1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 bool newns; /* Set if newly created ipc namespace */ 49 }; 50 51 #define MQUEUE_MAGIC 0x19800202 52 #define DIRENT_SIZE 20 53 #define FILENT_SIZE 80 54 55 #define SEND 0 56 #define RECV 1 57 58 #define STATE_NONE 0 59 #define STATE_READY 1 60 61 struct posix_msg_tree_node { 62 struct rb_node rb_node; 63 struct list_head msg_list; 64 int priority; 65 }; 66 67 /* 68 * Locking: 69 * 70 * Accesses to a message queue are synchronized by acquiring info->lock. 71 * 72 * There are two notable exceptions: 73 * - The actual wakeup of a sleeping task is performed using the wake_q 74 * framework. info->lock is already released when wake_up_q is called. 75 * - The exit codepaths after sleeping check ext_wait_queue->state without 76 * any locks. If it is STATE_READY, then the syscall is completed without 77 * acquiring info->lock. 78 * 79 * MQ_BARRIER: 80 * To achieve proper release/acquire memory barrier pairing, the state is set to 81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 83 * 84 * This prevents the following races: 85 * 86 * 1) With the simple wake_q_add(), the task could be gone already before 87 * the increase of the reference happens 88 * Thread A 89 * Thread B 90 * WRITE_ONCE(wait.state, STATE_NONE); 91 * schedule_hrtimeout() 92 * wake_q_add(A) 93 * if (cmpxchg()) // success 94 * ->state = STATE_READY (reordered) 95 * <timeout returns> 96 * if (wait.state == STATE_READY) return; 97 * sysret to user space 98 * sys_exit() 99 * get_task_struct() // UaF 100 * 101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 102 * the smp_store_release() that does ->state = STATE_READY. 103 * 104 * 2) Without proper _release/_acquire barriers, the woken up task 105 * could read stale data 106 * 107 * Thread A 108 * Thread B 109 * do_mq_timedreceive 110 * WRITE_ONCE(wait.state, STATE_NONE); 111 * schedule_hrtimeout() 112 * state = STATE_READY; 113 * <timeout returns> 114 * if (wait.state == STATE_READY) return; 115 * msg_ptr = wait.msg; // Access to stale data! 116 * receiver->msg = message; (reordered) 117 * 118 * Solution: use _release and _acquire barriers. 119 * 120 * 3) There is intentionally no barrier when setting current->state 121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 122 * release memory barrier, and the wakeup is triggered when holding 123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 124 * acquire memory barrier. 125 */ 126 127 struct ext_wait_queue { /* queue of sleeping tasks */ 128 struct task_struct *task; 129 struct list_head list; 130 struct msg_msg *msg; /* ptr of loaded message */ 131 int state; /* one of STATE_* values */ 132 }; 133 134 struct mqueue_inode_info { 135 spinlock_t lock; 136 struct inode vfs_inode; 137 wait_queue_head_t wait_q; 138 139 struct rb_root msg_tree; 140 struct rb_node *msg_tree_rightmost; 141 struct posix_msg_tree_node *node_cache; 142 struct mq_attr attr; 143 144 struct sigevent notify; 145 struct pid *notify_owner; 146 u32 notify_self_exec_id; 147 struct user_namespace *notify_user_ns; 148 struct ucounts *ucounts; /* user who created, for accounting */ 149 struct sock *notify_sock; 150 struct sk_buff *notify_cookie; 151 152 /* for tasks waiting for free space and messages, respectively */ 153 struct ext_wait_queue e_wait_q[2]; 154 155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 156 }; 157 158 static struct file_system_type mqueue_fs_type; 159 static const struct inode_operations mqueue_dir_inode_operations; 160 static const struct file_operations mqueue_file_operations; 161 static const struct super_operations mqueue_super_ops; 162 static const struct fs_context_operations mqueue_fs_context_ops; 163 static void remove_notification(struct mqueue_inode_info *info); 164 165 static struct kmem_cache *mqueue_inode_cachep; 166 167 static struct ctl_table_header *mq_sysctl_table; 168 169 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 170 { 171 return container_of(inode, struct