sysvsem.undo_list;
2302 	if (!ulp)
2303 		return;
2304 	tsk->sysvsem.undo_list = NULL;
2305 
2306 	if (!refcount_dec_and_test(&ulp->refcnt))
2307 		return;
2308 
2309 	for (;;) {
2310 		struct sem_array *sma;
2311 		struct sem_undo *un;
2312 		int semid, i;
2313 		DEFINE_WAKE_Q(wake_q);
2314 
2315 		cond_resched();
2316 
2317 		rcu_read_lock();
2318 		un = list_entry_rcu(ulp->list_proc.next,
2319 				    struct sem_undo, list_proc);
2320 		if (&un->list_proc == &ulp->list_proc) {
2321 			/*
2322 			 * We must wait for freeary() before freeing this ulp,
2323 			 * in case we raced with last sem_undo. There is a small
2324 			 * possibility where we exit while freeary() didn't
2325 			 * finish unlocking sem_undo_list.
2326 			 */
2327 			spin_lock(&ulp->lock);
2328 			spin_unlock(&ulp->lock);
2329 			rcu_read_unlock();
2330 			break;
2331 		}
2332 		spin_lock(&ulp->lock);
2333 		semid = un->semid;
2334 		spin_unlock(&ulp->lock);
2335 
2336 		/* exit_sem raced with IPC_RMID, nothing to do */
2337 		if (semid == -1) {
2338 			rcu_read_unlock();
2339 			continue;
2340 		}
2341 
2342 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2343 		/* exit_sem raced with IPC_RMID, nothing to do */
2344 		if (IS_ERR(sma)) {
2345 			rcu_read_unlock();
2346 			continue;
2347 		}
2348 
2349 		sem_lock(sma, NULL, -1);
2350 		/* exit_sem raced with IPC_RMID, nothing to do */
2351 		if (!ipc_valid_object(&sma->sem_perm)) {
2352 			sem_unlock(sma, -1);
2353 			rcu_read_unlock();
2354 			continue;
2355 		}
2356 		un = __lookup_undo(ulp, semid);
2357 		if (un == NULL) {
2358 			/* exit_sem raced with IPC_RMID+semget() that created
2359 			 * exactly the same semid. Nothing to do.
2360 			 */
2361 			sem_unlock(sma, -1);
2362 			rcu_read_unlock();
2363 			continue;
2364 		}
2365 
2366 		/* remove un from the linked lists */
2367 		ipc_assert_locked_object(&sma->sem_perm);
2368 		list_del(&un->list_id);
2369 
2370 		/* we are the last process using this ulp, acquiring ulp->lock
2371 		 * isn't required. Besides that, we are also protected against
2372 		 * IPC_RMID as we hold sma->sem_perm lock now
2373 		 */
2374 		list_del_rcu(&un->list_proc);
2375 
2376 		/* perform adjustments registered in un */
2377 		for (i = 0; i < sma->sem_nsems; i++) {
2378 			struct sem *semaphore = &sma->sems[i];
2379 			if (un->semadj[i]) {
2380 				semaphore->semval += un->semadj[i];
2381 				/*
2382 				 * Range checks of the new semaphore value,
2383 				 * not defined by sus:
2384 				 * - Some unices ignore the undo entirely
2385 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2386 				 * - some cap the value (e.g. FreeBSD caps
2387 				 *   at 0, but doesn't enforce SEMVMX)
2388 				 *
2389 				 * Linux caps the semaphore value, both at 0
2390 				 * and at SEMVMX.
2391 				 *
2392 				 *	Manfred <manfred@colorfullife.com>
2393 				 */
2394 				if (semaphore->semval < 0)
2395 					semaphore->semval = 0;
2396 				if (semaphore->semval > SEMVMX)
2397 					semaphore->semval = SEMVMX;
2398 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2399 			}
2400 		}
2401 		/* maybe some queued-up processes were waiting for this */
2402 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2403 		sem_unlock(sma, -1);
2404 		rcu_read_unlock();
2405 		wake_up_q(&wake_q);
2406 
2407 		kfree_rcu(un, rcu);
2408 	}
2409 	kfree(ulp);
2410 }
2411 
2412 #ifdef CONFIG_PROC_FS
2413 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2414 {
2415 	struct user_namespace *user_ns = seq_user_ns(s);
2416 	struct kern_ipc_perm *ipcp = it;
2417 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2418 	time64_t sem_otime;
2419 
2420 	/*
2421 	 * The proc interface isn't aware of sem_lock(), it calls
2422 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2423 	 * In order to stay compatible with sem_lock(), we must
2424 	 * enter / leave complex_mode.
2425 	 */
2426 	complexmode_enter(sma);
2427 
2428 	sem_otime = get_semotime(sma);
2429 
2430 	seq_printf(s,
2431 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2432 		   sma->sem_perm.key,
2433 		   sma->sem_perm.id,
2434 		   sma->sem_perm.mode,
2435 		   sma->sem_nsems,
2436 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2437 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2438 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2439 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2440 		   sem_otime,
2441 		   sma->sem_ctime);
2442 
2443 	complexmode_tryleave(sma);
2444 
2445 	return 0;
2446 }
2447 #endif
2448