1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 /* 67 * Locking: 68 * 69 * Accesses to a message queue are synchronized by acquiring info->lock. 70 * 71 * There are two notable exceptions: 72 * - The actual wakeup of a sleeping task is performed using the wake_q 73 * framework. info->lock is already released when wake_up_q is called. 74 * - The exit codepaths after sleeping check ext_wait_queue->state without 75 * any locks. If it is STATE_READY, then the syscall is completed without 76 * acquiring info->lock. 77 * 78 * MQ_BARRIER: 79 * To achieve proper release/acquire memory barrier pairing, the state is set to 80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 82 * 83 * This prevents the following races: 84 * 85 * 1) With the simple wake_q_add(), the task could be gone already before 86 * the increase of the reference happens 87 * Thread A 88 * Thread B 89 * WRITE_ONCE(wait.state, STATE_NONE); 90 * schedule_hrtimeout() 91 * wake_q_add(A) 92 * if (cmpxchg()) // success 93 * ->state = STATE_READY (reordered) 94 * <timeout returns> 95 * if (wait.state == STATE_READY) return; 96 * sysret to user space 97 * sys_exit() 98 * get_task_struct() // UaF 99 * 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 101 * the smp_store_release() that does ->state = STATE_READY. 102 * 103 * 2) Without proper _release/_acquire barriers, the woken up task 104 * could read stale data 105 * 106 * Thread A 107 * Thread B 108 * do_mq_timedreceive 109 * WRITE_ONCE(wait.state, STATE_NONE); 110 * schedule_hrtimeout() 111 * state = STATE_READY; 112 * <timeout returns> 113 * if (wait.state == STATE_READY) return; 114 * msg_ptr = wait.msg; // Access to stale data! 115 * receiver->msg = message; (reordered) 116 * 117 * Solution: use _release and _acquire barriers. 118 * 119 * 3) There is intentionally no barrier when setting current->state 120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 121 * release memory barrier, and the wakeup is triggered when holding 122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 123 * acquire memory barrier. 124 */ 125 126 struct ext_wait_queue { /* queue of sleeping tasks */ 127 struct task_struct *task; 128 struct list_head list; 129 struct msg_msg *msg; /* ptr of loaded message */ 130 int state; /* one of STATE_* values */ 131 }; 132 133 struct mqueue_inode_info { 134 spinlock_t lock; 135 struct inode vfs_inode; 136 wait_queue_head_t wait_q; 137 138 struct rb_root msg_tree; 139 struct rb_node *msg_tree_rightmost; 140 struct posix_msg_tree_node *node_cache; 141 struct mq_attr attr; 142 143 struct sigevent notify; 144 struct pid *notify_owner; 145 u32 notify_self_exec_id; 146 struct user_namespace *notify_user_ns; 147 struct user_struct *user; /* user who created, for accounting */ 148 struct sock *notify_sock; 149 struct sk_buff *notify_cookie; 150 151 /* for tasks waiting for free space and messages, respectively */ 152 struct ext_wait_queue e_wait_q[2]; 153 154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 155 }; 156 157 static struct file_system_type mqueue_fs_type; 158 static const struct inode_operations mqueue_dir_inode_operations; 159 static const struct file_operations mqueue_file_operations; 160 static const struct super_operations mqueue_super_ops; 161 static const struct fs_context_operations mqueue_fs_context_ops; 162 static void remove_notification(struct mqueue_inode_info *info); 163 164 static struct kmem_cache *mqueue_inode_cachep; 165 166 static struct ctl_table_header *mq_sysctl_table; 167 168 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 169 { 170 return container_of(inode, struct mqueue_inode_info, vfs_inode); 171 } 172 173 /* 174 * This routine should be called with the mq_lock held. 175 */ 176 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 177 { 178 return get_ipc_ns(inode->i_sb->s_fs_info); 179 } 180 181 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 182 { 183 struct ipc_namespace *ns; 184 185 spin_lock(&mq_lock); 186 ns = __get_ns_from_inode(inode); 187 spin_unlock(&mq_lock); 188 return ns; 189 } 190 191 /* Auxiliary functions to manipulate messages' list */ 192 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 193 { 194 struct rb_node **p, *parent = NULL; 195 struct posix_msg_tree_node *leaf; 196 bool rightmost = true; 197 198 p = &info->msg_tree.rb_node; 199 while (*p) { 200 parent = *p; 201 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 202 203 if (likely(leaf->priority == msg->m_type)) 204 goto insert_msg; 205 else if (msg->m_type < leaf->priority) { 206 p = &(*p)->rb_left; 207 rightmost = false; 208 } else 209 p = &(*p)->rb_right; 210 } 211 if (info->node_cache) { 212 leaf = info->node_cache; 213 info->node_cache = NULL; 214 } else { 215 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 216 if (!leaf) 217 return -ENOMEM; 218 INIT_LIST_HEAD(&leaf->msg_list); 219 } 220 leaf->priority = msg->m_type; 221 222 if (rightmost) 223 info->msg_tree_rightmost = &leaf->rb_node; 224 225 rb_link_node(&leaf->rb_node, parent, p); 226 rb_insert_color(&leaf->rb_node, &info->msg_tree); 227 insert_msg: 228 info->attr.mq_curmsgs++; 229 info->qsize += msg->m_ts; 230 list_add_tail(&msg->m_list, &leaf->msg_list); 231 return 0; 232 } 233 234 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 235 struct mqueue_inode_info *info) 236 { 237 struct rb_node *node = &leaf->rb_node; 238 239 if (info->msg_tree_rightmost == node) 240 info->msg_tree_rightmost = rb_prev(node); 241 242 rb_erase(node, &info->msg_tree); 243 if (info->node_cache) 244 kfree(leaf); 245 else 246 info->node_cache = leaf; 247 } 248 249 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 250 { 251 struct rb_node *parent = NULL; 252 struct posix_msg_tree_node *leaf; 253 struct msg_msg *msg; 254 255 try_again: 256 /* 257 * During insert, low priorities go to the left and high to the 258 * right. On receive, we want the highest priorities first, so 259 * walk all the way to the right. 