mqueue_inode_info, vfs_inode); 172 } 173 174 /* 175 * This routine should be called with the mq_lock held. 176 */ 177 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 178 { 179 return get_ipc_ns(inode->i_sb->s_fs_info); 180 } 181 182 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 183 { 184 struct ipc_namespace *ns; 185 186 spin_lock(&mq_lock); 187 ns = __get_ns_from_inode(inode); 188 spin_unlock(&mq_lock); 189 return ns; 190 } 191 192 /* Auxiliary functions to manipulate messages' list */ 193 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 194 { 195 struct rb_node **p, *parent = NULL; 196 struct posix_msg_tree_node *leaf; 197 bool rightmost = true; 198 199 p = &info->msg_tree.rb_node; 200 while (*p) { 201 parent = *p; 202 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 203 204 if (likely(leaf->priority == msg->m_type)) 205 goto insert_msg; 206 else if (msg->m_type < leaf->priority) { 207 p = &(*p)->rb_left; 208 rightmost = false; 209 } else 210 p = &(*p)->rb_right; 211 } 212 if (info->node_cache) { 213 leaf = info->node_cache; 214 info->node_cache = NULL; 215 } else { 216 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 217 if (!leaf) 218 return -ENOMEM; 219 INIT_LIST_HEAD(&leaf->msg_list); 220 } 221 leaf->priority = msg->m_type; 222 223 if (rightmost) 224 info->msg_tree_rightmost = &leaf->rb_node; 225 226 rb_link_node(&leaf->rb_node, parent, p); 227 rb_insert_color(&leaf->rb_node, &info->msg_tree); 228 insert_msg: 229 info->attr.mq_curmsgs++; 230 info->qsize += msg->m_ts; 231 list_add_tail(&msg->m_list, &leaf->msg_list); 232 return 0; 233 } 234 235 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 236 struct mqueue_inode_info *info) 237 { 238 struct rb_node *node = &leaf->rb_node; 239 240 if (info->msg_tree_rightmost == node) 241 info->msg_tree_rightmost = rb_prev(node); 242 243 rb_erase(node, &info->msg_tree); 244 if (info->node_cache) 245 kfree(leaf); 246 else 247 info->node_cache = leaf; 248 } 249 250 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 251 { 252 struct rb_node *parent = NULL; 253 struct posix_msg_tree_node *leaf; 254 struct msg_msg *msg; 255 256 try_again: 257 /* 258 * During insert, low priorities go to the left and high to the 259 * right. On receive, we want the highest priorities first, so 260 * walk all the way to the right. 261 */ 262 parent = info->msg_tree_rightmost; 263 if (!parent) { 264 if (info->attr.mq_curmsgs) { 265 pr_warn_once("Inconsistency in POSIX message queue, " 266 "no tree element, but supposedly messages " 267 "should exist!\n"); 268 info->attr.mq_curmsgs = 0; 269 } 270 return NULL; 271 } 272 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 273 if (unlikely(list_empty(&leaf->msg_list))) { 274 pr_warn_once("Inconsistency in POSIX message queue, " 275 "empty leaf node but we haven't implemented " 276 "lazy leaf delete!\n"); 277 msg_tree_erase(leaf, info); 278 goto try_again; 279 } else { 280 msg = list_first_entry(&leaf->msg_list, 281 struct msg_msg, m_list); 282 list_del(&msg->m_list); 283 if (list_empty(&leaf->msg_list)) { 284 msg_tree_erase(leaf, info); 285 } 286 } 287 info->attr.mq_curmsgs--; 288 info->qsize -= msg->m_ts; 289 return msg; 290 } 291 292 static struct inode *mqueue_get_inode(struct super_block *sb, 293 struct ipc_namespace *ipc_ns, umode_t mode, 294 struct mq_attr *attr) 295 { 296 struct inode *inode; 297 int ret = -ENOMEM; 298 299 inode = new_inode(sb); 300 if (!inode) 301 goto err; 302 303 inode->i_ino = get_next_ino(); 304 inode->i_mode = mode; 305 inode->i_uid = current_fsuid(); 306 inode->i_gid = current_fsgid(); 307 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 308 309 if (S_ISREG(mode)) { 310 struct mqueue_inode_info *info; 311 unsigned long mq_bytes, mq_treesize; 312 313 inode->i_fop = &mqueue_file_operations; 314 inode->i_size = FILENT_SIZE; 315 /* mqueue specific info */ 316 info = MQUEUE_I(inode); 317 spin_lock_init(&info->lock); 318 init_waitqueue_head(&info->wait_q); 