xref: /linux/ipc/mqueue.c (revision d4821902e43453b85b31329441a9f6ac071228a8)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 	bool			 newns;	/* Set if newly created ipc namespace */
49 };
50 
51 #define MQUEUE_MAGIC	0x19800202
52 #define DIRENT_SIZE	20
53 #define FILENT_SIZE	80
54 
55 #define SEND		0
56 #define RECV		1
57 
58 #define STATE_NONE	0
59 #define STATE_READY	1
60 
61 struct posix_msg_tree_node {
62 	struct rb_node		rb_node;
63 	struct list_head	msg_list;
64 	int			priority;
65 };
66 
67 /*
68  * Locking:
69  *
70  * Accesses to a message queue are synchronized by acquiring info->lock.
71  *
72  * There are two notable exceptions:
73  * - The actual wakeup of a sleeping task is performed using the wake_q
74  *   framework. info->lock is already released when wake_up_q is called.
75  * - The exit codepaths after sleeping check ext_wait_queue->state without
76  *   any locks. If it is STATE_READY, then the syscall is completed without
77  *   acquiring info->lock.
78  *
79  * MQ_BARRIER:
80  * To achieve proper release/acquire memory barrier pairing, the state is set to
81  * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82  * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83  *
84  * This prevents the following races:
85  *
86  * 1) With the simple wake_q_add(), the task could be gone already before
87  *    the increase of the reference happens
88  * Thread A
89  *				Thread B
90  * WRITE_ONCE(wait.state, STATE_NONE);
91  * schedule_hrtimeout()
92  *				wake_q_add(A)
93  *				if (cmpxchg()) // success
94  *				   ->state = STATE_READY (reordered)
95  * <timeout returns>
96  * if (wait.state == STATE_READY) return;
97  * sysret to user space
98  * sys_exit()
99  *				get_task_struct() // UaF
100  *
101  * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102  * the smp_store_release() that does ->state = STATE_READY.
103  *
104  * 2) Without proper _release/_acquire barriers, the woken up task
105  *    could read stale data
106  *
107  * Thread A
108  *				Thread B
109  * do_mq_timedreceive
110  * WRITE_ONCE(wait.state, STATE_NONE);
111  * schedule_hrtimeout()
112  *				state = STATE_READY;
113  * <timeout returns>
114  * if (wait.state == STATE_READY) return;
115  * msg_ptr = wait.msg;		// Access to stale data!
116  *				receiver->msg = message; (reordered)
117  *
118  * Solution: use _release and _acquire barriers.
119  *
120  * 3) There is intentionally no barrier when setting current->state
121  *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122  *    release memory barrier, and the wakeup is triggered when holding
123  *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
124  *    acquire memory barrier.
125  */
126 
127 struct ext_wait_queue {		/* queue of sleeping tasks */
128 	struct task_struct *task;
129 	struct list_head list;
130 	struct msg_msg *msg;	/* ptr of loaded message */
131 	int state;		/* one of STATE_* values */
132 };
133 
134 struct mqueue_inode_info {
135 	spinlock_t lock;
136 	struct inode vfs_inode;
137 	wait_queue_head_t wait_q;
138 
139 	struct rb_root msg_tree;
140 	struct rb_node *msg_tree_rightmost;
141 	struct posix_msg_tree_node *node_cache;
142 	struct mq_attr attr;
143 
144 	struct sigevent notify;
145 	struct pid *notify_owner;
146 	u32 notify_self_exec_id;
147 	struct user_namespace *notify_user_ns;
148 	struct ucounts *ucounts;	/* user who created, for accounting */
149 	struct sock *notify_sock;
150 	struct sk_buff *notify_cookie;
151 
152 	/* for tasks waiting for free space and messages, respectively */
153 	struct ext_wait_queue e_wait_q[2];
154 
155 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 };
157 
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
164 
165 static struct kmem_cache *mqueue_inode_cachep;
166 
167 static struct ctl_table_header *mq_sysctl_table;
168 
169 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
170 {
171 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
172 }
173 
174 /*
175  * This routine should be called with the mq_lock held.
176  */
177 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
178 {
179 	return get_ipc_ns(inode->i_sb->s_fs_info);
180 }
181 
182 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
183 {
184 	struct ipc_namespace *ns;
185 
186 	spin_lock(&mq_lock);
187 	ns = __get_ns_from_inode(inode);
188 	spin_unlock(&mq_lock);
189 	return ns;
190 }
191 
192 /* Auxiliary functions to manipulate messages' list */
193 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
194 {
195 	struct rb_node **p, *parent = NULL;
196 	struct posix_msg_tree_node *leaf;
197 	bool rightmost = true;
198 
199 	p = &info->msg_tree.rb_node;
200 	while (*p) {
201 		parent = *p;
202 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
203 
204 		if (likely(leaf->priority == msg->m_type))
205 			goto insert_msg;
206 		else if (msg->m_type < leaf->priority) {
207 			p = &(*p)->rb_left;
208 			rightmost = false;
209 		} else
210 			p = &(*p)->rb_right;
211 	}
212 	if (info->node_cache) {
213 		leaf = info->node_cache;
214 		info->node_cache = NULL;
215 	} else {
216 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
217 		if (!leaf)
218 			return -ENOMEM;
219 		INIT_LIST_HEAD(&leaf->msg_list);
220 	}
221 	leaf->priority = msg->m_type;
222 
223 	if (rightmost)
224 		info->msg_tree_rightmost = &leaf->rb_node;
225 
226 	rb_link_node(&leaf->rb_node, parent, p);
227 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
228 insert_msg:
229 	info->attr.mq_curmsgs++;
230 	info->qsize += msg->m_ts;
231 	list_add_tail(&msg->m_list, &leaf->msg_list);
232 	return 0;
233 }
234 
235 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
236 				  struct mqueue_inode_info *info)
237 {
238 	struct rb_node *node = &leaf->rb_node;
239 
240 	if (info->msg_tree_rightmost == node)
241 		info->msg_tree_rightmost = rb_prev(node);
242 
243 	rb_erase(node, &info->msg_tree);
244 	if (info->node_cache)
245 		kfree(leaf);
246 	else
247 		info->node_cache = leaf;
248 }
249 
250 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
251 {
252 	struct rb_node *parent = NULL;
253 	struct posix_msg_tree_node *leaf;
254 	struct msg_msg *msg;
255 
256 try_again:
257 	/*
258 	 * During insert, low priorities go to the left and high to the
259 	 * right.  On receive, we want the highest priorities first, so
260 	 * walk all the way to the right.