260 */ 261 parent = info->msg_tree_rightmost; 262 if (!parent) { 263 if (info->attr.mq_curmsgs) { 264 pr_warn_once("Inconsistency in POSIX message queue, " 265 "no tree element, but supposedly messages " 266 "should exist!\n"); 267 info->attr.mq_curmsgs = 0; 268 } 269 return NULL; 270 } 271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 272 if (unlikely(list_empty(&leaf->msg_list))) { 273 pr_warn_once("Inconsistency in POSIX message queue, " 274 "empty leaf node but we haven't implemented " 275 "lazy leaf delete!\n"); 276 msg_tree_erase(leaf, info); 277 goto try_again; 278 } else { 279 msg = list_first_entry(&leaf->msg_list, 280 struct msg_msg, m_list); 281 list_del(&msg->m_list); 282 if (list_empty(&leaf->msg_list)) { 283 msg_tree_erase(leaf, info); 284 } 285 } 286 info->attr.mq_curmsgs--; 287 info->qsize -= msg->m_ts; 288 return msg; 289 } 290 291 static struct inode *mqueue_get_inode(struct super_block *sb, 292 struct ipc_namespace *ipc_ns, umode_t mode, 293 struct mq_attr *attr) 294 { 295 struct user_struct *u = current_user(); 296 struct inode *inode; 297 int ret = -ENOMEM; 298 299 inode = new_inode(sb); 300 if (!inode) 301 goto err; 302 303 inode->i_ino = get_next_ino(); 304 inode->i_mode = mode; 305 inode->i_uid = current_fsuid(); 306 inode->i_gid = current_fsgid(); 307 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 308 309 if (S_ISREG(mode)) { 310 struct mqueue_inode_info *info; 311 unsigned long mq_bytes, mq_treesize; 312 313 inode->i_fop = &mqueue_file_operations; 314 inode->i_size = FILENT_SIZE; 315 /* mqueue specific info */ 316 info = MQUEUE_I(inode); 317 spin_lock_init(&info->lock); 318 init_waitqueue_head(&info->wait_q); 319 INIT_LIST_HEAD(&info->e_wait_q[0].list); 320 INIT_LIST_HEAD(&info->e_wait_q[1].list); 321 info->notify_owner = NULL; 322 info->notify_user_ns = NULL; 323 info->qsize = 0; 324 info->user = NULL; /* set when all is ok */ 325 info->msg_tree = RB_ROOT; 326 info->msg_tree_rightmost = NULL; 327 info->node_cache = NULL; 328 memset(&info->attr, 0, sizeof(info->attr)); 329 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 330 ipc_ns->mq_msg_default); 331 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 332 ipc_ns->mq_msgsize_default); 333 if (attr) { 334 info->attr.mq_maxmsg = attr->mq_maxmsg; 335 info->attr.mq_msgsize = attr->mq_msgsize; 336 } 337 /* 338 * We used to allocate a static array of pointers and account 339 * the size of that array as well as one msg_msg struct per 340 * possible message into the queue size. That's no longer 341 * accurate as the queue is now an rbtree and will grow and 342 * shrink depending on usage patterns. We can, however, still 343 * account one msg_msg struct per message, but the nodes are 344 * allocated depending on priority usage, and most programs 345 * only use one, or a handful, of priorities. However, since 346 * this is pinned memory, we need to assume worst case, so 347 * that means the min(mq_maxmsg, max_priorities) * struct 348 * posix_msg_tree_node. 349 */ 350 351 ret = -EINVAL; 352 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 353 goto out_inode; 354 if (capable(CAP_SYS_RESOURCE)) { 355 if (info->attr.mq_maxmsg > HARD_MSGMAX || 356 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 357 goto out_inode; 358 } else { 359 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 360 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 361 goto out_inode; 362 } 363 ret = -EOVERFLOW; 364 /* check for overflow */ 365 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 366 goto out_inode; 367 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 368 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 369 sizeof(struct posix_msg_tree_node); 370 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 371 if (mq_bytes + mq_treesize < mq_bytes) 372 goto out_inode; 373 mq_bytes += mq_treesize; 374 spin_lock(&mq_lock); 375 if (u->mq_bytes + mq_bytes < u->mq_bytes || 376 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 377 spin_unlock(&mq_lock); 378 /* mqueue_evict_inode() releases info->messages */ 379 ret = -EMFILE; 380 goto out_inode; 381 } 382 u->mq_bytes += mq_bytes; 383 spin_unlock(&mq_lock); 384 385 /* all is ok */ 386 info->user = get_uid(u); 387 } else if (S_ISDIR(mode)) { 388 inc_nlink(inode); 389 /* Some things misbehave if size == 0 on a directory */ 390 inode->i_size = 2 * DIRENT_SIZE; 391 inode->i_op = &mqueue_dir_inode_operations; 392 inode->i_fop = &simple_dir_operations; 393 } 394 395 return inode; 396 out_inode: 397 iput(inode); 398 err: 399 return ERR_PTR(ret); 400 } 401 402 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 403 { 404 struct inode *inode; 405 struct ipc_namespace *ns = sb->s_fs_info; 406 407 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 408 sb->s_blocksize = PAGE_SIZE; 409 sb->s_blocksize_bits = PAGE_SHIFT; 410 sb->s_magic = MQUEUE_MAGIC; 411 sb->s_op = &mqueue_super_ops; 412 413 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 414 if (IS_ERR(inode)) 415 return PTR_ERR(inode); 416 417 sb->s_root = d_make_root(inode); 418 if (!sb->s_root) 419 return -ENOMEM; 420 return 0; 421 } 422 423 static int mqueue_get_tree(struct fs_context *fc) 424 { 425 struct mqueue_fs_context *ctx = fc->fs_private; 426 427 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 428 } 429 430 static void mqueue_fs_context_free(struct fs_context *fc) 431 { 432 struct mqueue_fs_context *ctx = fc->fs_private; 433 434 put_ipc_ns(ctx->ipc_ns); 435 kfree(ctx); 436 } 437 438 static int mqueue_init_fs_context(struct fs_context *fc) 439 { 440 struct mqueue_fs_context *ctx; 441 442 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 443 if (!ctx) 444 return -ENOMEM; 445 446 