319 INIT_LIST_HEAD(&info->e_wait_q[0].list); 320 INIT_LIST_HEAD(&info->e_wait_q[1].list); 321 info->notify_owner = NULL; 322 info->notify_user_ns = NULL; 323 info->qsize = 0; 324 info->ucounts = NULL; /* set when all is ok */ 325 info->msg_tree = RB_ROOT; 326 info->msg_tree_rightmost = NULL; 327 info->node_cache = NULL; 328 memset(&info->attr, 0, sizeof(info->attr)); 329 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 330 ipc_ns->mq_msg_default); 331 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 332 ipc_ns->mq_msgsize_default); 333 if (attr) { 334 info->attr.mq_maxmsg = attr->mq_maxmsg; 335 info->attr.mq_msgsize = attr->mq_msgsize; 336 } 337 /* 338 * We used to allocate a static array of pointers and account 339 * the size of that array as well as one msg_msg struct per 340 * possible message into the queue size. That's no longer 341 * accurate as the queue is now an rbtree and will grow and 342 * shrink depending on usage patterns. We can, however, still 343 * account one msg_msg struct per message, but the nodes are 344 * allocated depending on priority usage, and most programs 345 * only use one, or a handful, of priorities. However, since 346 * this is pinned memory, we need to assume worst case, so 347 * that means the min(mq_maxmsg, max_priorities) * struct 348 * posix_msg_tree_node. 349 */ 350 351 ret = -EINVAL; 352 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 353 goto out_inode; 354 if (capable(CAP_SYS_RESOURCE)) { 355 if (info->attr.mq_maxmsg > HARD_MSGMAX || 356 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 357 goto out_inode; 358 } else { 359 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 360 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 361 goto out_inode; 362 } 363 ret = -EOVERFLOW; 364 /* check for overflow */ 365 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 366 goto out_inode; 367 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 368 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 369 sizeof(struct posix_msg_tree_node); 370 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 371 if (mq_bytes + mq_treesize < mq_bytes) 372 goto out_inode; 373 mq_bytes += mq_treesize; 374 info->ucounts = get_ucounts(current_ucounts()); 375 if (info->ucounts) { 376 long msgqueue; 377 378 spin_lock(&mq_lock); 379 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 380 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { 381 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 382 spin_unlock(&mq_lock); 383 put_ucounts(info->ucounts); 384 info->ucounts = NULL; 385 /* mqueue_evict_inode() releases info->messages */ 386 ret = -EMFILE; 387 goto out_inode; 388 } 389 spin_unlock(&mq_lock); 390 } 391 } else if (S_ISDIR(mode)) { 392 inc_nlink(inode); 393 /* Some things misbehave if size == 0 on a directory */ 394 inode->i_size = 2 * DIRENT_SIZE; 395 inode->i_op = &mqueue_dir_inode_operations; 396 inode->i_fop = &simple_dir_operations; 397 } 398 399 return inode; 400 out_inode: 401 iput(inode); 402 err: 403 return ERR_PTR(ret); 404 } 405 406 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 407 { 408 struct inode *inode; 409 struct ipc_namespace *ns = sb->s_fs_info; 410 411 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 412 sb->s_blocksize = PAGE_SIZE; 413 sb->s_blocksize_bits = PAGE_SHIFT; 414 sb->s_magic = MQUEUE_MAGIC; 415 sb->s_op = &mqueue_super_ops; 416 417 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 418 if (IS_ERR(inode)) 419 return PTR_ERR(inode); 420 421 sb->s_root = d_make_root(inode); 422 if (!sb->s_root) 423 return -ENOMEM; 424 return 0; 425 } 426 427 static int mqueue_get_tree(struct fs_context *fc) 428 { 429 struct mqueue_fs_context *ctx = fc->fs_private; 430 431 /* 432 * With a newly created ipc namespace, we don't need to do a search 433 * for an ipc namespace match, but we still need to set s_fs_info. 434 */ 435 if (ctx->newns) { 436 fc->s_fs_info = ctx->ipc_ns; 437 return get_tree_nodev(fc, mqueue_fill_super); 