261 	 */
262 	parent = info->msg_tree_rightmost;
263 	if (!parent) {
264 		if (info->attr.mq_curmsgs) {
265 			pr_warn_once("Inconsistency in POSIX message queue, "
266 				     "no tree element, but supposedly messages "
267 				     "should exist!\n");
268 			info->attr.mq_curmsgs = 0;
269 		}
270 		return NULL;
271 	}
272 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
273 	if (unlikely(list_empty(&leaf->msg_list))) {
274 		pr_warn_once("Inconsistency in POSIX message queue, "
275 			     "empty leaf node but we haven't implemented "
276 			     "lazy leaf delete!\n");
277 		msg_tree_erase(leaf, info);
278 		goto try_again;
279 	} else {
280 		msg = list_first_entry(&leaf->msg_list,
281 				       struct msg_msg, m_list);
282 		list_del(&msg->m_list);
283 		if (list_empty(&leaf->msg_list)) {
284 			msg_tree_erase(leaf, info);
285 		}
286 	}
287 	info->attr.mq_curmsgs--;
288 	info->qsize -= msg->m_ts;
289 	return msg;
290 }
291 
292 static struct inode *mqueue_get_inode(struct super_block *sb,
293 		struct ipc_namespace *ipc_ns, umode_t mode,
294 		struct mq_attr *attr)
295 {
296 	struct inode *inode;
297 	int ret = -ENOMEM;
298 
299 	inode = new_inode(sb);
300 	if (!inode)
301 		goto err;
302 
303 	inode->i_ino = get_next_ino();
304 	inode->i_mode = mode;
305 	inode->i_uid = current_fsuid();
306 	inode->i_gid = current_fsgid();
307 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
308 
309 	if (S_ISREG(mode)) {
310 		struct mqueue_inode_info *info;
311 		unsigned long mq_bytes, mq_treesize;
312 
313 		inode->i_fop = &mqueue_file_operations;
314 		inode->i_size = FILENT_SIZE;
315 		/* mqueue specific info */
316 		info = MQUEUE_I(inode);
317 		spin_lock_init(&info->lock);
318 		init_waitqueue_head(&info->wait_q);
319 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
320 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
321 		info->notify_owner = NULL;
322 		info->notify_user_ns = NULL;
323 		info->qsize = 0;
324 		info->ucounts = NULL;	/* set when all is ok */
325 		info->msg_tree = RB_ROOT;
326 		info->msg_tree_rightmost = NULL;
327 		info->node_cache = NULL;
328 		memset(&info->attr, 0, sizeof(info->attr));
329 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
330 					   ipc_ns->mq_msg_default);
331 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
332 					    ipc_ns->mq_msgsize_default);
333 		if (attr) {
334 			info->attr.mq_maxmsg = attr->mq_maxmsg;
335 			info->attr.mq_msgsize = attr->mq_msgsize;
336 		}
337 		/*
338 		 * We used to allocate a static array of pointers and account
339 		 * the size of that array as well as one msg_msg struct per
340 		 * possible message into the queue size. That's no longer
341 		 * accurate as the queue is now an rbtree and will grow and
342 		 * shrink depending on usage patterns.  We can, however, still
343 		 * account one msg_msg struct per message, but the nodes are
344 		 * allocated depending on priority usage, and most programs
345 		 * only use one, or a handful, of priorities.  However, since
346 		 * this is pinned memory, we need to assume worst case, so
347 		 * that means the min(mq_maxmsg, max_priorities) * struct
348 		 * posix_msg_tree_node.
349 		 */
350 
351 		ret = -EINVAL;
352 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
353 			goto out_inode;
354 		if (capable(CAP_SYS_RESOURCE)) {
355 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
356 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
357 				goto out_inode;
358 		} else {
359 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
360 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
361 				goto out_inode;
362 		}
363 		ret = -EOVERFLOW;
364 		/* check for overflow */
365 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
366 			goto out_inode;
367 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
368 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
369 			sizeof(struct posix_msg_tree_node);
370 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
371 		if (mq_bytes + mq_treesize < mq_bytes)
372 			goto out_inode;
373 		mq_bytes += mq_treesize;
374 		info->ucounts = get_ucounts(current_ucounts());
375 		if (info->ucounts) {
376 			long msgqueue;
377 
378 			spin_lock(&mq_lock);
379 			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380 			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
381 				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
382 				spin_unlock(&mq_lock);
383 				put_ucounts(info->ucounts);
384 				info->ucounts = NULL;
385 				/* mqueue_evict_inode() releases info->messages */
386 				ret = -EMFILE;
387 				goto out_inode;
388 			}
389 			spin_unlock(&mq_lock);
390 		}
391 	} else if (S_ISDIR(mode)) {
392 		inc_nlink(inode);
393 		/* Some things misbehave if size == 0 on a directory */
394 		inode->i_size = 2 * DIRENT_SIZE;
395 		inode->i_op = &mqueue_dir_inode_operations;
396 		inode->i_fop = &simple_dir_operations;
397 	}
398 
399 	return inode;
400 out_inode:
401 	iput(inode);
402 err:
403 	return ERR_PTR(ret);
404 }
405 
406 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
407 {
408 	struct inode *inode;
409 	struct ipc_namespace *ns = sb->s_fs_info;
410 
411 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
412 	sb->s_blocksize = PAGE_SIZE;
413 	sb->s_blocksize_bits = PAGE_SHIFT;
414 	sb->s_magic = MQUEUE_MAGIC;
415 	sb->s_op = &mqueue_super_ops;
416 
417 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
418 	if (IS_ERR(inode))
419 		return PTR_ERR(inode);
420 
421 	sb->s_root = d_make_root(inode);
422 	if (!sb->s_root)
423 		return -ENOMEM;
424 	return 0;
425 }
426 
427 static int mqueue_get_tree(struct fs_context *fc)
428 {
429 	struct mqueue_fs_context *ctx = fc->fs_private;
430 
431 	/*
432 	 * With a newly created ipc namespace, we don't need to do a search
433 	 * for an ipc namespace match, but we still need to set s_fs_info.
434 	 */
435 	if (ctx->newns) {
436 		fc->s_fs_info = ctx->ipc_ns;
437 		return get_tree_nodev(fc, mqueue_fill_super);
438 	}
439 	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
440 }
441 
442 static void mqueue_fs_context_free(struct fs_context *fc)
443 {
444 	struct mqueue_fs_context *ctx = fc->fs_private;
445 
446 	put_ipc_ns(ctx->ipc_ns);
447 	kfree(ctx);
448 }
449 
450 static int mqueue_init_fs_context(struct fs_context *fc)
451 {
452 	struct mqueue_fs_context *ctx;
453 
454 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
455 	if (!ctx)
456 		return -ENOMEM;
457 
458 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
459 	put_user_ns(fc->user_ns);
460 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
461 	fc->fs_private = ctx;
462 	fc->ops = &mqueue_fs_context_ops;
463 	return 0;
464 }
465 
466 /*
467  * mq_init_ns() is currently the only caller of mq_create_mount().