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 447 put_user_ns(fc->user_ns); 448 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 449 fc->fs_private = ctx; 450 fc->ops = &mqueue_fs_context_ops; 451 return 0; 452 } 453 454 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 455 { 456 struct mqueue_fs_context *ctx; 457 struct fs_context *fc; 458 struct vfsmount *mnt; 459 460 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 461 if (IS_ERR(fc)) 462 return ERR_CAST(fc); 463 464 ctx = fc->fs_private; 465 put_ipc_ns(ctx->ipc_ns); 466 ctx->ipc_ns = get_ipc_ns(ns); 467 put_user_ns(fc->user_ns); 468 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 469 470 mnt = fc_mount(fc); 471 put_fs_context(fc); 472 return mnt; 473 } 474 475 static void init_once(void *foo) 476 { 477 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 478 479 inode_init_once(&p->vfs_inode); 480 } 481 482 static struct inode *mqueue_alloc_inode(struct super_block *sb) 483 { 484 struct mqueue_inode_info *ei; 485 486 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 487 if (!ei) 488 return NULL; 489 return &ei->vfs_inode; 490 } 491 492 static void mqueue_free_inode(struct inode *inode) 493 { 494 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 495 } 496 497 static void mqueue_evict_inode(struct inode *inode) 498 { 499 struct mqueue_inode_info *info; 500 struct user_struct *user; 501 struct ipc_namespace *ipc_ns; 502 struct msg_msg *msg, *nmsg; 503 LIST_HEAD(tmp_msg); 504 505 clear_inode(inode); 506 507 if (S_ISDIR(inode->i_mode)) 508 return; 509 510 ipc_ns = get_ns_from_inode(inode); 511 info = MQUEUE_I(inode); 512 spin_lock(&info->lock); 513 while ((msg = msg_get(info)) != NULL) 514 list_add_tail(&msg->m_list, &tmp_msg); 515 kfree(info->node_cache); 516 spin_unlock(&info->lock); 517 518 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 519 list_del(&msg->m_list); 520 free_msg(msg); 521 } 522 523 user = info->user; 524 if (user) { 525 unsigned long mq_bytes, mq_treesize; 526 527 /* Total amount of bytes accounted for the mqueue */ 528 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 529 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 530 sizeof(struct posix_msg_tree_node); 531 532 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 533 info->attr.mq_msgsize); 534 535 spin_lock(&mq_lock); 536 user->mq_bytes -= mq_bytes; 537 /* 538 * get_ns_from_inode() ensures that the 539 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 540 * to which we now hold a reference, or it is NULL. 541 * We can't put it here under mq_lock, though. 542 */ 543 if (ipc_ns) 544 ipc_ns->mq_queues_count--; 545 spin_unlock(&mq_lock); 546 free_uid(user); 547 } 548 if (ipc_ns) 549 put_ipc_ns(ipc_ns); 550 } 551 552 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 553 { 554 struct inode *dir = dentry->d_parent->d_inode; 555 struct inode *inode; 556 struct mq_attr *attr = arg; 557 int error; 558 struct ipc_namespace *ipc_ns; 559 560 spin_lock(&mq_lock); 561 ipc_ns = __get_ns_from_inode(dir); 562 if (!ipc_ns) { 563 error = -EACCES; 564 goto out_unlock; 565 } 566 567 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 568 !capable(CAP_SYS_RESOURCE)) { 569 error = -ENOSPC; 570 goto out_unlock; 571 } 572 ipc_ns->mq_queues_count++; 573 spin_unlock(&mq_lock); 574 575 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 576 if (IS_ERR(inode)) { 577 error = PTR_ERR(inode); 578 spin_lock(&mq_lock); 579 ipc_ns->mq_queues_count--; 580 goto out_unlock; 581 } 582 583 put_ipc_ns(ipc_ns); 584 dir->i_size += DIRENT_SIZE; 585 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 586 587 d_instantiate(dentry, inode); 588 dget(dentry); 589 return 0; 590 out_unlock: 591 spin_unlock(&mq_lock); 592 if (ipc_ns) 593 put_ipc_ns(ipc_ns); 594 return error; 595 } 596 597 static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir, 598 struct dentry *dentry, umode_t mode, bool excl) 599 { 600 return mqueue_create_attr(dentry, mode, NULL); 601 } 602 603 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 604 { 605 struct inode *inode = d_inode(dentry); 606 607 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 608 dir->i_size -= DIRENT_SIZE; 609 drop_nlink(inode); 610 dput(dentry); 611 return 0; 612 } 613 614 /* 615 * This is routine for system read from queue file. 616 * To avoid mess with doing here some sort of mq_receive we allow 617 * to read only queue size & notification info (the only values 618 * that are interesting from user point of view and aren't accessible 619 * through std routines) 620 */ 621 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 622 size_t count, loff_t *off) 623 { 624 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 625 char buffer[FILENT_SIZE]; 626 ssize_t ret; 627 628 spin_lock(&info->lock); 629 snprintf(buffer, sizeof(buffer), 630 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 631 info->qsize, 632 info->notify_owner ? info->notify.sigev_notify : 0, 633 (info->notify_owner && 634 info->notify.sigev_notify == SIGEV_SIGNAL) ? 