438 } 439 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 440 } 441 442 static void mqueue_fs_context_free(struct fs_context *fc) 443 { 444 struct mqueue_fs_context *ctx = fc->fs_private; 445 446 put_ipc_ns(ctx->ipc_ns); 447 kfree(ctx); 448 } 449 450 static int mqueue_init_fs_context(struct fs_context *fc) 451 { 452 struct mqueue_fs_context *ctx; 453 454 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 455 if (!ctx) 456 return -ENOMEM; 457 458 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 459 put_user_ns(fc->user_ns); 460 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 461 fc->fs_private = ctx; 462 fc->ops = &mqueue_fs_context_ops; 463 return 0; 464 } 465 466 /* 467 * mq_init_ns() is currently the only caller of mq_create_mount(). 468 * So the ns parameter is always a newly created ipc namespace. 469 */ 470 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 471 { 472 struct mqueue_fs_context *ctx; 473 struct fs_context *fc; 474 struct vfsmount *mnt; 475 476 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 477 if (IS_ERR(fc)) 478 return ERR_CAST(fc); 479 480 ctx = fc->fs_private; 481 ctx->newns = true; 482 put_ipc_ns(ctx->ipc_ns); 483 ctx->ipc_ns = get_ipc_ns(ns); 484 put_user_ns(fc->user_ns); 485 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 486 487 mnt = fc_mount(fc); 488 put_fs_context(fc); 489 return mnt; 490 } 491 492 static void init_once(void *foo) 493 { 494 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 495 496 inode_init_once(&p->vfs_inode); 497 } 498 499 static struct inode *mqueue_alloc_inode(struct super_block *sb) 500 { 501 struct mqueue_inode_info *ei; 502 503 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL); 504 if (!ei) 505 return NULL; 506 return &ei->vfs_inode; 507 } 508 509 static void mqueue_free_inode(struct inode *inode) 510 { 511 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 512 } 513 514 static void mqueue_evict_inode(struct inode *inode) 515 { 516 struct mqueue_inode_info *info; 517 struct ipc_namespace *ipc_ns; 518 struct msg_msg *msg, *nmsg; 519 LIST_HEAD(tmp_msg); 520 521 clear_inode(inode); 522 523 if (S_ISDIR(inode->i_mode)) 524 return; 525 526 ipc_ns = get_ns_from_inode(inode); 527 info = MQUEUE_I(inode); 528 spin_lock(&info->lock); 529 while ((msg = msg_get(info)) != NULL) 530 list_add_tail(&msg->m_list, &tmp_msg); 531 kfree(info->node_cache); 532 spin_unlock(&info->lock); 533 534 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 535 list_del(&msg->m_list); 536 free_msg(msg); 537 } 538 539 if (info->ucounts) { 540 unsigned long mq_bytes, mq_treesize; 541 542 /* Total amount of bytes accounted for the mqueue */ 543 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 544 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 545 sizeof(struct posix_msg_tree_node); 546 547 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 548 info->attr.mq_msgsize); 549 550 spin_lock(&mq_lock); 551 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 552 /* 553 * get_ns_from_inode() ensures that the 554 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 555 * to which we now hold a reference, or it is NULL. 556 * We can't put it here under mq_lock, though. 557 */ 558 if (ipc_ns) 559 ipc_ns->mq_queues_count--; 560 spin_unlock(&mq_lock); 561 put_ucounts(info->ucounts); 562 info->ucounts = NULL; 563 } 564 if (ipc_ns) 565 put_ipc_ns(ipc_ns); 566 } 567 568 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 569 { 570 struct inode *dir = dentry->d_parent->d_inode; 571 struct inode *inode; 572 struct mq_attr *attr = arg; 573 int error; 574 struct ipc_namespace *ipc_ns; 575 576 spin_lock(&mq_lock); 577 ipc_ns = __get_ns_from_inode(dir); 578 if (!ipc_ns) { 579 error = -EACCES; 580 goto out_unlock; 581 } 582 583 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 584 !capable(CAP_SYS_RESOURCE)) { 585 error = -ENOSPC; 586 goto out_unlock; 587 } 588 ipc_ns->mq_queues_count++; 589 spin_unlock(&mq_lock); 590 