1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/namei.h> 22 #include <linux/sysctl.h> 23 #include <linux/poll.h> 24 #include <linux/mqueue.h> 25 #include <linux/msg.h> 26 #include <linux/skbuff.h> 27 #include <linux/vmalloc.h> 28 #include <linux/netlink.h> 29 #include <linux/syscalls.h> 30 #include <linux/audit.h> 31 #include <linux/signal.h> 32 #include <linux/mutex.h> 33 #include <linux/nsproxy.h> 34 #include <linux/pid.h> 35 #include <linux/ipc_namespace.h> 36 #include <linux/user_namespace.h> 37 #include <linux/slab.h> 38 #include <linux/sched/wake_q.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/user.h> 41 42 #include <net/sock.h> 43 #include "util.h" 44 45 #define MQUEUE_MAGIC 0x19800202 46 #define DIRENT_SIZE 20 47 #define FILENT_SIZE 80 48 49 #define SEND 0 50 #define RECV 1 51 52 #define STATE_NONE 0 53 #define STATE_READY 1 54 55 struct posix_msg_tree_node { 56 struct rb_node rb_node; 57 struct list_head msg_list; 58 int priority; 59 }; 60 61 struct ext_wait_queue { /* queue of sleeping tasks */ 62 struct task_struct *task; 63 struct list_head list; 64 struct msg_msg *msg; /* ptr of loaded message */ 65 int state; /* one of STATE_* values */ 66 }; 67 68 struct mqueue_inode_info { 69 spinlock_t lock; 70 struct inode vfs_inode; 71 wait_queue_head_t wait_q; 72 73 struct rb_root msg_tree; 74 struct posix_msg_tree_node *node_cache; 75 struct mq_attr attr; 76 77 struct sigevent notify; 78 struct pid *notify_owner; 79 struct user_namespace *notify_user_ns; 80 struct user_struct *user; /* user who created, for accounting */ 81 struct sock *notify_sock; 82 struct sk_buff *notify_cookie; 83 84 /* for tasks waiting for free space and messages, respectively */ 85 struct ext_wait_queue e_wait_q[2]; 86 87 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 88 }; 89 90 static const struct inode_operations mqueue_dir_inode_operations; 91 static const struct file_operations mqueue_file_operations; 92 static const struct super_operations mqueue_super_ops; 93 static void remove_notification(struct mqueue_inode_info *info); 94 95 static struct kmem_cache *mqueue_inode_cachep; 96 97 static struct ctl_table_header *mq_sysctl_table; 98 99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 100 { 101 return container_of(inode, struct mqueue_inode_info, vfs_inode); 102 } 103 104 /* 105 * This routine should be called with the mq_lock held. 106 */ 107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 108 { 109 return get_ipc_ns(inode->i_sb->s_fs_info); 110 } 111 112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 113 { 114 struct ipc_namespace *ns; 115 116 spin_lock(&mq_lock); 117 ns = __get_ns_from_inode(inode); 118 spin_unlock(&mq_lock); 119 return ns; 120 } 121 122 /* Auxiliary functions to manipulate messages' list */ 123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 124 { 125 struct rb_node **p, *parent = NULL; 126 struct posix_msg_tree_node *leaf; 127 128 p = &info->msg_tree.rb_node; 129 while (*p) { 130 parent = *p; 131 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 132 133 if (likely(leaf->priority == msg->m_type)) 134 goto insert_msg; 135 else if (msg->m_type < leaf->priority) 136 p = &(*p)->rb_left; 137 else 138 p = &(*p)->rb_right; 139 } 140 if (info->node_cache) { 141 leaf = info->node_cache; 142 info->node_cache = NULL; 143 } else { 144 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 145 if (!leaf) 146 return -ENOMEM; 147 INIT_LIST_HEAD(&leaf->msg_list); 148 } 149 leaf->priority = msg->m_type; 150 rb_link_node(&leaf->rb_node, parent, p); 151 rb_insert_color(&leaf->rb_node, &info->msg_tree); 152 insert_msg: 153 info->attr.mq_curmsgs++; 154 info->qsize += msg->m_ts; 155 list_add_tail(&msg->m_list, &leaf->msg_list); 156 return 0; 157 } 158 159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 160 { 161 struct rb_node **p, *parent = NULL; 162 struct posix_msg_tree_node *leaf; 163 struct msg_msg *msg; 164 165 try_again: 166 p = &info->msg_tree.rb_node; 167 while (*p) { 168 parent = *p; 169 /* 170 * During insert, low priorities go to the left and high to the 171 * right. On receive, we want the highest priorities first, so 172 * walk all the way to the right. 173 */ 174 p = &(*p)->rb_right; 175 } 176 if (!parent) { 177 if (info->attr.mq_curmsgs) { 178 pr_warn_once("Inconsistency in POSIX message queue, " 179 "no tree element, but supposedly messages " 180 "should exist!\n"); 181 info->attr.mq_curmsgs = 0; 182 } 183 return NULL; 184 } 185 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 186 if (unlikely(list_empty(&leaf->msg_list))) { 187 pr_warn_once("Inconsistency in POSIX message queue, " 188 "empty leaf node but we haven't implemented " 189 "lazy leaf delete!\n"); 190 rb_erase(&leaf->rb_node, &info->msg_tree); 191 if (info->node_cache) { 192 kfree(leaf); 193 } else { 194 info->node_cache = leaf; 195 } 196 goto try_again; 197 } else { 198 msg = list_first_entry(&leaf->msg_list, 199 struct msg_msg, m_list); 200 list_del(&msg->m_list); 201 if (list_empty(&leaf->msg_list)) { 202 rb_erase(&leaf->rb_node, &info->msg_tree); 203 if (info->node_cache) { 204 kfree(leaf); 205 } else { 206 info->node_cache = leaf; 207 } 208 } 209 } 210 info->attr.mq_curmsgs--; 211 info->qsize -= msg->m_ts; 212 return msg; 213 } 214 215 static struct inode *mqueue_get_inode(struct super_block *sb, 216 struct ipc_namespace *ipc_ns, umode_t mode, 217 struct mq_attr *attr) 218 { 219 struct user_struct *u = current_user(); 220 struct inode *inode; 221 int ret = -ENOMEM; 222 223 inode = new_inode(sb); 224 if (!inode) 225 