635 info->notify.sigev_signo : 0, 636 pid_vnr(info->notify_owner)); 637 spin_unlock(&info->lock); 638 buffer[sizeof(buffer)-1] = '\0'; 639 640 ret = simple_read_from_buffer(u_data, count, off, buffer, 641 strlen(buffer)); 642 if (ret <= 0) 643 return ret; 644 645 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 646 return ret; 647 } 648 649 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 650 { 651 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 652 653 spin_lock(&info->lock); 654 if (task_tgid(current) == info->notify_owner) 655 remove_notification(info); 656 657 spin_unlock(&info->lock); 658 return 0; 659 } 660 661 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 662 { 663 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 664 __poll_t retval = 0; 665 666 poll_wait(filp, &info->wait_q, poll_tab); 667 668 spin_lock(&info->lock); 669 if (info->attr.mq_curmsgs) 670 retval = EPOLLIN | EPOLLRDNORM; 671 672 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 673 retval |= EPOLLOUT | EPOLLWRNORM; 674 spin_unlock(&info->lock); 675 676 return retval; 677 } 678 679 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 680 static void wq_add(struct mqueue_inode_info *info, int sr, 681 struct ext_wait_queue *ewp) 682 { 683 struct ext_wait_queue *walk; 684 685 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 686 if (walk->task->prio <= current->prio) { 687 list_add_tail(&ewp->list, &walk->list); 688 return; 689 } 690 } 691 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 692 } 693 694 /* 695 * Puts current task to sleep. Caller must hold queue lock. After return 696 * lock isn't held. 697 * sr: SEND or RECV 698 */ 699 static int wq_sleep(struct mqueue_inode_info *info, int sr, 700 ktime_t *timeout, struct ext_wait_queue *ewp) 701 __releases(&info->lock) 702 { 703 int retval; 704 signed long time; 705 706 wq_add(info, sr, ewp); 707 708 for (;;) { 709 /* memory barrier not required, we hold info->lock */ 710 __set_current_state(TASK_INTERRUPTIBLE); 711 712 spin_unlock(&info->lock); 713 time = schedule_hrtimeout_range_clock(timeout, 0, 714 HRTIMER_MODE_ABS, CLOCK_REALTIME); 715 716 if (READ_ONCE(ewp->state) == STATE_READY) { 717 /* see MQ_BARRIER for purpose/pairing */ 718 smp_acquire__after_ctrl_dep(); 719 retval = 0; 720 goto out; 721 } 722 spin_lock(&info->lock); 723 724 /* we hold info->lock, so no memory barrier required */ 725 if (READ_ONCE(ewp->state) == STATE_READY) { 726 retval = 0; 727 goto out_unlock; 728 } 729 if (signal_pending(current)) { 730 retval = -ERESTARTSYS; 731 break; 732 } 733 if (time == 0) { 734 retval = -ETIMEDOUT; 735 break; 736 } 737 } 738 list_del(&ewp->list); 739 out_unlock: 740 spin_unlock(&info->lock); 741 out: 742 return retval; 743 } 744 745 /* 746 * Returns waiting task that should be serviced first or NULL if none exists 747 */ 748 static struct ext_wait_queue *wq_get_first_waiter( 749 struct mqueue_inode_info *info, int sr) 750 { 751 struct list_head *ptr; 752 753 ptr = info->e_wait_q[sr].list.prev; 754 if (ptr == &info->e_wait_q[sr].list) 755 return NULL; 756 return list_entry(ptr, struct ext_wait_queue, list); 757 } 758 759 760 static inline void set_cookie(struct sk_buff *skb, char code) 761 { 762 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 763 } 764 765 /* 766 * The next function is only to split too long sys_mq_timedsend 767 */ 768 static void __do_notify(struct mqueue_inode_info *info) 769 { 770 /* notification 771 * invoked when there is registered process and there isn't process 772 * waiting synchronously for message AND state of queue changed from 773 * empty to not empty. Here we are sure that no one is waiting 774 * synchronously. */ 775 if (info->notify_owner && 776 info->attr.mq_curmsgs == 1) { 777 switch (info->notify.sigev_notify) { 778 case SIGEV_NONE: 779 break; 780 case SIGEV_SIGNAL: { 781 struct kernel_siginfo sig_i; 782 struct task_struct *task; 783 784 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 785 if (!info->notify.sigev_signo) 786 break; 787 788 clear_siginfo(&sig_i); 789 sig_i.si_signo = info->notify.sigev_signo; 790 sig_i.si_errno = 0; 791 sig_i.si_code = SI_MESGQ; 792 sig_i.si_value = info->notify.sigev_value; 793 rcu_read_lock(); 794 /* map current pid/uid into info->owner's namespaces */ 795 sig_i.si_pid = task_tgid_nr_ns(current, 796 ns_of_pid(info->notify_owner)); 797 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 798 current_uid()); 799 /* 800 * We can't use kill_pid_info(), this signal should 801 * bypass check_kill_permission(). It is from kernel 802 * but si_fromuser() can't know this. 803 * We do check the self_exec_id, to avoid sending 804 * signals to programs that don't expect them. 805 */ 806 task = pid_task(info->notify_owner, PIDTYPE_TGID); 807 if (task && task->self_exec_id == 808 info->notify_self_exec_id) { 809 do_send_sig_info(info->notify.sigev_signo, 810 &sig_i, task, PIDTYPE_TGID); 811 } 812 rcu_read_unlock(); 813 break; 814 } 815 case SIGEV_THREAD: 816 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 817 netlink_sendskb(info->notify_sock, info->notify_cookie); 818 break; 819 } 820 /* after notification unregisters process */ 821 put_pid(info->notify_owner); 822 put_user_ns(info->notify_user_ns); 823 info->notify_owner = NULL; 824 info->notify_user_ns = NULL; 825 } 826 wake_up(&info->wait_q); 827 } 828 829 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 830 struct timespec64 *ts) 831 { 832 if (get_timespec64(ts, u_abs_timeout)) 833 return -EFAULT; 834 if (!timespec64_valid(ts)) 835 return -EINVAL; 836 return 0; 837 } 838 839 static void remove_notification(struct mqueue_inode_info *info) 840 { 841 if (info->notify_owner != NULL && 842 info->notify.sigev_notify == SIGEV_THREAD) { 843 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 844 netlink_sendskb(info->notify_sock, info->notify_cookie); 845 } 846 put_pid(info->notify_owner); 847 put_user_ns(info->notify_user_ns); 848 info->notify_owner = NULL; 849 info->notify_user_ns = NULL; 850 } 851 852 static int prepare_open(struct dentry *dentry, int oflag, int ro, 853 umode_t mode, struct filename *name, 854 struct mq_attr *attr) 855 { 856 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 857 MAY_READ | MAY_WRITE }; 858 int acc; 859 860 if (d_really_is_negative(dentry)) { 861 if (!