591 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 592 if (IS_ERR(inode)) { 593 error = PTR_ERR(inode); 594 spin_lock(&mq_lock); 595 ipc_ns->mq_queues_count--; 596 goto out_unlock; 597 } 598 599 put_ipc_ns(ipc_ns); 600 dir->i_size += DIRENT_SIZE; 601 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 602 603 d_instantiate(dentry, inode); 604 dget(dentry); 605 return 0; 606 out_unlock: 607 spin_unlock(&mq_lock); 608 if (ipc_ns) 609 put_ipc_ns(ipc_ns); 610 return error; 611 } 612 613 static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir, 614 struct dentry *dentry, umode_t mode, bool excl) 615 { 616 return mqueue_create_attr(dentry, mode, NULL); 617 } 618 619 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 620 { 621 struct inode *inode = d_inode(dentry); 622 623 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 624 dir->i_size -= DIRENT_SIZE; 625 drop_nlink(inode); 626 dput(dentry); 627 return 0; 628 } 629 630 /* 631 * This is routine for system read from queue file. 632 * To avoid mess with doing here some sort of mq_receive we allow 633 * to read only queue size & notification info (the only values 634 * that are interesting from user point of view and aren't accessible 635 * through std routines) 636 */ 637 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 638 size_t count, loff_t *off) 639 { 640 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 641 char buffer[FILENT_SIZE]; 642 ssize_t ret; 643 644 spin_lock(&info->lock); 645 snprintf(buffer, sizeof(buffer), 646 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 647 info->qsize, 648 info->notify_owner ? info->notify.sigev_notify : 0, 649 (info->notify_owner && 650 info->notify.sigev_notify == SIGEV_SIGNAL) ? 651 info->notify.sigev_signo : 0, 652 pid_vnr(info->notify_owner)); 653 spin_unlock(&info->lock); 654 buffer[sizeof(buffer)-1] = '\0'; 655 656 ret = simple_read_from_buffer(u_data, count, off, buffer, 657 strlen(buffer)); 658 if (ret <= 0) 659 return ret; 660 661 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 662 return ret; 663 } 664 665 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 666 { 667 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 668 669 spin_lock(&info->lock); 670 if (task_tgid(current) == info->notify_owner) 671 remove_notification(info); 672 673 spin_unlock(&info->lock); 674 return 0; 675 } 676 677 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 678 { 679 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 680 __poll_t retval = 0; 681 682 poll_wait(filp, &info->wait_q, poll_tab); 683 684 spin_lock(&info->lock); 685 if (info->attr.mq_curmsgs) 686 retval = EPOLLIN | EPOLLRDNORM; 687 688 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 689 retval |= EPOLLOUT | EPOLLWRNORM; 690 spin_unlock(&info->lock); 691 692 return retval; 693 } 694 695 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 696 static void wq_add(struct mqueue_inode_info *info, int sr, 697 struct ext_wait_queue *ewp) 698 { 699 struct ext_wait_queue *walk; 700 701 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 702 if (walk->task->prio <= current->prio) { 703 list_add_tail(&ewp->list, &walk->list); 704 return; 705 } 706 } 707 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 708 } 709 710 /* 711 * Puts current task to sleep. Caller must hold queue lock. After return 712 * lock isn't held. 713 * sr: SEND or RECV 714 */ 715 static int wq_sleep(struct mqueue_inode_info *info, int sr, 716 ktime_t *timeout, struct ext_wait_queue *ewp) 717 __releases(&info->lock) 718 { 719 int retval; 720 signed long time; 721 722 wq_add(info, sr, ewp); 723 724 for (;;) { 725 /* memory barrier not required, we hold info->lock */ 726 __set_current_state(TASK_INTERRUPTIBLE); 727 728 spin_unlock(&info->lock); 729 time = schedule_hrtimeout_range_clock(timeout, 0, 730 HRTIMER_MODE_ABS, CLOCK_REALTIME); 731 732 if (READ_ONCE(ewp->state) == STATE_READY) { 733 /* see MQ_BARRIER for purpose/pairing */ 734 