goto err; 226 227 inode->i_ino = get_next_ino(); 228 inode->i_mode = mode; 229 inode->i_uid = current_fsuid(); 230 inode->i_gid = current_fsgid(); 231 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 232 233 if (S_ISREG(mode)) { 234 struct mqueue_inode_info *info; 235 unsigned long mq_bytes, mq_treesize; 236 237 inode->i_fop = &mqueue_file_operations; 238 inode->i_size = FILENT_SIZE; 239 /* mqueue specific info */ 240 info = MQUEUE_I(inode); 241 spin_lock_init(&info->lock); 242 init_waitqueue_head(&info->wait_q); 243 INIT_LIST_HEAD(&info->e_wait_q[0].list); 244 INIT_LIST_HEAD(&info->e_wait_q[1].list); 245 info->notify_owner = NULL; 246 info->notify_user_ns = NULL; 247 info->qsize = 0; 248 info->user = NULL; /* set when all is ok */ 249 info->msg_tree = RB_ROOT; 250 info->node_cache = NULL; 251 memset(&info->attr, 0, sizeof(info->attr)); 252 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 253 ipc_ns->mq_msg_default); 254 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 255 ipc_ns->mq_msgsize_default); 256 if (attr) { 257 info->attr.mq_maxmsg = attr->mq_maxmsg; 258 info->attr.mq_msgsize = attr->mq_msgsize; 259 } 260 /* 261 * We used to allocate a static array of pointers and account 262 * the size of that array as well as one msg_msg struct per 263 * possible message into the queue size. That's no longer 264 * accurate as the queue is now an rbtree and will grow and 265 * shrink depending on usage patterns. We can, however, still 266 * account one msg_msg struct per message, but the nodes are 267 * allocated depending on priority usage, and most programs 268 * only use one, or a handful, of priorities. However, since 269 * this is pinned memory, we need to assume worst case, so 270 * that means the min(mq_maxmsg, max_priorities) * struct 271 * posix_msg_tree_node. 272 */ 273 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 274 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 275 sizeof(struct posix_msg_tree_node); 276 277 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 278 info->attr.mq_msgsize); 279 280 spin_lock(&mq_lock); 281 if (u->mq_bytes + mq_bytes < u->mq_bytes || 282 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 283 spin_unlock(&mq_lock); 284 /* mqueue_evict_inode() releases info->messages */ 285 ret = -EMFILE; 286 goto out_inode; 287 } 288 u->mq_bytes += mq_bytes; 289 spin_unlock(&mq_lock); 290 291 /* all is ok */ 292 info->user = get_uid(u); 293 } else if (S_ISDIR(mode)) { 294 inc_nlink(inode); 295 /* Some things misbehave if size == 0 on a directory */ 296 inode->i_size = 2 * DIRENT_SIZE; 297 inode->i_op = &mqueue_dir_inode_operations; 298 inode->i_fop = &simple_dir_operations; 299 } 300 301 return inode; 302 out_inode: 303 iput(inode); 304 err: 305 return ERR_PTR(ret); 306 } 307 308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent) 309 { 310 struct inode *inode; 311 struct ipc_namespace *ns = sb->s_fs_info; 312 313 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 314 sb->s_blocksize = PAGE_SIZE; 315 sb->s_blocksize_bits = PAGE_SHIFT; 316 sb->s_magic = MQUEUE_MAGIC; 317 sb->s_op = &mqueue_super_ops; 318 319 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 320 if (IS_ERR(inode)) 321 return PTR_ERR(inode); 322 323 sb->s_root = d_make_root(inode); 324 if (!sb->s_root) 325 return -ENOMEM; 326 return 0; 327 } 328 329 static struct dentry *mqueue_mount(struct file_system_type *fs_type, 330 int flags, const char *dev_name, 331 void *data) 332 { 333 struct ipc_namespace *ns; 334 if (flags & SB_KERNMOUNT) { 335 ns = data; 336 data = NULL; 337 } else { 338 ns = current->nsproxy->ipc_ns; 339 } 340 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super); 341 } 342 343 static void init_once(void *foo) 344 { 345 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 346 347 inode_init_once(&p->vfs_inode); 348 } 349 350 static struct inode *mqueue_alloc_inode(struct super_block *sb) 351 { 352 struct mqueue_inode_info *ei; 353 354 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 355 if (!ei) 356 return NULL; 357 return &ei->vfs_inode; 358 } 359 360 static void mqueue_i_callback(struct rcu_head *head) 361 { 362 struct inode *inode = container_of(head, struct inode, i_rcu); 363 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 364 } 365 366 static void mqueue_destroy_inode(struct inode *inode) 367 { 368 call_rcu(&inode->i_rcu, mqueue_i_callback); 369 } 370 371 static void mqueue_evict_inode(struct inode *inode) 372 { 373 struct mqueue_inode_info *info; 374 struct user_struct *user; 375 unsigned long mq_bytes, mq_treesize; 376 struct ipc_namespace *ipc_ns; 377 struct msg_msg *msg; 378 379 clear_inode(inode); 380 381 if (S_ISDIR(inode->i_mode)) 382 return; 383 384 ipc_ns = get_ns_from_inode(inode); 385 info = MQUEUE_I(inode); 386 spin_lock(&info->lock); 387 while ((msg = msg_get(info)) != NULL) 388 free_msg(msg); 389 kfree(info->node_cache); 390 spin_unlock(&info->lock); 391 392 /* Total amount of bytes accounted for the mqueue */ 393 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 394 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 395 sizeof(struct posix_msg_tree_node); 396 397 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 398 info->attr.mq_msgsize); 399 400 user = info->user; 401 if (user) { 402 spin_lock(&mq_lock); 403 user->mq_bytes -= mq_bytes; 404 /* 405 * get_ns_from_inode() ensures that the 406 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 407 * to which we now hold a reference, or it is NULL. 408 * We can't put it here under mq_lock, though. 