(oflag & O_CREAT)) 862 return -ENOENT; 863 if (ro) 864 return ro; 865 audit_inode_parent_hidden(name, dentry->d_parent); 866 return vfs_mkobj(dentry, mode & ~current_umask(), 867 mqueue_create_attr, attr); 868 } 869 /* it already existed */ 870 audit_inode(name, dentry, 0); 871 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 872 return -EEXIST; 873 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 874 return -EINVAL; 875 acc = oflag2acc[oflag & O_ACCMODE]; 876 return inode_permission(&init_user_ns, d_inode(dentry), acc); 877 } 878 879 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 880 struct mq_attr *attr) 881 { 882 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 883 struct dentry *root = mnt->mnt_root; 884 struct filename *name; 885 struct path path; 886 int fd, error; 887 int ro; 888 889 audit_mq_open(oflag, mode, attr); 890 891 if (IS_ERR(name = getname(u_name))) 892 return PTR_ERR(name); 893 894 fd = get_unused_fd_flags(O_CLOEXEC); 895 if (fd < 0) 896 goto out_putname; 897 898 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 899 inode_lock(d_inode(root)); 900 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 901 if (IS_ERR(path.dentry)) { 902 error = PTR_ERR(path.dentry); 903 goto out_putfd; 904 } 905 path.mnt = mntget(mnt); 906 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 907 if (!error) { 908 struct file *file = dentry_open(&path, oflag, current_cred()); 909 if (!IS_ERR(file)) 910 fd_install(fd, file); 911 else 912 error = PTR_ERR(file); 913 } 914 path_put(&path); 915 out_putfd: 916 if (error) { 917 put_unused_fd(fd); 918 fd = error; 919 } 920 inode_unlock(d_inode(root)); 921 if (!ro) 922 mnt_drop_write(mnt); 923 out_putname: 924 putname(name); 925 return fd; 926 } 927 928 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 929 struct mq_attr __user *, u_attr) 930 { 931 struct mq_attr attr; 932 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 933 return -EFAULT; 934 935 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 936 } 937 938 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 939 { 940 int err; 941 struct filename *name; 942 struct dentry *dentry; 943 struct inode *inode = NULL; 944 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 945 struct vfsmount *mnt = ipc_ns->mq_mnt; 946 947 name = getname(u_name); 948 if (IS_ERR(name)) 949 return PTR_ERR(name); 950 951 audit_inode_parent_hidden(name, mnt->mnt_root); 952 err = mnt_want_write(mnt); 953 if (err) 954 goto out_name; 955 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 956 dentry = lookup_one_len(name->name, mnt->mnt_root, 957 strlen(name->name)); 958 if (IS_ERR(dentry)) { 959 err = PTR_ERR(dentry); 960 goto out_unlock; 961 } 962 963 inode = d_inode(dentry); 964 if (!inode) { 965 err = -ENOENT; 966 } else { 967 ihold(inode); 968 err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent), 969 dentry, NULL); 970 } 971 dput(dentry); 972 973 out_unlock: 974 inode_unlock(d_inode(mnt->mnt_root)); 975 if (inode) 976 iput(inode); 977 mnt_drop_write(mnt); 978 out_name: 979 putname(name); 980 981 return err; 982 } 983 984 /* Pipelined send and receive functions. 985 * 986 * If a receiver finds no waiting message, then it registers itself in the 987 * list of waiting receivers. A sender checks that list before adding the new 988 * message into the message array. If there is a waiting receiver, then it 989 * bypasses the message array and directly hands the message over to the 990 * receiver. The receiver accepts the message and returns without grabbing the 991 * queue spinlock: 992 * 993 * - Set pointer to message. 994 * - Queue the receiver task for later wakeup (without the info->lock). 995 * - Update its state to STATE_READY. Now the receiver can continue. 996 * - Wake up the process after the lock is dropped. Should the process wake up 997 * before this wakeup (due to a timeout or a signal) it will either see 998 * STATE_READY and continue or acquire the lock to check the state again. 999 * 1000 * The same algorithm is used for senders. 1001 */ 1002 1003 static inline void __pipelined_op(struct wake_q_head *wake_q, 1004 struct mqueue_inode_info *info, 1005 struct ext_wait_queue *this) 1006 { 1007 list_del(&this->list); 1008 get_task_struct(this->task); 1009 1010 /* see MQ_BARRIER for purpose/pairing */ 1011 smp_store_release(&this->state, STATE_READY); 1012 wake_q_add_safe(wake_q, this->task); 1013 } 1014 1015 /* pipelined_send() - send a message directly to the task waiting in 1016 * sys_mq_timedreceive() (without inserting message into a queue). 1017 */ 1018 static inline void pipelined_send(struct wake_q_head *wake_q, 1019 struct mqueue_inode_info *info, 1020 struct msg_msg *message, 1021 struct ext_wait_queue *receiver) 1022 { 1023 receiver->msg = message; 1024 __pipelined_op(wake_q, info, receiver); 1025 } 1026 1027 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1028 * gets its message and put to the queue (we have one free place for sure). */ 1029 static inline void pipelined_receive(struct wake_q_head *wake_q, 1030 struct mqueue_inode_info *info) 1031 { 1032 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1033 1034 if (!sender) { 1035 /* for poll */ 1036 wake_up_interruptible(&info->wait_q); 1037 return; 1038 } 1039 if (msg_insert(sender->msg, info)) 1040 return; 1041 1042 __pipelined_op(wake_q, info, sender); 1043 } 1044 1045 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1046 size_t msg_len, unsigned int msg_prio, 1047 struct timespec64 *ts) 1048 { 1049 struct fd f; 1050 struct inode *inode; 1051 struct ext_wait_queue wait; 1052 struct ext_wait_queue *receiver; 1053 struct msg_msg *msg_ptr; 1054 struct mqueue_inode_info *info; 1055 ktime_t expires, *timeout = NULL; 1056 struct posix_msg_tree_node *new_leaf = NULL; 1057 int ret = 0; 1058 DEFINE_WAKE_Q(wake_q); 1059 1060 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1061 return -EINVAL; 1062 1063 if (ts) { 1064 expires = timespec64_to_ktime(*ts); 1065 timeout = &expires; 1066 } 1067 1068 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1069 1070 f = fdget(mqdes); 1071 if (unlikely(!f.file)) { 1072 ret = -EBADF; 1073 goto out; 1074 } 