468  * So the ns parameter is always a newly created ipc namespace.
469  */
470 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
471 {
472 	struct mqueue_fs_context *ctx;
473 	struct fs_context *fc;
474 	struct vfsmount *mnt;
475 
476 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
477 	if (IS_ERR(fc))
478 		return ERR_CAST(fc);
479 
480 	ctx = fc->fs_private;
481 	ctx->newns = true;
482 	put_ipc_ns(ctx->ipc_ns);
483 	ctx->ipc_ns = get_ipc_ns(ns);
484 	put_user_ns(fc->user_ns);
485 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
486 
487 	mnt = fc_mount(fc);
488 	put_fs_context(fc);
489 	return mnt;
490 }
491 
492 static void init_once(void *foo)
493 {
494 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
495 
496 	inode_init_once(&p->vfs_inode);
497 }
498 
499 static struct inode *mqueue_alloc_inode(struct super_block *sb)
500 {
501 	struct mqueue_inode_info *ei;
502 
503 	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
504 	if (!ei)
505 		return NULL;
506 	return &ei->vfs_inode;
507 }
508 
509 static void mqueue_free_inode(struct inode *inode)
510 {
511 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
512 }
513 
514 static void mqueue_evict_inode(struct inode *inode)
515 {
516 	struct mqueue_inode_info *info;
517 	struct ipc_namespace *ipc_ns;
518 	struct msg_msg *msg, *nmsg;
519 	LIST_HEAD(tmp_msg);
520 
521 	clear_inode(inode);
522 
523 	if (S_ISDIR(inode->i_mode))
524 		return;
525 
526 	ipc_ns = get_ns_from_inode(inode);
527 	info = MQUEUE_I(inode);
528 	spin_lock(&info->lock);
529 	while ((msg = msg_get(info)) != NULL)
530 		list_add_tail(&msg->m_list, &tmp_msg);
531 	kfree(info->node_cache);
532 	spin_unlock(&info->lock);
533 
534 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
535 		list_del(&msg->m_list);
536 		free_msg(msg);
537 	}
538 
539 	if (info->ucounts) {
540 		unsigned long mq_bytes, mq_treesize;
541 
542 		/* Total amount of bytes accounted for the mqueue */
543 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
544 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
545 			sizeof(struct posix_msg_tree_node);
546 
547 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
548 					  info->attr.mq_msgsize);
549 
550 		spin_lock(&mq_lock);
551 		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
552 		/*
553 		 * get_ns_from_inode() ensures that the
554 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
555 		 * to which we now hold a reference, or it is NULL.
556 		 * We can't put it here under mq_lock, though.
557 		 */
558 		if (ipc_ns)
559 			ipc_ns->mq_queues_count--;
560 		spin_unlock(&mq_lock);
561 		put_ucounts(info->ucounts);
562 		info->ucounts = NULL;
563 	}
564 	if (ipc_ns)
565 		put_ipc_ns(ipc_ns);
566 }
567 
568 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
569 {
570 	struct inode *dir = dentry->d_parent->d_inode;
571 	struct inode *inode;
572 	struct mq_attr *attr = arg;
573 	int error;
574 	struct ipc_namespace *ipc_ns;
575 
576 	spin_lock(&mq_lock);
577 	ipc_ns = __get_ns_from_inode(dir);
578 	if (!ipc_ns) {
579 		error = -EACCES;
580 		goto out_unlock;
581 	}
582 
583 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
584 	    !capable(CAP_SYS_RESOURCE)) {
585 		error = -ENOSPC;
586 		goto out_unlock;
587 	}
588 	ipc_ns->mq_queues_count++;
589 	spin_unlock(&mq_lock);
590 
591 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
592 	if (IS_ERR(inode)) {
593 		error = PTR_ERR(inode);
594 		spin_lock(&mq_lock);
595 		ipc_ns->mq_queues_count--;
596 		goto out_unlock;
597 	}
598 
599 	put_ipc_ns(ipc_ns);
600 	dir->i_size += DIRENT_SIZE;
601 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
602 
603 	d_instantiate(dentry, inode);
604 	dget(dentry);
605 	return 0;
606 out_unlock:
607 	spin_unlock(&mq_lock);
608 	if (ipc_ns)
609 		put_ipc_ns(ipc_ns);
610 	return error;
611 }
612 
613 static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
614 			 struct dentry *dentry, umode_t mode, bool excl)
615 {
616 	return mqueue_create_attr(dentry, mode, NULL);
617 }
618 
619 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
620 {
621 	struct inode *inode = d_inode(dentry);
622 
623 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
624 	dir->i_size -= DIRENT_SIZE;
625 	drop_nlink(inode);
626 	dput(dentry);
627 	return 0;
628 }
629 
630 /*
631 *	This is routine for system read from queue file.
632 *	To avoid mess with doing here some sort of mq_receive we allow
633 *	to read only queue size & notification info (the only values
634 *	that are interesting from user point of view and aren't accessible
635 *	through std routines)
636 */
637 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
638 				size_t count, loff_t *off)
639 {
640 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
641 	char buffer[FILENT_SIZE];
642 	ssize_t ret;
643 
644 	spin_lock(&info->lock);
645 	snprintf(buffer, sizeof(buffer),
646 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
647 			info->qsize,
648 			info->notify_owner ? info->notify.sigev_notify : 0,
649 			(info->notify_owner &&
650 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
651 				info->notify.sigev_signo : 0,
652 			pid_vnr(info->notify_owner));
653 	spin_unlock(&info->lock);
654 	buffer[sizeof(buffer)-1] = '\0';
655 
656 	ret = simple_read_from_buffer(u_data, count, off, buffer,
657 				strlen(buffer));
658 	if (ret <= 0)
659 		return ret;
660 
661 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
662 	return ret;
663 }
664 
665 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
666 {
667 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
668 
669 	spin_lock(&info->lock);
670 	if (task_tgid(current) == info->notify_owner)
671 		remove_notification(info);
672 
673 	spin_unlock(&info->lock);
674 	return 0;
675 }
676 
677 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
678 {
679 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
680 	__poll_t retval = 0;
681 
682 	poll_wait(filp, &info->wait_q, poll_tab);
683 
684 	spin_lock(&info->lock);
685 	if (info->attr.mq_curmsgs)
686 		retval = EPOLLIN | EPOLLRDNORM;
687 
688 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
689 		retval |= EPOLLOUT | EPOLLWRNORM;
690 	spin_unlock(&info->lock);
691 
692 	return retval;
693 }
694 
695 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
696 static void wq_add(struct mqueue_inode_info *info, int sr,
697 			struct ext_wait_queue *ewp)
698 {
699 	struct ext_wait_queue *walk;
700 
701 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
702 		if (walk->task->prio <= current->prio) {
703 			list_add_tail(&ewp->list, &walk->list);
704 			return;
705 		}
706 	}
707 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
708 }
709 
710 /*
711  * Puts current task to sleep. Caller must hold queue lock. After return
712  * lock isn't held.