409 */ 410 if (ipc_ns) 411 ipc_ns->mq_queues_count--; 412 spin_unlock(&mq_lock); 413 free_uid(user); 414 } 415 if (ipc_ns) 416 put_ipc_ns(ipc_ns); 417 } 418 419 static int mqueue_create(struct inode *dir, struct dentry *dentry, 420 umode_t mode, bool excl) 421 { 422 struct inode *inode; 423 struct mq_attr *attr = dentry->d_fsdata; 424 int error; 425 struct ipc_namespace *ipc_ns; 426 427 spin_lock(&mq_lock); 428 ipc_ns = __get_ns_from_inode(dir); 429 if (!ipc_ns) { 430 error = -EACCES; 431 goto out_unlock; 432 } 433 434 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 435 !capable(CAP_SYS_RESOURCE)) { 436 error = -ENOSPC; 437 goto out_unlock; 438 } 439 ipc_ns->mq_queues_count++; 440 spin_unlock(&mq_lock); 441 442 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 443 if (IS_ERR(inode)) { 444 error = PTR_ERR(inode); 445 spin_lock(&mq_lock); 446 ipc_ns->mq_queues_count--; 447 goto out_unlock; 448 } 449 450 put_ipc_ns(ipc_ns); 451 dir->i_size += DIRENT_SIZE; 452 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 453 454 d_instantiate(dentry, inode); 455 dget(dentry); 456 return 0; 457 out_unlock: 458 spin_unlock(&mq_lock); 459 if (ipc_ns) 460 put_ipc_ns(ipc_ns); 461 return error; 462 } 463 464 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 465 { 466 struct inode *inode = d_inode(dentry); 467 468 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 469 dir->i_size -= DIRENT_SIZE; 470 drop_nlink(inode); 471 dput(dentry); 472 return 0; 473 } 474 475 /* 476 * This is routine for system read from queue file. 477 * To avoid mess with doing here some sort of mq_receive we allow 478 * to read only queue size & notification info (the only values 479 * that are interesting from user point of view and aren't accessible 480 * through std routines) 481 */ 482 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 483 size_t count, loff_t *off) 484 { 485 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 486 char buffer[FILENT_SIZE]; 487 ssize_t ret; 488 489 spin_lock(&info->lock); 490 snprintf(buffer, sizeof(buffer), 491 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 492 info->qsize, 493 info->notify_owner ? info->notify.sigev_notify : 0, 494 (info->notify_owner && 495 info->notify.sigev_notify == SIGEV_SIGNAL) ? 496 info->notify.sigev_signo : 0, 497 pid_vnr(info->notify_owner)); 498 spin_unlock(&info->lock); 499 buffer[sizeof(buffer)-1] = '\0'; 500 501 ret = simple_read_from_buffer(u_data, count, off, buffer, 502 strlen(buffer)); 503 if (ret <= 0) 504 return ret; 505 506 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 507 return ret; 508 } 509 510 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 511 { 512 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 513 514 spin_lock(&info->lock); 515 if (task_tgid(current) == info->notify_owner) 516 remove_notification(info); 517 518 spin_unlock(&info->lock); 519 return 0; 520 } 521 522 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 523 { 524 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 525 int retval = 0; 526 527 poll_wait(filp, &info->wait_q, poll_tab); 528 529 spin_lock(&info->lock); 530 if (info->attr.mq_curmsgs) 531 retval = POLLIN | POLLRDNORM; 532 533 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 534 retval |= POLLOUT | POLLWRNORM; 535 spin_unlock(&info->lock); 536 537 return retval; 538 } 539 540 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 541 static void wq_add(struct mqueue_inode_info *info, int sr, 542 struct ext_wait_queue *ewp) 543 { 544 struct ext_wait_queue *walk; 545 546 ewp->task = current; 547 548 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 549 if (walk->task->static_prio <= current->static_prio) { 550 list_add_tail(&ewp->list, &walk->list); 551 return; 552 } 553 } 554 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 555 } 556 557 /* 558 * Puts current task to sleep. Caller must hold queue lock. After return 559 * lock isn't held. 560 * sr: SEND or RECV 561 */ 562 static int wq_sleep(struct mqueue_inode_info *info, int sr, 563 ktime_t *timeout, struct ext_wait_queue *ewp) 564 __releases(&info->lock) 565 { 566 int retval; 567 signed long time; 568 569 wq_add(info, sr, ewp); 570 571 for (;;) { 572 __set_current_state(TASK_INTERRUPTIBLE); 573 574 spin_unlock(&info->lock); 575 time = schedule_hrtimeout_range_clock(timeout, 0, 576 HRTIMER_MODE_ABS, CLOCK_REALTIME); 577 578 if (ewp->state == STATE_READY) { 579 retval = 0; 580 goto out; 581 } 582 spin_lock(&info->lock); 583 if (ewp->state == STATE_READY) { 584 retval = 0; 585 goto out_unlock; 586 } 587 if (signal_pending(current)) { 588 retval = -ERESTARTSYS; 589 break; 590 } 591 if (time == 0) { 592 retval = -ETIMEDOUT; 593 break; 594 } 595 } 596 list_del(&ewp->list); 597 out_unlock: 598 spin_unlock(&info->lock); 599 out: 600 return retval; 601 } 602 603 /* 604 * Returns waiting task that should be serviced first or NULL if none exists 605 */ 606 static struct ext_wait_queue *wq_get_first_waiter( 607 struct mqueue_inode_info *info, int sr) 608 { 609 struct list_head *ptr; 610 611 ptr = info->e_wait_q[sr].list.prev; 612 if (ptr == &info->e_wait_q[sr].list) 613 return NULL; 614 return list_entry(ptr, struct ext_wait_queue, list); 615 } 616 617 618 static inline void set_cookie(struct sk_buff *skb, char code) 619 { 620 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 621 } 622 623 /* 624 * The next function is only to split too long sys_mq_timedsend 625 */ 626 static void __do_notify(struct mqueue_inode_info *info) 627 { 628 /* notification 629 * invoked