1075 1076 inode = file_inode(f.file); 1077 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1078 ret = -EBADF; 1079 goto out_fput; 1080 } 1081 info = MQUEUE_I(inode); 1082 audit_file(f.file); 1083 1084 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1085 ret = -EBADF; 1086 goto out_fput; 1087 } 1088 1089 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1090 ret = -EMSGSIZE; 1091 goto out_fput; 1092 } 1093 1094 /* First try to allocate memory, before doing anything with 1095 * existing queues. */ 1096 msg_ptr = load_msg(u_msg_ptr, msg_len); 1097 if (IS_ERR(msg_ptr)) { 1098 ret = PTR_ERR(msg_ptr); 1099 goto out_fput; 1100 } 1101 msg_ptr->m_ts = msg_len; 1102 msg_ptr->m_type = msg_prio; 1103 1104 /* 1105 * msg_insert really wants us to have a valid, spare node struct so 1106 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1107 * fall back to that if necessary. 1108 */ 1109 if (!info->node_cache) 1110 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1111 1112 spin_lock(&info->lock); 1113 1114 if (!info->node_cache && new_leaf) { 1115 /* Save our speculative allocation into the cache */ 1116 INIT_LIST_HEAD(&new_leaf->msg_list); 1117 info->node_cache = new_leaf; 1118 new_leaf = NULL; 1119 } else { 1120 kfree(new_leaf); 1121 } 1122 1123 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1124 if (f.file->f_flags & O_NONBLOCK) { 1125 ret = -EAGAIN; 1126 } else { 1127 wait.task = current; 1128 wait.msg = (void *) msg_ptr; 1129 1130 /* memory barrier not required, we hold info->lock */ 1131 WRITE_ONCE(wait.state, STATE_NONE); 1132 ret = wq_sleep(info, SEND, timeout, &wait); 1133 /* 1134 * wq_sleep must be called with info->lock held, and 1135 * returns with the lock released 1136 */ 1137 goto out_free; 1138 } 1139 } else { 1140 receiver = wq_get_first_waiter(info, RECV); 1141 if (receiver) { 1142 pipelined_send(&wake_q, info, msg_ptr, receiver); 1143 } else { 1144 /* adds message to the queue */ 1145 ret = msg_insert(msg_ptr, info); 1146 if (ret) 1147 goto out_unlock; 1148 __do_notify(info); 1149 } 1150 inode->i_atime = inode->i_mtime = inode->i_ctime = 1151 current_time(inode); 1152 } 1153 out_unlock: 1154 spin_unlock(&info->lock); 1155 wake_up_q(&wake_q); 1156 out_free: 1157 if (ret) 1158 free_msg(msg_ptr); 1159 out_fput: 1160 fdput(f); 1161 out: 1162 return ret; 1163 } 1164 1165 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1166 size_t msg_len, unsigned int __user *u_msg_prio, 1167 struct timespec64 *ts) 1168 { 1169 ssize_t ret; 1170 struct msg_msg *msg_ptr; 1171 struct fd f; 1172 struct inode *inode; 1173 struct mqueue_inode_info *info; 1174 struct ext_wait_queue wait; 1175 ktime_t expires, *timeout = NULL; 1176 struct posix_msg_tree_node *new_leaf = NULL; 1177 1178 if (ts) { 1179 expires = timespec64_to_ktime(*ts); 1180 timeout = &expires; 1181 } 1182 1183 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1184 1185 f = fdget(mqdes); 1186 if (unlikely(!f.file)) { 1187 ret = -EBADF; 1188 goto out; 1189 } 1190 1191 inode = file_inode(f.file); 1192 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1193 ret = -EBADF; 1194 goto out_fput; 1195 } 1196 info = MQUEUE_I(inode); 1197 audit_file(f.file); 1198 1199 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1200 ret = -EBADF; 1201 goto out_fput; 1202 } 1203 1204 /* checks if buffer is big enough */ 1205 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1206 ret = -EMSGSIZE; 1207 goto out_fput; 1208 } 1209 1210 /* 1211 * msg_insert really wants us to have a valid, spare node struct so 1212 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1213 * fall back to that if necessary. 1214 */ 1215 if (!info->node_cache) 1216 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1217 1218 spin_lock(&info->lock); 1219 1220 if (!info->node_cache && new_leaf) { 1221 /* Save our speculative allocation into the cache */ 1222 INIT_LIST_HEAD(&new_leaf->msg_list); 1223 info->node_cache = new_leaf; 1224 } else { 1225 kfree(new_leaf); 1226 } 1227 1228 if (info->attr.mq_curmsgs == 0) { 1229 if (f.file->f_flags & O_NONBLOCK) { 1230 spin_unlock(&info->lock); 1231 ret = -EAGAIN; 1232 } else { 1233 wait.task = current; 1234 1235 /* memory barrier not required, we hold info->lock */ 1236 WRITE_ONCE(wait.state, STATE_NONE); 1237 ret = wq_sleep(info, RECV, timeout, &wait); 1238 msg_ptr = wait.msg; 1239 } 1240 } else { 1241 DEFINE_WAKE_Q(wake_q); 1242 1243 msg_ptr = msg_get(info); 1244 1245 inode->i_atime = inode->i_mtime = inode->i_ctime = 1246 current_time(inode); 1247 1248 /* There is now free space in queue. */ 1249 pipelined_receive(&wake_q, info); 1250 spin_unlock(&info->lock); 1251 wake_up_q(&wake_q); 1252 ret = 0; 1253 } 1254 if (ret == 0) { 1255 ret = msg_ptr->m_ts; 1256 1257 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1258 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1259 ret = -EFAULT; 1260 } 1261 free_msg(msg_ptr); 1262 } 1263 out_fput: 1264 fdput(f); 1265 out: 1266 return ret; 1267 } 1268 1269 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1270 size_t, msg_len, unsigned int, msg_prio, 1271 const struct __kernel_timespec __user *, u_abs_timeout) 1272 { 1273 struct timespec64 ts, *p = NULL; 1274 if (u_abs_timeout) { 1275 int res = prepare_timeout(u_abs_timeout, &ts); 1276 if (res) 1277 return res; 1278 p = &ts; 1279 } 1280 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1281 } 1282 1283 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1284 size_t, msg_len, unsigned int __user *, u_msg_prio, 1285 const struct __kernel_timespec __user *, u_abs_timeout) 1286 { 1287 struct timespec64 ts, *p = NULL; 1288 if (u_abs_timeout) { 1289 int res = prepare_timeout(u_abs_timeout, &ts); 1290 if (res) 1291 return res; 1292 p = &ts; 1293 } 1294 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1295 } 1296 1297 /* 1298 * Notes: the case when user wants us to deregister (with NULL as pointer) 1299 * and he isn't currently owner of notification, will be silently discarded. 