713  * sr: SEND or RECV
714  */
715 static int wq_sleep(struct mqueue_inode_info *info, int sr,
716 		    ktime_t *timeout, struct ext_wait_queue *ewp)
717 	__releases(&info->lock)
718 {
719 	int retval;
720 	signed long time;
721 
722 	wq_add(info, sr, ewp);
723 
724 	for (;;) {
725 		/* memory barrier not required, we hold info->lock */
726 		__set_current_state(TASK_INTERRUPTIBLE);
727 
728 		spin_unlock(&info->lock);
729 		time = schedule_hrtimeout_range_clock(timeout, 0,
730 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
731 
732 		if (READ_ONCE(ewp->state) == STATE_READY) {
733 			/* see MQ_BARRIER for purpose/pairing */
734 			smp_acquire__after_ctrl_dep();
735 			retval = 0;
736 			goto out;
737 		}
738 		spin_lock(&info->lock);
739 
740 		/* we hold info->lock, so no memory barrier required */
741 		if (READ_ONCE(ewp->state) == STATE_READY) {
742 			retval = 0;
743 			goto out_unlock;
744 		}
745 		if (signal_pending(current)) {
746 			retval = -ERESTARTSYS;
747 			break;
748 		}
749 		if (time == 0) {
750 			retval = -ETIMEDOUT;
751 			break;
752 		}
753 	}
754 	list_del(&ewp->list);
755 out_unlock:
756 	spin_unlock(&info->lock);
757 out:
758 	return retval;
759 }
760 
761 /*
762  * Returns waiting task that should be serviced first or NULL if none exists
763  */
764 static struct ext_wait_queue *wq_get_first_waiter(
765 		struct mqueue_inode_info *info, int sr)
766 {
767 	struct list_head *ptr;
768 
769 	ptr = info->e_wait_q[sr].list.prev;
770 	if (ptr == &info->e_wait_q[sr].list)
771 		return NULL;
772 	return list_entry(ptr, struct ext_wait_queue, list);
773 }
774 
775 
776 static inline void set_cookie(struct sk_buff *skb, char code)
777 {
778 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
779 }
780 
781 /*
782  * The next function is only to split too long sys_mq_timedsend
783  */
784 static void __do_notify(struct mqueue_inode_info *info)
785 {
786 	/* notification
787 	 * invoked when there is registered process and there isn't process
788 	 * waiting synchronously for message AND state of queue changed from
789 	 * empty to not empty. Here we are sure that no one is waiting
790 	 * synchronously. */
791 	if (info->notify_owner &&
792 	    info->attr.mq_curmsgs == 1) {
793 		switch (info->notify.sigev_notify) {
794 		case SIGEV_NONE:
795 			break;
796 		case SIGEV_SIGNAL: {
797 			struct kernel_siginfo sig_i;
798 			struct task_struct *task;
799 
800 			/* do_mq_notify() accepts sigev_signo == 0, why?? */
801 			if (!info->notify.sigev_signo)
802 				break;
803 
804 			clear_siginfo(&sig_i);
805 			sig_i.si_signo = info->notify.sigev_signo;
806 			sig_i.si_errno = 0;
807 			sig_i.si_code = SI_MESGQ;
808 			sig_i.si_value = info->notify.sigev_value;
809 			rcu_read_lock();
810 			/* map current pid/uid into info->owner's namespaces */
811 			sig_i.si_pid = task_tgid_nr_ns(current,
812 						ns_of_pid(info->notify_owner));
813 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
814 						current_uid());
815 			/*
816 			 * We can't use kill_pid_info(), this signal should
817 			 * bypass check_kill_permission(). It is from kernel
818 			 * but si_fromuser() can't know this.
819 			 * We do check the self_exec_id, to avoid sending
820 			 * signals to programs that don't expect them.
821 			 */
822 			task = pid_task(info->notify_owner, PIDTYPE_TGID);
823 			if (task && task->self_exec_id ==
824 						info->notify_self_exec_id) {
825 				do_send_sig_info(info->notify.sigev_signo,
826 						&sig_i, task, PIDTYPE_TGID);
827 			}
828 			rcu_read_unlock();
829 			break;
830 		}
831 		case SIGEV_THREAD:
832 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
833 			netlink_sendskb(info->notify_sock, info->notify_cookie);
834 			break;
835 		}
836 		/* after notification unregisters process */
837 		put_pid(info->notify_owner);
838 		put_user_ns(info->notify_user_ns);
839 		info->notify_owner = NULL;
840 		info->notify_user_ns = NULL;
841 	}
842 	wake_up(&info->wait_q);
843 }
844 
845 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
846 			   struct timespec64 *ts)
847 {
848 	if (get_timespec64(ts, u_abs_timeout))
849 		return -EFAULT;
850 	if (!timespec64_valid(ts))
851 		return -EINVAL;
852 	return 0;
853 }
854 
855 static void remove_notification(struct mqueue_inode_info *info)
856 {
857 	if (info->notify_owner != NULL &&
858 	    info->notify.sigev_notify == SIGEV_THREAD) {
859 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
860 		netlink_sendskb(info->notify_sock, info->notify_cookie);
861 	}
862 	put_pid(info->notify_owner);
863 	put_user_ns(info->notify_user_ns);
864 	info->notify_owner = NULL;
865 	info->notify_user_ns = NULL;
866 }
867 
868 static int prepare_open(struct dentry *dentry, int oflag, int ro,
869 			umode_t mode, struct filename *name,
870 			struct mq_attr *attr)
871 {
872 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
873 						  MAY_READ | MAY_WRITE };
874 	int acc;
875 
876 	if (d_really_is_negative(dentry)) {
877 		if (!(oflag & O_CREAT))
878 			return -ENOENT;
879 		if (ro)
880 			return ro;
881 		audit_inode_parent_hidden(name, dentry->d_parent);
882 		return vfs_mkobj(dentry, mode & ~current_umask(),
883 				  mqueue_create_attr, attr);
884 	}
885 	/* it already existed */
886 	audit_inode(name, dentry, 0);
887 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
888 		return -EEXIST;
889 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
890 		return -EINVAL;
891 	acc = oflag2acc[oflag & O_ACCMODE];
892 	return inode_permission(&init_user_ns, d_inode(dentry), acc);
893 }
894 
895 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
896 		      struct mq_attr *attr)
897 {
898 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
899 	struct dentry *root = mnt->mnt_root;
900 	struct filename *name;
901 	struct path path;
902 	int fd, error;
903 	int ro;
904 
905 	audit_mq_open(oflag, mode, attr);
906 
907 	if (IS_ERR(name = getname(u_name)))
908 		return PTR_ERR(name);
909 
910 	fd = get_unused_fd_flags(O_CLOEXEC);
911 	if (fd < 0)
912 		goto out_putname;
913 
914 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
915 	inode_lock(d_inode(root));
916 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