when there is registered process and there isn't process 630 * waiting synchronously for message AND state of queue changed from 631 * empty to not empty. Here we are sure that no one is waiting 632 * synchronously. */ 633 if (info->notify_owner && 634 info->attr.mq_curmsgs == 1) { 635 struct siginfo sig_i; 636 switch (info->notify.sigev_notify) { 637 case SIGEV_NONE: 638 break; 639 case SIGEV_SIGNAL: 640 /* sends signal */ 641 642 sig_i.si_signo = info->notify.sigev_signo; 643 sig_i.si_errno = 0; 644 sig_i.si_code = SI_MESGQ; 645 sig_i.si_value = info->notify.sigev_value; 646 /* map current pid/uid into info->owner's namespaces */ 647 rcu_read_lock(); 648 sig_i.si_pid = task_tgid_nr_ns(current, 649 ns_of_pid(info->notify_owner)); 650 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid()); 651 rcu_read_unlock(); 652 653 kill_pid_info(info->notify.sigev_signo, 654 &sig_i, info->notify_owner); 655 break; 656 case SIGEV_THREAD: 657 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 658 netlink_sendskb(info->notify_sock, info->notify_cookie); 659 break; 660 } 661 /* after notification unregisters process */ 662 put_pid(info->notify_owner); 663 put_user_ns(info->notify_user_ns); 664 info->notify_owner = NULL; 665 info->notify_user_ns = NULL; 666 } 667 wake_up(&info->wait_q); 668 } 669 670 static int prepare_timeout(const struct timespec __user *u_abs_timeout, 671 struct timespec64 *ts) 672 { 673 if (get_timespec64(ts, u_abs_timeout)) 674 return -EFAULT; 675 if (!timespec64_valid(ts)) 676 return -EINVAL; 677 return 0; 678 } 679 680 static void remove_notification(struct mqueue_inode_info *info) 681 { 682 if (info->notify_owner != NULL && 683 info->notify.sigev_notify == SIGEV_THREAD) { 684 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 685 netlink_sendskb(info->notify_sock, info->notify_cookie); 686 } 687 put_pid(info->notify_owner); 688 put_user_ns(info->notify_user_ns); 689 info->notify_owner = NULL; 690 info->notify_user_ns = NULL; 691 } 692 693 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr) 694 { 695 int mq_treesize; 696 unsigned long total_size; 697 698 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0) 699 return -EINVAL; 700 if (capable(CAP_SYS_RESOURCE)) { 701 if (attr->mq_maxmsg > HARD_MSGMAX || 702 attr->mq_msgsize > HARD_MSGSIZEMAX) 703 return -EINVAL; 704 } else { 705 if (attr->mq_maxmsg > ipc_ns->mq_msg_max || 706 attr->mq_msgsize > ipc_ns->mq_msgsize_max) 707 return -EINVAL; 708 } 709 /* check for overflow */ 710 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg) 711 return -EOVERFLOW; 712 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) + 713 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) * 714 sizeof(struct posix_msg_tree_node); 715 total_size = attr->mq_maxmsg * attr->mq_msgsize; 716 if (total_size + mq_treesize < total_size) 717 return -EOVERFLOW; 718 return 0; 719 } 720 721 /* 722 * Invoked when creating a new queue via sys_mq_open 723 */ 724 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir, 725 struct path *path, int oflag, umode_t mode, 726 struct mq_attr *attr) 727 { 728 const struct cred *cred = current_cred(); 729 int ret; 730 731 if (attr) { 732 ret = mq_attr_ok(ipc_ns, attr); 733 if (ret) 734 return ERR_PTR(ret); 735 /* store for use during create */ 736 path->dentry->d_fsdata = attr; 737 } else { 738 struct mq_attr def_attr; 739 740 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 741 ipc_ns->mq_msg_default); 742 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 743 ipc_ns->mq_msgsize_default); 744 ret = mq_attr_ok(ipc_ns, &def_attr); 745 if (ret) 746 return ERR_PTR(ret); 747 } 748 749 mode &= ~current_umask(); 750 ret = vfs_create(dir, path->dentry, mode, true); 751 path->dentry->d_fsdata = NULL; 752 if (ret) 753 return ERR_PTR(ret); 754 return dentry_open(path, oflag, cred); 755 } 756 757 /* Opens existing queue */ 758 static struct file *do_open(struct path *path, int oflag) 759 { 760 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 761 MAY_READ | MAY_WRITE }; 762 int acc; 763 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 764 return ERR_PTR(-EINVAL); 765 acc = oflag2acc[oflag & O_ACCMODE]; 766 if (inode_permission(d_inode(path->dentry), acc)) 767 return ERR_PTR(-EACCES); 768 return dentry_open(path, oflag, current_cred()); 769 } 770 771 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 772 struct mq_attr *attr) 773 { 774 struct path path; 775 struct file *filp; 776 struct filename *name; 777 int fd, error; 778 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 779 struct vfsmount *mnt = ipc_ns->mq_mnt; 780 struct dentry *root = mnt->mnt_root; 781 int ro; 782 783 audit_mq_open(oflag, mode, attr); 784 785 if (IS_ERR(name = getname(u_name))) 786 return PTR_ERR(name); 787 788 fd = get_unused_fd_flags(O_CLOEXEC); 789 if (fd < 0) 790 goto out_putname; 791 792 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 793 error = 0; 794 inode_lock(d_inode(root)); 795 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 796 if (IS_ERR(path.dentry)) { 797 error = PTR_ERR(path.dentry); 798 goto out_putfd; 799 } 800 path.mnt = mntget(mnt); 801 802 if (oflag & O_CREAT) { 803 if (d_really_is_positive(path.dentry)) { /* entry already exists */ 804 audit_inode(name, path.dentry, 0); 805 if (oflag & O_EXCL) { 806 error = -EEXIST; 807 goto out; 808 } 809 filp = do_open(&path, oflag); 810 } else { 811 if (ro) { 812 error = ro; 813 goto out; 814 } 815 audit_inode_parent_hidden(name, root); 816 filp = do_create(ipc_ns, d_inode(root), &path, 817 