1300 * It isn't explicitly defined in the POSIX. 1301 */ 1302 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1303 { 1304 int ret; 1305 struct fd f; 1306 struct sock *sock; 1307 struct inode *inode; 1308 struct mqueue_inode_info *info; 1309 struct sk_buff *nc; 1310 1311 audit_mq_notify(mqdes, notification); 1312 1313 nc = NULL; 1314 sock = NULL; 1315 if (notification != NULL) { 1316 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1317 notification->sigev_notify != SIGEV_SIGNAL && 1318 notification->sigev_notify != SIGEV_THREAD)) 1319 return -EINVAL; 1320 if (notification->sigev_notify == SIGEV_SIGNAL && 1321 !valid_signal(notification->sigev_signo)) { 1322 return -EINVAL; 1323 } 1324 if (notification->sigev_notify == SIGEV_THREAD) { 1325 long timeo; 1326 1327 /* create the notify skb */ 1328 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1329 if (!nc) 1330 return -ENOMEM; 1331 1332 if (copy_from_user(nc->data, 1333 notification->sigev_value.sival_ptr, 1334 NOTIFY_COOKIE_LEN)) { 1335 ret = -EFAULT; 1336 goto free_skb; 1337 } 1338 1339 /* TODO: add a header? */ 1340 skb_put(nc, NOTIFY_COOKIE_LEN); 1341 /* and attach it to the socket */ 1342 retry: 1343 f = fdget(notification->sigev_signo); 1344 if (!f.file) { 1345 ret = -EBADF; 1346 goto out; 1347 } 1348 sock = netlink_getsockbyfilp(f.file); 1349 fdput(f); 1350 if (IS_ERR(sock)) { 1351 ret = PTR_ERR(sock); 1352 goto free_skb; 1353 } 1354 1355 timeo = MAX_SCHEDULE_TIMEOUT; 1356 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1357 if (ret == 1) { 1358 sock = NULL; 1359 goto retry; 1360 } 1361 if (ret) 1362 return ret; 1363 } 1364 } 1365 1366 f = fdget(mqdes); 1367 if (!f.file) { 1368 ret = -EBADF; 1369 goto out; 1370 } 1371 1372 inode = file_inode(f.file); 1373 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1374 ret = -EBADF; 1375 goto out_fput; 1376 } 1377 info = MQUEUE_I(inode); 1378 1379 ret = 0; 1380 spin_lock(&info->lock); 1381 if (notification == NULL) { 1382 if (info->notify_owner == task_tgid(current)) { 1383 remove_notification(info); 1384 inode->i_atime = inode->i_ctime = current_time(inode); 1385 } 1386 } else if (info->notify_owner != NULL) { 1387 ret = -EBUSY; 1388 } else { 1389 switch (notification->sigev_notify) { 1390 case SIGEV_NONE: 1391 info->notify.sigev_notify = SIGEV_NONE; 1392 break; 1393 case SIGEV_THREAD: 1394 info->notify_sock = sock; 1395 info->notify_cookie = nc; 1396 sock = NULL; 1397 nc = NULL; 1398 info->notify.sigev_notify = SIGEV_THREAD; 1399 break; 1400 case SIGEV_SIGNAL: 1401 info->notify.sigev_signo = notification->sigev_signo; 1402 info->notify.sigev_value = notification->sigev_value; 1403 info->notify.sigev_notify = SIGEV_SIGNAL; 1404 info->notify_self_exec_id = current->self_exec_id; 1405 break; 1406 } 1407 1408 info->notify_owner = get_pid(task_tgid(current)); 1409 info->notify_user_ns = get_user_ns(current_user_ns()); 1410 inode->i_atime = inode->i_ctime = current_time(inode); 1411 } 1412 spin_unlock(&info->lock); 1413 out_fput: 1414 fdput(f); 1415 out: 1416 if (sock) 1417 netlink_detachskb(sock, nc); 1418 else 1419 free_skb: 1420 dev_kfree_skb(nc); 1421 1422 return ret; 1423 } 1424 1425 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1426 const struct sigevent __user *, u_notification) 1427 { 1428 struct sigevent n, *p = NULL; 1429 if (u_notification) { 1430 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1431 return -EFAULT; 1432 p = &n; 1433 } 1434 return do_mq_notify(mqdes, p); 1435 } 1436 1437 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1438 { 1439 struct fd f; 1440 struct inode *inode; 1441 struct mqueue_inode_info *info; 1442 1443 if (new && (new->mq_flags & (~O_NONBLOCK))) 1444 return -EINVAL; 1445 1446 f = fdget(mqdes); 1447 if (!f.file) 1448 return -EBADF; 1449 1450 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1451 fdput(f); 1452 return -EBADF; 1453 } 1454 1455 inode = file_inode(f.file); 1456 info = MQUEUE_I(inode); 1457 1458 spin_lock(&info->lock); 1459 1460 if (old) { 1461 *old = info->attr; 1462 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1463 } 1464 if (new) { 1465 audit_mq_getsetattr(mqdes, new); 1466 spin_lock(&f.file->f_lock); 1467 if (new->mq_flags & O_NONBLOCK) 1468 f.file->f_flags |= O_NONBLOCK; 1469 else 1470 f.file->f_flags &= ~O_NONBLOCK; 1471 spin_unlock(&f.file->f_lock); 1472 1473 inode->i_atime = inode->i_ctime = current_time(inode); 1474 } 1475 1476 spin_unlock(&info->lock); 1477 fdput(f); 1478 return 0; 1479 } 1480 1481 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1482 const struct mq_attr __user *, u_mqstat, 1483 struct mq_attr __user *, u_omqstat) 1484 { 1485 int ret; 1486 struct mq_attr mqstat, omqstat; 1487 struct mq_attr *new = NULL, *old = NULL; 1488 1489 if (u_mqstat) { 1490 new = &mqstat; 1491 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1492 return -EFAULT; 1493 } 1494 if (u_omqstat) 1495 old = &omqstat; 1496 1497 ret = do_mq_getsetattr(mqdes, new, old); 1498 if (ret || !old) 1499 return ret; 1500 1501 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1502 return -EFAULT; 1503 return 0; 1504 } 1505 1506 #ifdef CONFIG_COMPAT 1507 1508 struct compat_mq_attr { 1509 compat_long_t mq_flags; /* message queue flags */ 1510 compat_long_t mq_maxmsg; /* maximum number of messages */ 1511 compat_long_t mq_msgsize; /* maximum message size */ 1512 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1513 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1514 }; 1515 1516 static inline int get_compat_mq_attr(struct mq_attr *attr, 1517 const struct compat_mq_attr __user *uattr) 1518 { 1519 struct compat_mq_attr v; 1520 1521 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1522 return -EFAULT; 1523 1524 memset(attr, 0, sizeof(*attr)); 1525 attr->mq_flags = v.mq_flags; 1526 attr->mq_maxmsg = v.mq_maxmsg; 1527 attr->mq_msgsize = v.mq_msgsize; 1528 attr->mq_curmsgs = v.mq_curmsgs; 1529 return 0; 1530 } 1531 1532 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1533 struct compat_mq_attr __user *uattr) 1534 { 1535 struct compat_mq_attr v; 1536 1537 memset(&v, 0, sizeof(v)); 1538 v.mq_flags = attr->mq_flags; 1539 v.mq_maxmsg = attr->mq_maxmsg; 1540 v.mq_msgsize = attr->mq_msgsize; 1541 v.mq_curmsgs = attr->mq_curmsgs; 1542 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1543 return -EFAULT; 1544 return 0; 1545 } 1546 1547 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1548 int, oflag, compat_mode_t, mode, 1549 struct compat_mq_attr __user *, u_attr) 1550 { 1551 struct mq_attr attr, *p = NULL; 1552 if (u_attr && oflag & O_CREAT) { 1553 p = &attr; 1554 if (get_compat_mq_attr(&attr, u_attr)) 1555 return -EFAULT; 1556 } 1557 return do_mq_open(u_name, oflag, mode, p); 1558 } 1559 1560 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1561 const struct compat_sigevent __user *, u_notification) 1562 { 1563 struct sigevent n, *p = NULL; 1564 if (u_notification) { 1565 if (get_compat_sigevent(&n, u_notification)) 1566 return -EFAULT; 1567 if (n.sigev_notify == SIGEV_THREAD) 1568 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1569 p = &n; 1570 } 1571 return do_mq_notify(mqdes, p); 1572 } 1573 1574 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1575 const struct compat_mq_attr __user *, u_mqstat, 1576 struct compat_mq_attr __user *, u_omqstat) 1577 { 1578 int ret; 1579 struct mq_attr mqstat, omqstat; 1580 struct mq_attr *new = NULL, *old = NULL; 1581 1582 if (u_mqstat) { 1583 new = &mqstat; 1584 if (get_compat_mq_attr(new, u_mqstat)) 1585 return -EFAULT; 1586 } 1587 if (u_omqstat) 1588 old = &omqstat; 1589 1590 ret = do_mq_getsetattr(mqdes, new, old); 1591 if (ret || !old) 1592 return ret; 1593 1594 if (put_compat_mq_attr(old, u_omqstat)) 1595 return -EFAULT; 1596 return 0; 1597 } 1598 #endif 1599 1600 #ifdef CONFIG_COMPAT_32BIT_TIME 1601 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1602 struct timespec64 *ts) 1603 { 1604 if (get_old_timespec32(ts, p)) 1605 return -EFAULT; 1606 if (!timespec64_valid(ts)) 1607 return -EINVAL; 1608 return 0; 1609 } 1610 1611 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1612 const char __user *, u_msg_ptr, 1613 unsigned int, msg_len, unsigned int, msg_prio, 1614 const struct old_timespec32 __user *, u_abs_timeout) 1615 { 1616 struct timespec64 ts, *p = NULL; 1617 if (u_abs_timeout) { 1618 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1619 if (res) 1620 return res; 1621 p = &ts; 1622 } 1623 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1624 } 1625 1626 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1627 char __user *, u_msg_ptr, 1628 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1629 const struct old_timespec32 __user *, u_abs_timeout) 1630 { 1631 struct timespec64 ts, *p = NULL; 1632 if (u_abs_timeout) { 1633 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1634 if (res) 1635 return res; 1636 p = &ts; 1637 } 1638 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1639 } 1640 #endif 1641 1642 static const struct inode_operations mqueue_dir_inode_operations = { 1643 .lookup = simple_lookup, 1644 .create = mqueue_create, 1645 .unlink = mqueue_unlink, 1646 }; 1647 1648 static const struct file_operations mqueue_file_operations = { 1649 .flush = mqueue_flush_file, 1650 .poll = mqueue_poll_file, 1651 .read = mqueue_read_file, 1652 .llseek = default_llseek, 1653 }; 1654 1655 static const struct super_operations mqueue_super_ops = { 1656 .alloc_inode = mqueue_alloc_inode, 1657 .free_inode = mqueue_free_inode, 1658 .evict_inode = mqueue_evict_inode, 1659 .statfs = simple_statfs, 1660 }; 1661 1662 static const struct fs_context_operations mqueue_fs_context_ops = { 1663 .free = mqueue_fs_context_free, 1664 .get_tree = mqueue_get_tree, 1665 }; 1666 1667 static struct file_system_type mqueue_fs_type = { 1668 .name = "mqueue", 1669 .init_fs_context = mqueue_init_fs_context, 1670 .kill_sb = kill_litter_super, 1671 .fs_flags = FS_USERNS_MOUNT, 1672 }; 1673 1674 int mq_init_ns(struct ipc_namespace *ns) 1675 { 1676 struct vfsmount *m; 1677 1678 ns->mq_queues_count = 0; 1679 ns->mq_queues_max = DFLT_QUEUESMAX; 1680 ns->mq_msg_max = DFLT_MSGMAX; 1681 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1682 ns->mq_msg_default = DFLT_MSG; 1683 ns->mq_msgsize_default = DFLT_MSGSIZE; 1684 1685 m = mq_create_mount(ns); 1686 if (IS_ERR(m)) 1687 return PTR_ERR(m); 1688 ns->mq_mnt = m; 1689 return 0; 1690 } 1691 1692 void mq_clear_sbinfo(struct ipc_namespace *ns) 1693 { 1694 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1695 } 1696 1697 void mq_put_mnt(struct ipc_namespace *ns) 1698 { 1699 kern_unmount(ns->mq_mnt); 1700 } 1701 1702 static int __init init_mqueue_fs(void) 1703 { 1704 int error; 1705 1706 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1707 sizeof(struct mqueue_inode_info), 0, 1708 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1709 if (mqueue_inode_cachep == NULL) 1710 return -ENOMEM; 1711 1712 /* ignore failures - they are not fatal */ 1713 mq_sysctl_table = mq_register_sysctl_table(); 1714 1715 error = register_filesystem(&mqueue_fs_type); 1716 if (error) 1717 goto out_sysctl; 1718 1719 spin_lock_init(&mq_lock); 1720 1721 error = mq_init_ns(&init_ipc_ns); 1722 if (error) 1723 goto out_filesystem; 1724 1725 return 0; 1726 1727 out_filesystem: 1728 unregister_filesystem(&mqueue_fs_type); 1729 out_sysctl: 1730 if (mq_sysctl_table) 1731 unregister_sysctl_table(mq_sysctl_table); 1732 kmem_cache_destroy(mqueue_inode_cachep); 1733 return error; 1734 } 1735 1736 device_initcall(init_mqueue_fs); 1737