917 	if (IS_ERR(path.dentry)) {
918 		error = PTR_ERR(path.dentry);
919 		goto out_putfd;
920 	}
921 	path.mnt = mntget(mnt);
922 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
923 	if (!error) {
924 		struct file *file = dentry_open(&path, oflag, current_cred());
925 		if (!IS_ERR(file))
926 			fd_install(fd, file);
927 		else
928 			error = PTR_ERR(file);
929 	}
930 	path_put(&path);
931 out_putfd:
932 	if (error) {
933 		put_unused_fd(fd);
934 		fd = error;
935 	}
936 	inode_unlock(d_inode(root));
937 	if (!ro)
938 		mnt_drop_write(mnt);
939 out_putname:
940 	putname(name);
941 	return fd;
942 }
943 
944 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
945 		struct mq_attr __user *, u_attr)
946 {
947 	struct mq_attr attr;
948 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
949 		return -EFAULT;
950 
951 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
952 }
953 
954 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
955 {
956 	int err;
957 	struct filename *name;
958 	struct dentry *dentry;
959 	struct inode *inode = NULL;
960 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
961 	struct vfsmount *mnt = ipc_ns->mq_mnt;
962 
963 	name = getname(u_name);
964 	if (IS_ERR(name))
965 		return PTR_ERR(name);
966 
967 	audit_inode_parent_hidden(name, mnt->mnt_root);
968 	err = mnt_want_write(mnt);
969 	if (err)
970 		goto out_name;
971 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
972 	dentry = lookup_one_len(name->name, mnt->mnt_root,
973 				strlen(name->name));
974 	if (IS_ERR(dentry)) {
975 		err = PTR_ERR(dentry);
976 		goto out_unlock;
977 	}
978 
979 	inode = d_inode(dentry);
980 	if (!inode) {
981 		err = -ENOENT;
982 	} else {
983 		ihold(inode);
984 		err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
985 				 dentry, NULL);
986 	}
987 	dput(dentry);
988 
989 out_unlock:
990 	inode_unlock(d_inode(mnt->mnt_root));
991 	if (inode)
992 		iput(inode);
993 	mnt_drop_write(mnt);
994 out_name:
995 	putname(name);
996 
997 	return err;
998 }
999 
1000 /* Pipelined send and receive functions.
1001  *
1002  * If a receiver finds no waiting message, then it registers itself in the
1003  * list of waiting receivers. A sender checks that list before adding the new
1004  * message into the message array. If there is a waiting receiver, then it
1005  * bypasses the message array and directly hands the message over to the
1006  * receiver. The receiver accepts the message and returns without grabbing the
1007  * queue spinlock:
1008  *
1009  * - Set pointer to message.
1010  * - Queue the receiver task for later wakeup (without the info->lock).
1011  * - Update its state to STATE_READY. Now the receiver can continue.
1012  * - Wake up the process after the lock is dropped. Should the process wake up
1013  *   before this wakeup (due to a timeout or a signal) it will either see
1014  *   STATE_READY and continue or acquire the lock to check the state again.
1015  *
1016  * The same algorithm is used for senders.
1017  */
1018 
1019 static inline void __pipelined_op(struct wake_q_head *wake_q,
1020 				  struct mqueue_inode_info *info,
1021 				  struct ext_wait_queue *this)
1022 {
1023 	struct task_struct *task;
1024 
1025 	list_del(&this->list);
1026 	task = get_task_struct(this->task);
1027 
1028 	/* see MQ_BARRIER for purpose/pairing */
1029 	smp_store_release(&this->state, STATE_READY);
1030 	wake_q_add_safe(wake_q, task);
1031 }
1032 
1033 /* pipelined_send() - send a message directly to the task waiting in
1034  * sys_mq_timedreceive() (without inserting message into a queue).
1035  */
1036 static inline void pipelined_send(struct wake_q_head *wake_q,
1037 				  struct mqueue_inode_info *info,
1038 				  struct msg_msg *message,
1039 				  struct ext_wait_queue *receiver)
1040 {
1041 	receiver->msg = message;
1042 	__pipelined_op(wake_q, info, receiver);
1043 }
1044 
1045 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1046  * gets its message and put to the queue (we have one free place for sure). */
1047 static inline void pipelined_receive(struct wake_q_head *wake_q,
1048 				     struct mqueue_inode_info *info)
1049 {
1050 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1051 
1052 	if (!sender) {
1053 		/* for poll */
1054 		wake_up_interruptible(&info->wait_q);
1055 		return;
1056 	}
1057 	if (msg_insert(sender->msg, info))
1058 		return;
1059 
1060 	__pipelined_op(wake_q, info, sender);
1061 }
1062 
1063 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1064 		size_t msg_len, unsigned int msg_prio,
1065 		struct timespec64 *ts)
1066 {
1067 	struct fd f;
1068 	struct inode *inode;
1069 	struct ext_wait_queue wait;
1070 	struct ext_wait_queue *receiver;
1071 	struct msg_msg *msg_ptr;
1072 	struct mqueue_inode_info *info;
1073 	ktime_t expires, *timeout = NULL;
1074 	struct posix_msg_tree_node *new_leaf = NULL;
1075 	int ret = 0;
1076 	DEFINE_WAKE_Q(wake_q);
1077 
1078 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1079 		return -EINVAL;
1080 
1081 	if (ts) {
1082 		expires = timespec64_to_ktime(*ts);
1083 		timeout = &expires;
1084 	}
1085 
1086 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1087 
1088 	f = fdget(mqdes);
1089 	if (unlikely(!f.file)) {
1090 		ret = -EBADF;
1091 		goto out;
1092 	}
1093 
1094 	inode = file_inode(f.file);
1095 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1096 		ret = -EBADF;
1097 		goto out_fput;
1098 	}
1099 	info = MQUEUE_I(inode);
1100 	audit_file(f.file);
1101 
1102 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1103 		ret = -EBADF;
1104 		goto out_fput;
1105 	}
1106 
1107 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1108 		ret = -EMSGSIZE;
1109 		goto out_fput;
1110 	}
1111 
1112 	/* First try to allocate memory, before doing anything with
1113 	 * existing queues. */
1114 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1115 	if (IS_ERR(msg_ptr)) {
1116 		ret = PTR_ERR(msg_ptr);
1117 		goto out_fput;
1118 	}
1119 	msg_ptr->m_ts = msg_len;
1120 	msg_ptr->m_type = msg_prio;
1121 
1122 	/*
1123 	 * msg_insert really wants us to have a valid, spare node struct so
1124 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1125 	 * fall back to that if necessary.