oflag, mode, attr); 818 } 819 } else { 820 if (d_really_is_negative(path.dentry)) { 821 error = -ENOENT; 822 goto out; 823 } 824 audit_inode(name, path.dentry, 0); 825 filp = do_open(&path, oflag); 826 } 827 828 if (!IS_ERR(filp)) 829 fd_install(fd, filp); 830 else 831 error = PTR_ERR(filp); 832 out: 833 path_put(&path); 834 out_putfd: 835 if (error) { 836 put_unused_fd(fd); 837 fd = error; 838 } 839 inode_unlock(d_inode(root)); 840 if (!ro) 841 mnt_drop_write(mnt); 842 out_putname: 843 putname(name); 844 return fd; 845 } 846 847 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 848 struct mq_attr __user *, u_attr) 849 { 850 struct mq_attr attr; 851 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 852 return -EFAULT; 853 854 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 855 } 856 857 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 858 { 859 int err; 860 struct filename *name; 861 struct dentry *dentry; 862 struct inode *inode = NULL; 863 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 864 struct vfsmount *mnt = ipc_ns->mq_mnt; 865 866 name = getname(u_name); 867 if (IS_ERR(name)) 868 return PTR_ERR(name); 869 870 audit_inode_parent_hidden(name, mnt->mnt_root); 871 err = mnt_want_write(mnt); 872 if (err) 873 goto out_name; 874 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 875 dentry = lookup_one_len(name->name, mnt->mnt_root, 876 strlen(name->name)); 877 if (IS_ERR(dentry)) { 878 err = PTR_ERR(dentry); 879 goto out_unlock; 880 } 881 882 inode = d_inode(dentry); 883 if (!inode) { 884 err = -ENOENT; 885 } else { 886 ihold(inode); 887 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL); 888 } 889 dput(dentry); 890 891 out_unlock: 892 inode_unlock(d_inode(mnt->mnt_root)); 893 if (inode) 894 iput(inode); 895 mnt_drop_write(mnt); 896 out_name: 897 putname(name); 898 899 return err; 900 } 901 902 /* Pipelined send and receive functions. 903 * 904 * If a receiver finds no waiting message, then it registers itself in the 905 * list of waiting receivers. A sender checks that list before adding the new 906 * message into the message array. If there is a waiting receiver, then it 907 * bypasses the message array and directly hands the message over to the 908 * receiver. The receiver accepts the message and returns without grabbing the 909 * queue spinlock: 910 * 911 * - Set pointer to message. 912 * - Queue the receiver task for later wakeup (without the info->lock). 913 * - Update its state to STATE_READY. Now the receiver can continue. 914 * - Wake up the process after the lock is dropped. Should the process wake up 915 * before this wakeup (due to a timeout or a signal) it will either see 916 * STATE_READY and continue or acquire the lock to check the state again. 917 * 918 * The same algorithm is used for senders. 919 */ 920 921 /* pipelined_send() - send a message directly to the task waiting in 922 * sys_mq_timedreceive() (without inserting message into a queue). 923 */ 924 static inline void pipelined_send(struct wake_q_head *wake_q, 925 struct mqueue_inode_info *info, 926 struct msg_msg *message, 927 struct ext_wait_queue *receiver) 928 { 929 receiver->msg = message; 930 list_del(&receiver->list); 931 wake_q_add(wake_q, receiver->task); 932 /* 933 * Rely on the implicit cmpxchg barrier from wake_q_add such 934 * that we can ensure that updating receiver->state is the last 935 * write operation: As once set, the receiver can continue, 936 * and if we don't have the reference count from the wake_q, 937 * yet, at that point we can later have a use-after-free 938 * condition and bogus wakeup. 939 */ 940 receiver->state = STATE_READY; 941 } 942 943 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 944 * gets its message and put to the queue (we have one free place for sure). */ 945 static inline void pipelined_receive(struct wake_q_head *wake_q, 946 struct mqueue_inode_info *info) 947 { 948 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 949 950 if (!sender) { 951 /* for poll */ 952 wake_up_interruptible(&info->wait_q); 953 return; 954 } 955 if (msg_insert(sender->msg, info)) 956 return; 957 958 list_del(&sender->list); 959 wake_q_add(wake_q, sender->task); 960 sender->state = STATE_READY; 961 } 962 963 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 964 size_t msg_len, unsigned int msg_prio, 965 struct timespec64 *ts) 966 { 967 struct fd f; 968 struct inode *inode; 969 struct ext_wait_queue wait; 970 struct ext_wait_queue *receiver; 971 struct msg_msg *msg_ptr; 972 struct mqueue_inode_info *info; 973 ktime_t expires, *timeout = NULL; 974 struct posix_msg_tree_node *new_leaf = NULL; 975 int ret = 0; 976 DEFINE_WAKE_Q(wake_q); 977 978 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 979 return -EINVAL; 980 981 if (ts) { 982 expires = timespec64_to_ktime(*ts); 983 timeout = &expires; 984 } 985 986 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 987 988 f = fdget(mqdes); 989 if (unlikely(!f.file)) { 990 ret = -EBADF; 991 goto out; 992 } 993 994 inode = file_inode(f.file); 995 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 996 ret = -EBADF; 997 goto out_fput; 998 } 999 info = MQUEUE_I(inode); 1000 audit_file(f.file); 1001 1002 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1003 ret = -EBADF; 1004 goto out_fput; 1005 } 1006 1007 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1008 ret = -EMSGSIZE; 1009 goto out_fput; 1010 } 1011 1012 /* First try to allocate memory, before doing anything with 1013 * existing queues. */ 1014 msg_ptr = load_msg(u_msg_ptr, msg_len); 1015 if (IS_ERR(msg_ptr)) { 1016 ret = PTR_ERR(msg_ptr); 1017 goto out_fput; 1018 } 1019 msg_ptr->m_ts = msg_len; 1020 msg_ptr->m_type = msg_prio; 1021 1022 /* 1023 * msg_insert really wants us to have a valid, spare node struct so 1024 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1025 * fall back to that if necessary. 