1126 	 */
1127 	if (!info->node_cache)
1128 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1129 
1130 	spin_lock(&info->lock);
1131 
1132 	if (!info->node_cache && new_leaf) {
1133 		/* Save our speculative allocation into the cache */
1134 		INIT_LIST_HEAD(&new_leaf->msg_list);
1135 		info->node_cache = new_leaf;
1136 		new_leaf = NULL;
1137 	} else {
1138 		kfree(new_leaf);
1139 	}
1140 
1141 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1142 		if (f.file->f_flags & O_NONBLOCK) {
1143 			ret = -EAGAIN;
1144 		} else {
1145 			wait.task = current;
1146 			wait.msg = (void *) msg_ptr;
1147 
1148 			/* memory barrier not required, we hold info->lock */
1149 			WRITE_ONCE(wait.state, STATE_NONE);
1150 			ret = wq_sleep(info, SEND, timeout, &wait);
1151 			/*
1152 			 * wq_sleep must be called with info->lock held, and
1153 			 * returns with the lock released
1154 			 */
1155 			goto out_free;
1156 		}
1157 	} else {
1158 		receiver = wq_get_first_waiter(info, RECV);
1159 		if (receiver) {
1160 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1161 		} else {
1162 			/* adds message to the queue */
1163 			ret = msg_insert(msg_ptr, info);
1164 			if (ret)
1165 				goto out_unlock;
1166 			__do_notify(info);
1167 		}
1168 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1169 				current_time(inode);
1170 	}
1171 out_unlock:
1172 	spin_unlock(&info->lock);
1173 	wake_up_q(&wake_q);
1174 out_free:
1175 	if (ret)
1176 		free_msg(msg_ptr);
1177 out_fput:
1178 	fdput(f);
1179 out:
1180 	return ret;
1181 }
1182 
1183 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1184 		size_t msg_len, unsigned int __user *u_msg_prio,
1185 		struct timespec64 *ts)
1186 {
1187 	ssize_t ret;
1188 	struct msg_msg *msg_ptr;
1189 	struct fd f;
1190 	struct inode *inode;
1191 	struct mqueue_inode_info *info;
1192 	struct ext_wait_queue wait;
1193 	ktime_t expires, *timeout = NULL;
1194 	struct posix_msg_tree_node *new_leaf = NULL;
1195 
1196 	if (ts) {
1197 		expires = timespec64_to_ktime(*ts);
1198 		timeout = &expires;
1199 	}
1200 
1201 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1202 
1203 	f = fdget(mqdes);
1204 	if (unlikely(!f.file)) {
1205 		ret = -EBADF;
1206 		goto out;
1207 	}
1208 
1209 	inode = file_inode(f.file);
1210 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1211 		ret = -EBADF;
1212 		goto out_fput;
1213 	}
1214 	info = MQUEUE_I(inode);
1215 	audit_file(f.file);
1216 
1217 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1218 		ret = -EBADF;
1219 		goto out_fput;
1220 	}
1221 
1222 	/* checks if buffer is big enough */
1223 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1224 		ret = -EMSGSIZE;
1225 		goto out_fput;
1226 	}
1227 
1228 	/*
1229 	 * msg_insert really wants us to have a valid, spare node struct so
1230 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1231 	 * fall back to that if necessary.
1232 	 */
1233 	if (!info->node_cache)
1234 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1235 
1236 	spin_lock(&info->lock);
1237 
1238 	if (!info->node_cache && new_leaf) {
1239 		/* Save our speculative allocation into the cache */
1240 		INIT_LIST_HEAD(&new_leaf->msg_list);
1241 		info->node_cache = new_leaf;
1242 	} else {
1243 		kfree(new_leaf);
1244 	}
1245 
1246 	if (info->attr.mq_curmsgs == 0) {
1247 		if (f.file->f_flags & O_NONBLOCK) {
1248 			spin_unlock(&info->lock);
1249 			ret = -EAGAIN;
1250 		} else {
1251 			wait.task = current;
1252 
1253 			/* memory barrier not required, we hold info->lock */
1254 			WRITE_ONCE(wait.state, STATE_NONE);
1255 			ret = wq_sleep(info, RECV, timeout, &wait);
1256 			msg_ptr = wait.msg;
1257 		}
1258 	} else {
1259 		DEFINE_WAKE_Q(wake_q);
1260 
1261 		msg_ptr = msg_get(info);
1262 
1263 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1264 				current_time(inode);
1265 
1266 		/* There is now free space in queue. */
1267 		pipelined_receive(&wake_q, info);
1268 		spin_unlock(&info->lock);
1269 		wake_up_q(&wake_q);
1270 		ret = 0;
1271 	}
1272 	if (ret == 0) {
1273 		ret = msg_ptr->m_ts;
1274 
1275 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1276 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1277 			ret = -EFAULT;
1278 		}
1279 		free_msg(msg_ptr);
1280 	}
1281 out_fput:
1282 	fdput(f);
1283 out:
1284 	return ret;
1285 }
1286 
1287 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1288 		size_t, msg_len, unsigned int, msg_prio,
1289 		const struct __kernel_timespec __user *, u_abs_timeout)
1290 {
1291 	struct timespec64 ts, *p = NULL;
1292 	if (u_abs_timeout) {
1293 		int res = prepare_timeout(u_abs_timeout, &ts);
1294 		if (res)
1295 			return res;
1296 		p = &ts;
1297 	}
1298 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1299 }
1300 
1301 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1302 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1303 		const struct __kernel_timespec __user *, u_abs_timeout)
1304 {
1305 	struct timespec64 ts, *p = NULL;
1306 	if (u_abs_timeout) {
1307 		int res = prepare_timeout(u_abs_timeout, &ts);
1308 		if (res)
1309 			return res;
1310 		p = &ts;
1311 	}
1312 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1313 }
1314 
1315 /*
1316  * Notes: the case when user wants us to deregister (with NULL as pointer)
1317  * and he isn't currently owner of notification, will be silently discarded.
1318  * It isn't explicitly defined in the POSIX.
1319  */
1320 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1321 {
1322 	int ret;
1323 	struct fd f;
1324 	struct sock *sock;
1325 	struct inode *inode;
1326 	struct mqueue_inode_info *info;
1327 	struct sk_buff *nc;
1328 
1329 	audit_mq_notify(mqdes, notification);
1330 
1331 	nc = NULL;
1332 	sock = NULL;
1333 	if (notification != NULL) {
1334 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1335 			     notification->sigev_notify != SIGEV_SIGNAL &&
1336 			     notification->sigev_notify != SIGEV_THREAD))
1337 			return -EINVAL;
1338 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1339 			!valid_signal(notification->sigev_signo)) {
1340 			return -EINVAL;
1341 		}
1342 		if (notification->sigev_notify == SIGEV_THREAD) {
1343 			long timeo;
1344 
1345 			/* create the notify skb */
1346 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1347 			if (!nc)
1348 				return -ENOMEM;
1349 
1350 			if (copy_from_user(nc->data,
1351 					notification->sigev_value.sival_ptr,
1352 					NOTIFY_COOKIE_LEN)) {
1353 				ret = -EFAULT;
1354 				goto free_skb;
1355 			}
1356 
1357 			/* TODO: add a header? */
1358 			skb_put(nc, NOTIFY_COOKIE_LEN);
1359 			/* and attach it to the socket */
1360 retry:
1361 			f = fdget(notification->sigev_signo);
1362 			if (!f.file) {
1363 				ret = -EBADF;
1364 				goto out;
1365 			}
1366 			sock = netlink_getsockbyfilp(f.file);
1367 			fdput(f);
1368 			if (IS_ERR(sock)) {
1369 				ret = PTR_ERR(sock);
1370 				goto free_skb;
1371 			}
1372 
1373 			timeo = MAX_SCHEDULE_TIMEOUT;
1374 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1375 			if (ret == 1) {
1376 				sock = NULL;
1377 				goto retry;
1378 			}
1379 			if (ret)
1380 				return ret;
1381 		}
1382 	}
1383 
1384 	f = fdget(mqdes);
1385 	if (!f.file) {
1386 		ret = -EBADF;
1387 		goto out;
1388 	}
1389 
1390 	inode = file_inode(f.file);
1391 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1392 		ret = -EBADF;
1393 		goto out_fput;
1394 	}
1395 	info = MQUEUE_I(inode);
1396 
1397 	ret = 0;
1398 	spin_lock(&info->lock);
1399 	if (notification == NULL) {
1400 		if (info->notify_owner == task_tgid(current)) {
1401 			remove_notification(info);
1402 			inode->i_atime = inode->i_ctime = current_time(inode);
1403 		}
1404 	} else if (info->notify_owner != NULL) {
1405 		ret = -EBUSY;
1406 	} else {
1407 		switch (notification->sigev_notify) {
1408 		case SIGEV_NONE:
1409 			info->notify.sigev_notify = SIGEV_NONE;
1410 			break;
1411 		case SIGEV_THREAD:
1412 			info->notify_sock = sock;
1413 			info->notify_cookie = nc;
1414 			sock = NULL;
1415 			nc = NULL;
1416 			info->notify.sigev_notify = SIGEV_THREAD;
1417 			break;
1418 		case SIGEV_SIGNAL:
1419 			info->notify.sigev_signo = notification->sigev_signo;
1420 			info->notify.sigev_value = notification->sigev_value;
1421 			info->notify.sigev_notify = SIGEV_SIGNAL;
1422 			info->notify_self_exec_id = current->self_exec_id;
1423 			break;
1424 		}
1425 
1426 		info->notify_owner = get_pid(task_tgid(current));
1427 		info->notify_user_ns = get_user_ns(current_user_ns());
1428 		inode->i_atime = inode->i_ctime = current_time(inode);
1429 	}
1430 	spin_unlock(&info->lock);
1431 out_fput:
1432 	fdput(f);
1433 out:
1434 	if (sock)
1435 		netlink_detachskb(sock, nc);
1436 	else
1437 free_skb:
1438 		dev_kfree_skb(nc);
1439 
1440 	return ret;
1441 }
1442 
1443 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1444 		const struct sigevent __user *, u_notification)
1445 {
1446 	struct sigevent n, *p = NULL;
1447 	if (u_notification) {
1448 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1449 			return -EFAULT;
1450 		p = &n;
1451 	}
1452 	return do_mq_notify(mqdes, p);
1453 }
1454 
1455 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1456 {
1457 	struct fd f;
1458 	struct inode *inode;
1459 	struct mqueue_inode_info *info;
1460 
1461 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1462 		return -EINVAL;
1463 
1464 	f = fdget(mqdes);
1465 	if (!f.file)
1466 		return -EBADF;
1467 
1468 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1469 		fdput(f);
1470 		return -EBADF;
1471 	}
1472 
1473 	inode = file_inode(f.file);
1474 	info = MQUEUE_I(inode);
1475 
1476 	spin_lock(&info->lock);
1477 
1478 	if (old) {
1479 		*old = info->attr;
1480 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1481 	}
1482 	if (new) {
1483 		audit_mq_getsetattr(mqdes, new);
1484 		spin_lock(&f.file->f_lock);
1485 		if (new->mq_flags & O_NONBLOCK)
1486 			f.file->f_flags |= O_NONBLOCK;
1487 		else
1488 			f.file->f_flags &= ~O_NONBLOCK;
1489 		spin_unlock(&f.file->f_lock);
1490 
1491 		inode->i_atime = inode->i_ctime = current_time(inode);
1492 	}
1493 
1494 	spin_unlock(&info->lock);
1495 	fdput(f);
1496 	return 0;
1497 }
1498 
1499 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1500 		const struct mq_attr __user *, u_mqstat,
1501 		struct mq_attr __user *, u_omqstat)
1502 {
1503 	int ret;
1504 	struct mq_attr mqstat, omqstat;
1505 	struct mq_attr *new = NULL, *old = NULL;
1506 
1507 	if (u_mqstat) {
1508 		new = &mqstat;
1509 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1510 			return -EFAULT;
1511 	}
1512 	if (u_omqstat)
1513 		old = &omqstat;
1514 
1515 	ret = do_mq_getsetattr(mqdes, new, old);
1516 	if (ret || !old)
1517 		return ret;
1518 
1519 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1520 		return -EFAULT;
1521 	return 0;
1522 }
1523 
1524 #ifdef CONFIG_COMPAT
1525 
1526 struct compat_mq_attr {
1527 	compat_long_t mq_flags;      /* message queue flags		     */
1528 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1529 	compat_long_t mq_msgsize;    /* maximum message size		     */
1530 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1531 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1532 };
1533 
1534 static inline int get_compat_mq_attr(struct mq_attr *attr,
1535 			const struct compat_mq_attr __user *uattr)
1536 {
1537 	struct compat_mq_attr v;
1538 
1539 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1540 		return -EFAULT;
1541 
1542 	memset(attr, 0, sizeof(*attr));