1026 */ 1027 if (!info->node_cache) 1028 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1029 1030 spin_lock(&info->lock); 1031 1032 if (!info->node_cache && new_leaf) { 1033 /* Save our speculative allocation into the cache */ 1034 INIT_LIST_HEAD(&new_leaf->msg_list); 1035 info->node_cache = new_leaf; 1036 new_leaf = NULL; 1037 } else { 1038 kfree(new_leaf); 1039 } 1040 1041 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1042 if (f.file->f_flags & O_NONBLOCK) { 1043 ret = -EAGAIN; 1044 } else { 1045 wait.task = current; 1046 wait.msg = (void *) msg_ptr; 1047 wait.state = STATE_NONE; 1048 ret = wq_sleep(info, SEND, timeout, &wait); 1049 /* 1050 * wq_sleep must be called with info->lock held, and 1051 * returns with the lock released 1052 */ 1053 goto out_free; 1054 } 1055 } else { 1056 receiver = wq_get_first_waiter(info, RECV); 1057 if (receiver) { 1058 pipelined_send(&wake_q, info, msg_ptr, receiver); 1059 } else { 1060 /* adds message to the queue */ 1061 ret = msg_insert(msg_ptr, info); 1062 if (ret) 1063 goto out_unlock; 1064 __do_notify(info); 1065 } 1066 inode->i_atime = inode->i_mtime = inode->i_ctime = 1067 current_time(inode); 1068 } 1069 out_unlock: 1070 spin_unlock(&info->lock); 1071 wake_up_q(&wake_q); 1072 out_free: 1073 if (ret) 1074 free_msg(msg_ptr); 1075 out_fput: 1076 fdput(f); 1077 out: 1078 return ret; 1079 } 1080 1081 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1082 size_t msg_len, unsigned int __user *u_msg_prio, 1083 struct timespec64 *ts) 1084 { 1085 ssize_t ret; 1086 struct msg_msg *msg_ptr; 1087 struct fd f; 1088 struct inode *inode; 1089 struct mqueue_inode_info *info; 1090 struct ext_wait_queue wait; 1091 ktime_t expires, *timeout = NULL; 1092 struct posix_msg_tree_node *new_leaf = NULL; 1093 1094 if (ts) { 1095 expires = timespec64_to_ktime(*ts); 1096 timeout = &expires; 1097 } 1098 1099 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1100 1101 f = fdget(mqdes); 1102 if (unlikely(!f.file)) { 1103 ret = -EBADF; 1104 goto out; 1105 } 1106 1107 inode = file_inode(f.file); 1108 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1109 ret = -EBADF; 1110 goto out_fput; 1111 } 1112 info = MQUEUE_I(inode); 1113 audit_file(f.file); 1114 1115 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1116 ret = -EBADF; 1117 goto out_fput; 1118 } 1119 1120 /* checks if buffer is big enough */ 1121 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1122 ret = -EMSGSIZE; 1123 goto out_fput; 1124 } 1125 1126 /* 1127 * msg_insert really wants us to have a valid, spare node struct so 1128 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1129 * fall back to that if necessary. 1130 */ 1131 if (!info->node_cache) 1132 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1133 1134 spin_lock(&info->lock); 1135 1136 if (!info->node_cache && new_leaf) { 1137 /* Save our speculative allocation into the cache */ 1138 INIT_LIST_HEAD(&new_leaf->msg_list); 1139 info->node_cache = new_leaf; 1140 } else { 1141 kfree(new_leaf); 1142 } 1143 1144 if (info->attr.mq_curmsgs == 0) { 1145 if (f.file->f_flags & O_NONBLOCK) { 1146 spin_unlock(&info->lock); 1147 ret = -EAGAIN; 1148 } else { 1149 wait.task = current; 1150 wait.state = STATE_NONE; 1151 ret = wq_sleep(info, RECV, timeout, &wait); 1152 msg_ptr = wait.msg; 1153 } 1154 } else { 1155 DEFINE_WAKE_Q(wake_q); 1156 1157 msg_ptr = msg_get(info); 1158 1159 inode->i_atime = inode->i_mtime = inode->i_ctime = 1160 current_time(inode); 1161 1162 /* There is now free space in queue. */ 1163 pipelined_receive(&wake_q, info); 1164 spin_unlock(&info->lock); 1165 wake_up_q(&wake_q); 1166 ret = 0; 1167 } 1168 if (ret == 0) { 1169 ret = msg_ptr->m_ts; 1170 1171 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1172 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1173 ret = -EFAULT; 1174 } 1175 free_msg(msg_ptr); 1176 } 1177 out_fput: 1178 fdput(f); 1179 out: 1180 return ret; 1181 } 1182 1183 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1184 size_t, msg_len, unsigned int, msg_prio, 1185 const struct timespec __user *, u_abs_timeout) 1186 { 1187 struct timespec64 ts, *p = NULL; 1188 if (u_abs_timeout) { 1189 int res = prepare_timeout(u_abs_timeout, &ts); 1190 if (res) 1191 return res; 1192 p = &ts; 1193 } 1194 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1195 } 1196 1197 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1198 size_t, msg_len, unsigned int __user *, u_msg_prio, 1199 const struct timespec __user *, u_abs_timeout) 1200 { 1201 struct timespec64 ts, *p = NULL; 1202 if (u_abs_timeout) { 1203 int res = prepare_timeout(u_abs_timeout, &ts); 1204 if (res) 1205 return res; 1206 p = &ts; 1207 } 1208 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1209 } 1210 1211 /* 1212 * Notes: the case when user wants us to deregister (with NULL as pointer) 1213 * and he isn't currently owner of notification, will be silently discarded. 1214 * It isn't explicitly defined in the POSIX. 