1543 	attr->mq_flags = v.mq_flags;
1544 	attr->mq_maxmsg = v.mq_maxmsg;
1545 	attr->mq_msgsize = v.mq_msgsize;
1546 	attr->mq_curmsgs = v.mq_curmsgs;
1547 	return 0;
1548 }
1549 
1550 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1551 			struct compat_mq_attr __user *uattr)
1552 {
1553 	struct compat_mq_attr v;
1554 
1555 	memset(&v, 0, sizeof(v));
1556 	v.mq_flags = attr->mq_flags;
1557 	v.mq_maxmsg = attr->mq_maxmsg;
1558 	v.mq_msgsize = attr->mq_msgsize;
1559 	v.mq_curmsgs = attr->mq_curmsgs;
1560 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1561 		return -EFAULT;
1562 	return 0;
1563 }
1564 
1565 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1566 		       int, oflag, compat_mode_t, mode,
1567 		       struct compat_mq_attr __user *, u_attr)
1568 {
1569 	struct mq_attr attr, *p = NULL;
1570 	if (u_attr && oflag & O_CREAT) {
1571 		p = &attr;
1572 		if (get_compat_mq_attr(&attr, u_attr))
1573 			return -EFAULT;
1574 	}
1575 	return do_mq_open(u_name, oflag, mode, p);
1576 }
1577 
1578 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1579 		       const struct compat_sigevent __user *, u_notification)
1580 {
1581 	struct sigevent n, *p = NULL;
1582 	if (u_notification) {
1583 		if (get_compat_sigevent(&n, u_notification))
1584 			return -EFAULT;
1585 		if (n.sigev_notify == SIGEV_THREAD)
1586 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1587 		p = &n;
1588 	}
1589 	return do_mq_notify(mqdes, p);
1590 }
1591 
1592 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1593 		       const struct compat_mq_attr __user *, u_mqstat,
1594 		       struct compat_mq_attr __user *, u_omqstat)
1595 {
1596 	int ret;
1597 	struct mq_attr mqstat, omqstat;
1598 	struct mq_attr *new = NULL, *old = NULL;
1599 
1600 	if (u_mqstat) {
1601 		new = &mqstat;
1602 		if (get_compat_mq_attr(new, u_mqstat))
1603 			return -EFAULT;
1604 	}
1605 	if (u_omqstat)
1606 		old = &omqstat;
1607 
1608 	ret = do_mq_getsetattr(mqdes, new, old);
1609 	if (ret || !old)
1610 		return ret;
1611 
1612 	if (put_compat_mq_attr(old, u_omqstat))
1613 		return -EFAULT;
1614 	return 0;
1615 }
1616 #endif
1617 
1618 #ifdef CONFIG_COMPAT_32BIT_TIME
1619 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1620 				   struct timespec64 *ts)
1621 {
1622 	if (get_old_timespec32(ts, p))
1623 		return -EFAULT;
1624 	if (!timespec64_valid(ts))
1625 		return -EINVAL;
1626 	return 0;
1627 }
1628 
1629 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1630 		const char __user *, u_msg_ptr,
1631 		unsigned int, msg_len, unsigned int, msg_prio,
1632 		const struct old_timespec32 __user *, u_abs_timeout)
1633 {
1634 	struct timespec64 ts, *p = NULL;
1635 	if (u_abs_timeout) {
1636 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1637 		if (res)
1638 			return res;
1639 		p = &ts;
1640 	}
1641 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1642 }
1643 
1644 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1645 		char __user *, u_msg_ptr,
1646 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1647 		const struct old_timespec32 __user *, u_abs_timeout)
1648 {
1649 	struct timespec64 ts, *p = NULL;
1650 	if (u_abs_timeout) {
1651 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1652 		if (res)
1653 			return res;
1654 		p = &ts;
1655 	}
1656 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1657 }
1658 #endif
1659 
1660 static const struct inode_operations mqueue_dir_inode_operations = {
1661 	.lookup = simple_lookup,
1662 	.create = mqueue_create,
1663 	.unlink = mqueue_unlink,
1664 };
1665 
1666 static const struct file_operations mqueue_file_operations = {
1667 	.flush = mqueue_flush_file,
1668 	.poll = mqueue_poll_file,
1669 	.read = mqueue_read_file,
1670 	.llseek = default_llseek,
1671 };
1672 
1673 static const struct super_operations mqueue_super_ops = {
1674 	.alloc_inode = mqueue_alloc_inode,
1675 	.free_inode = mqueue_free_inode,
1676 	.evict_inode = mqueue_evict_inode,
1677 	.statfs = simple_statfs,
1678 };
1679 
1680 static const struct fs_context_operations mqueue_fs_context_ops = {
1681 	.free		= mqueue_fs_context_free,
1682 	.get_tree	= mqueue_get_tree,
1683 };
1684 
1685 static struct file_system_type mqueue_fs_type = {
1686 	.name			= "mqueue",
1687 	.init_fs_context	= mqueue_init_fs_context,
1688 	.kill_sb		= kill_litter_super,
1689 	.fs_flags		= FS_USERNS_MOUNT,
1690 };
1691 
1692 int mq_init_ns(struct ipc_namespace *ns)
1693 {
1694 	struct vfsmount *m;
1695 
1696 	ns->mq_queues_count  = 0;
1697 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1698 	ns->mq_msg_max       = DFLT_MSGMAX;
1699 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1700 	ns->mq_msg_default   = DFLT_MSG;
1701 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1702 
1703 	m = mq_create_mount(ns);
1704 	if (IS_ERR(m))
1705 		return PTR_ERR(m);
1706 	ns->mq_mnt = m;
1707 	return 0;
1708 }
1709 
1710 void mq_clear_sbinfo(struct ipc_namespace *ns)
1711 {
1712 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1713 }
1714 
1715 void mq_put_mnt(struct ipc_namespace *ns)
1716 {
1717 	kern_unmount(ns->mq_mnt);
1718 }
1719 
1720 static int __init init_mqueue_fs(void)
1721 {
1722 	int error;
1723 
1724 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1725 				sizeof(struct mqueue_inode_info), 0,
1726 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1727 	if (mqueue_inode_cachep == NULL)
1728 		return -ENOMEM;
1729 
1730 	/* ignore failures - they are not fatal */
1731 	mq_sysctl_table = mq_register_sysctl_table();
1732 
1733 	error = register_filesystem(&mqueue_fs_type);
1734 	if (error)
1735 		goto out_sysctl;
1736 
1737 	spin_lock_init(&mq_lock);
1738 
1739 	error = mq_init_ns(&init_ipc_ns);
1740 	if (error)
1741 		goto out_filesystem;
1742 
1743 	return 0;
1744 
1745 out_filesystem:
1746 	unregister_filesystem(&mqueue_fs_type);
1747 out_sysctl:
1748 	if (mq_sysctl_table)
1749 		unregister_sysctl_table(mq_sysctl_table);
1750 	kmem_cache_destroy(mqueue_inode_cachep);
1751 	return error;
1752 }
1753 
1754 device_initcall(init_mqueue_fs);
1755