1215 */ 1216 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1217 { 1218 int ret; 1219 struct fd f; 1220 struct sock *sock; 1221 struct inode *inode; 1222 struct mqueue_inode_info *info; 1223 struct sk_buff *nc; 1224 1225 audit_mq_notify(mqdes, notification); 1226 1227 nc = NULL; 1228 sock = NULL; 1229 if (notification != NULL) { 1230 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1231 notification->sigev_notify != SIGEV_SIGNAL && 1232 notification->sigev_notify != SIGEV_THREAD)) 1233 return -EINVAL; 1234 if (notification->sigev_notify == SIGEV_SIGNAL && 1235 !valid_signal(notification->sigev_signo)) { 1236 return -EINVAL; 1237 } 1238 if (notification->sigev_notify == SIGEV_THREAD) { 1239 long timeo; 1240 1241 /* create the notify skb */ 1242 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1243 if (!nc) { 1244 ret = -ENOMEM; 1245 goto out; 1246 } 1247 if (copy_from_user(nc->data, 1248 notification->sigev_value.sival_ptr, 1249 NOTIFY_COOKIE_LEN)) { 1250 ret = -EFAULT; 1251 goto out; 1252 } 1253 1254 /* TODO: add a header? */ 1255 skb_put(nc, NOTIFY_COOKIE_LEN); 1256 /* and attach it to the socket */ 1257 retry: 1258 f = fdget(notification->sigev_signo); 1259 if (!f.file) { 1260 ret = -EBADF; 1261 goto out; 1262 } 1263 sock = netlink_getsockbyfilp(f.file); 1264 fdput(f); 1265 if (IS_ERR(sock)) { 1266 ret = PTR_ERR(sock); 1267 sock = NULL; 1268 goto out; 1269 } 1270 1271 timeo = MAX_SCHEDULE_TIMEOUT; 1272 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1273 if (ret == 1) { 1274 sock = NULL; 1275 goto retry; 1276 } 1277 if (ret) { 1278 sock = NULL; 1279 nc = NULL; 1280 goto out; 1281 } 1282 } 1283 } 1284 1285 f = fdget(mqdes); 1286 if (!f.file) { 1287 ret = -EBADF; 1288 goto out; 1289 } 1290 1291 inode = file_inode(f.file); 1292 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1293 ret = -EBADF; 1294 goto out_fput; 1295 } 1296 info = MQUEUE_I(inode); 1297 1298 ret = 0; 1299 spin_lock(&info->lock); 1300 if (notification == NULL) { 1301 if (info->notify_owner == task_tgid(current)) { 1302 remove_notification(info); 1303 inode->i_atime = inode->i_ctime = current_time(inode); 1304 } 1305 } else if (info->notify_owner != NULL) { 1306 ret = -EBUSY; 1307 } else { 1308 switch (notification->sigev_notify) { 1309 case SIGEV_NONE: 1310 info->notify.sigev_notify = SIGEV_NONE; 1311 break; 1312 case SIGEV_THREAD: 1313 info->notify_sock = sock; 1314 info->notify_cookie = nc; 1315 sock = NULL; 1316 nc = NULL; 1317 info->notify.sigev_notify = SIGEV_THREAD; 1318 break; 1319 case SIGEV_SIGNAL: 1320 info->notify.sigev_signo = notification->sigev_signo; 1321 info->notify.sigev_value = notification->sigev_value; 1322 info->notify.sigev_notify = SIGEV_SIGNAL; 1323 break; 1324 } 1325 1326 info->notify_owner = get_pid(task_tgid(current)); 1327 info->notify_user_ns = get_user_ns(current_user_ns()); 1328 inode->i_atime = inode->i_ctime = current_time(inode); 1329 } 1330 spin_unlock(&info->lock); 1331 out_fput: 1332 fdput(f); 1333 out: 1334 if (sock) 1335 netlink_detachskb(sock, nc); 1336 else if (nc) 1337 dev_kfree_skb(nc); 1338 1339 return ret; 1340 } 1341 1342 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1343 const struct sigevent __user *, u_notification) 1344 { 1345 struct sigevent n, *p = NULL; 1346 if (u_notification) { 1347 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1348 return -EFAULT; 1349 p = &n; 1350 } 1351 return do_mq_notify(mqdes, p); 1352 } 1353 1354 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1355 { 1356 struct fd f; 1357 struct inode *inode; 1358 struct mqueue_inode_info *info; 1359 1360 if (new && (new->mq_flags & (~O_NONBLOCK))) 1361 return -EINVAL; 1362 1363 f = fdget(mqdes); 1364 if (!f.file) 1365 return -EBADF; 1366 1367 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1368 fdput(f); 1369 return -EBADF; 1370 } 1371 1372 inode = file_inode(f.file); 1373 info = MQUEUE_I(inode); 1374 1375 spin_lock(&info->lock); 1376 1377 if (old) { 1378 *old = info->attr; 1379 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1380 } 1381 if (new) { 1382 audit_mq_getsetattr(mqdes, new); 1383 spin_lock(&f.file->f_lock); 1384 if (new->mq_flags & O_NONBLOCK) 1385 f.file->f_flags |= O_NONBLOCK; 1386 else 1387 f.file->f_flags &= ~O_NONBLOCK; 1388 spin_unlock(&f.file->f_lock); 1389 1390 inode->i_atime = inode->i_ctime = current_time(inode); 1391 } 1392 1393 spin_unlock(&info->lock); 1394 fdput(f); 1395 return 0; 1396 } 1397 1398 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1399 const struct mq_attr __user *, u_mqstat, 1400 struct mq_attr __user *, u_omqstat) 1401 { 1402 int ret; 1403 struct mq_attr mqstat, omqstat; 1404 struct mq_attr *new = NULL, *old = NULL; 1405 1406 if (u_mqstat) { 1407 new = &mqstat; 1408 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1409 return -EFAULT; 1410 } 1411 if (u_omqstat) 1412 old = &omqstat; 1413 1414 ret = do_mq_getsetattr(mqdes, new, old); 1415 if (ret || !old) 1416 return ret; 1417 1418 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1419 return -EFAULT; 1420 return 0; 1421 } 1422 1423 #ifdef CONFIG_COMPAT 1424 1425 struct compat_mq_attr { 1426 compat_long_t mq_flags; /* message queue flags */ 1427 compat_long_t mq_maxmsg; /* maximum number of messages */ 1428 compat_long_t mq_msgsize; /* maximum message size */ 1429 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1430 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1431 }; 1432 1433 static inline int get_compat_mq_attr(struct mq_attr *attr, 1434 const struct compat_mq_attr __user *uattr) 1435 { 1436 struct compat_mq_attr v; 1437 1438 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1439 return -EFAULT; 1440 1441 memset(attr, 0, sizeof(*attr)); 1442 attr->mq_flags = v.mq_flags; 1443 attr->mq_maxmsg = v.mq_maxmsg; 1444 attr->mq_msgsize = v.mq_msgsize; 1445 attr->mq_curmsgs = v.mq_curmsgs; 1446 return 0; 1447 } 1448 1449 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1450 struct compat_mq_attr __user *uattr) 1451 { 1452 struct compat_mq_attr v; 1453 1454 memset(&v, 0, sizeof(v)); 1455 v.mq_flags = attr->mq_flags; 1456 v.mq_maxmsg = attr->mq_maxmsg; 1457 v.mq_msgsize = attr->mq_msgsize; 1458 v.mq_curmsgs = attr->mq_curmsgs; 1459 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1460 return -EFAULT; 1461 return 0; 1462 } 1463 1464 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1465 int, oflag, compat_mode_t, mode, 1466 struct compat_mq_attr __user *, u_attr) 1467 { 1468 struct mq_attr attr, *p = NULL; 1469 if (u_attr && oflag & O_CREAT) { 1470 p = &attr; 1471 if (get_compat_mq_attr(&attr, u_attr)) 1472 return -EFAULT; 1473 } 1474 return do_mq_open(u_name, oflag, mode, p); 1475 } 1476 1477 static int compat_prepare_timeout(const struct compat_timespec __user *p, 1478 struct timespec64 *ts) 1479 { 1480 if (compat_get_timespec64(ts, p)) 1481 return -EFAULT; 1482 if (!timespec64_valid(ts)) 1483 return -EINVAL; 1484 return 0; 1485 } 1486 1487 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, 1488 const char __user *, u_msg_ptr, 1489 compat_size_t, msg_len, unsigned int, msg_prio, 1490 const struct compat_timespec __user *, u_abs_timeout) 1491 { 1492 struct timespec64 ts, *p = NULL; 1493 if (u_abs_timeout) { 1494 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1495 if (res) 1496 return res; 1497 p = &ts; 1498 } 1499 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1500 } 1501 1502 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, 1503 char __user *, u_msg_ptr, 1504 compat_size_t, msg_len, unsigned int __user *, u_msg_prio, 1505 const struct compat_timespec __user *, u_abs_timeout) 1506 { 1507 struct timespec64 ts, *p = NULL; 1508 if (u_abs_timeout) { 1509 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1510 if (res) 1511 return res; 1512 p = &ts; 1513 } 1514 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1515 } 1516 1517 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1518 const struct compat_sigevent __user *, u_notification) 1519 { 1520 struct sigevent n, *p = NULL; 1521 if (u_notification) { 1522 if (get_compat_sigevent(&n, u_notification)) 1523 return -EFAULT; 1524 if (n.sigev_notify == SIGEV_THREAD) 1525 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1526 p = &n; 1527 } 1528 return do_mq_notify(mqdes, p); 1529 } 1530 1531 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1532 const struct compat_mq_attr __user *, u_mqstat, 1533 struct compat_mq_attr __user *, u_omqstat) 1534 { 1535 int ret; 1536 struct mq_attr mqstat, omqstat; 1537 struct mq_attr *new = NULL, *old = NULL; 1538 1539 if (u_mqstat) { 1540 new = &mqstat; 1541 if (get_compat_mq_attr(new, u_mqstat)) 1542 return -EFAULT; 1543 } 1544 if (u_omqstat) 1545 old = &omqstat; 1546 1547 ret = do_mq_getsetattr(mqdes, new, old); 1548 if (ret || !old) 1549 return ret; 1550 1551 if (put_compat_mq_attr(old, u_omqstat)) 1552 return -EFAULT; 1553 return 0; 1554 } 1555 #endif 1556 1557 static const struct inode_operations mqueue_dir_inode_operations = { 1558 .lookup = simple_lookup, 1559 .create = mqueue_create, 1560 .unlink = mqueue_unlink, 1561 }; 1562 1563 static const struct file_operations mqueue_file_operations = { 1564 .flush = mqueue_flush_file, 1565 .poll = mqueue_poll_file, 1566 .read = mqueue_read_file, 1567 .llseek = default_llseek, 1568 }; 1569 1570 static const struct super_operations mqueue_super_ops = { 1571 .alloc_inode = mqueue_alloc_inode, 1572 .destroy_inode = mqueue_destroy_inode, 1573 .evict_inode = mqueue_evict_inode, 1574 .statfs = simple_statfs, 1575 }; 1576 1577 static struct file_system_type mqueue_fs_type = { 1578 .name = "mqueue", 1579 .mount = mqueue_mount, 1580 .kill_sb = kill_litter_super, 1581 .fs_flags = FS_USERNS_MOUNT, 1582 }; 1583 1584 int mq_init_ns(struct ipc_namespace *ns) 1585 { 1586 ns->mq_queues_count = 0; 1587 ns->mq_queues_max = DFLT_QUEUESMAX; 1588 ns->mq_msg_max = DFLT_MSGMAX; 1589 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1590 ns->mq_msg_default = DFLT_MSG; 1591 ns->mq_msgsize_default = DFLT_MSGSIZE; 1592 1593 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns); 1594 if (IS_ERR(ns->mq_mnt)) { 1595 int err = PTR_ERR(ns->mq_mnt); 1596 ns->mq_mnt = NULL; 1597 return err; 1598 } 1599 return 0; 1600 } 1601 1602 void mq_clear_sbinfo(struct ipc_namespace *ns) 1603 { 1604 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1605 } 1606 1607 void mq_put_mnt(struct ipc_namespace *ns) 1608 { 1609 kern_unmount(ns->mq_mnt); 1610 } 1611 1612 static int __init init_mqueue_fs(void) 1613 { 1614 int error; 1615 1616 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1617 sizeof(struct mqueue_inode_info), 0, 1618 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1619 if (mqueue_inode_cachep == NULL) 1620 return -ENOMEM; 1621 1622 /* ignore failures - they are not fatal */ 1623 mq_sysctl_table = mq_register_sysctl_table(); 1624 1625 error = register_filesystem(&mqueue_fs_type); 1626 if (error) 1627 goto out_sysctl; 1628 1629 spin_lock_init(&mq_lock); 1630 1631 error = mq_init_ns(&init_ipc_ns); 1632 if (error) 1633 goto out_filesystem; 1634 1635 return 0; 1636 1637 out_filesystem: 1638 unregister_filesystem(&mqueue_fs_type); 1639 out_sysctl: 1640 if (mq_sysctl_table) 1641 unregister_sysctl_table(mq_sysctl_table); 1642 kmem_cache_destroy(mqueue_inode_cachep); 1643 return error; 1644 } 1645 1646 device_initcall(init_mqueue_fs); 1647