smp_acquire__after_ctrl_dep(); 735 retval = 0; 736 goto out; 737 } 738 spin_lock(&info->lock); 739 740 /* we hold info->lock, so no memory barrier required */ 741 if (READ_ONCE(ewp->state) == STATE_READY) { 742 retval = 0; 743 goto out_unlock; 744 } 745 if (signal_pending(current)) { 746 retval = -ERESTARTSYS; 747 break; 748 } 749 if (time == 0) { 750 retval = -ETIMEDOUT; 751 break; 752 } 753 } 754 list_del(&ewp->list); 755 out_unlock: 756 spin_unlock(&info->lock); 757 out: 758 return retval; 759 } 760 761 /* 762 * Returns waiting task that should be serviced first or NULL if none exists 763 */ 764 static struct ext_wait_queue *wq_get_first_waiter( 765 struct mqueue_inode_info *info, int sr) 766 { 767 struct list_head *ptr; 768 769 ptr = info->e_wait_q[sr].list.prev; 770 if (ptr == &info->e_wait_q[sr].list) 771 return NULL; 772 return list_entry(ptr, struct ext_wait_queue, list); 773 } 774 775 776 static inline void set_cookie(struct sk_buff *skb, char code) 777 { 778 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 779 } 780 781 /* 782 * The next function is only to split too long sys_mq_timedsend 783 */ 784 static void __do_notify(struct mqueue_inode_info *info) 785 { 786 /* notification 787 * invoked when there is registered process and there isn't process 788 * waiting synchronously for message AND state of queue changed from 789 * empty to not empty. Here we are sure that no one is waiting 790 * synchronously. */ 791 if (info->notify_owner && 792 info->attr.mq_curmsgs == 1) { 793 switch (info->notify.sigev_notify) { 794 case SIGEV_NONE: 795 break; 796 case SIGEV_SIGNAL: { 797 struct kernel_siginfo sig_i; 798 struct task_struct *task; 799 800 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 801 if (!info->notify.sigev_signo) 802 break; 803 804 clear_siginfo(&sig_i); 805 sig_i.si_signo = info->notify.sigev_signo; 806 sig_i.si_errno = 0; 807 sig_i.si_code = SI_MESGQ; 808 sig_i.si_value = info->notify.sigev_value; 809 rcu_read_lock(); 810 /* map current pid/uid into info->owner's namespaces */ 811 sig_i.si_pid = task_tgid_nr_ns(current, 812 ns_of_pid(info->notify_owner)); 813 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 814 current_uid()); 815 /* 816 * We can't use kill_pid_info(), this signal should 817 * bypass check_kill_permission(). It is from kernel 818 * but si_fromuser() can't know this. 819 * We do check the self_exec_id, to avoid sending 820 * signals to programs that don't expect them. 821 */ 822 task = pid_task(info->notify_owner, PIDTYPE_TGID); 823 if (task && task->self_exec_id == 824 info->notify_self_exec_id) { 825 do_send_sig_info(info->notify.sigev_signo, 826 &sig_i, task, PIDTYPE_TGID); 827 } 828 rcu_read_unlock(); 829 break; 830 } 831 case SIGEV_THREAD: 832 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 833 netlink_sendskb(info->notify_sock, info->notify_cookie); 834 break; 835 } 836 /* after notification unregisters process */ 837 put_pid(info->notify_owner); 838 put_user_ns(info->notify_user_ns); 839 info->notify_owner = NULL; 840 info->notify_user_ns = NULL; 841 } 842 wake_up(&info->wait_q); 843 } 844 845 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 846 struct timespec64 *ts) 847 { 848 if (get_timespec64(ts, u_abs_timeout)) 849 return -EFAULT; 850 if (!timespec64_valid(ts)) 851 return -EINVAL; 852 return 0; 853 } 854 855 static void remove_notification(struct mqueue_inode_info *info) 856 { 857 if (info->notify_owner != NULL && 858 info->notify.sigev_notify == SIGEV_THREAD) { 859 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 860 netlink_sendskb(info->notify_sock, info->notify_cookie); 861 } 862 put_pid(info->notify_owner); 863 put_user_ns(info->notify_user_ns); 864 info->notify_owner = NULL; 865 info->notify_user_ns = NULL; 866 } 867 868 static int prepare_open(struct dentry *dentry, int oflag, int ro, 869 umode_t mode, struct filename *name, 870 struct mq_attr *attr) 871 { 872 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 873 MAY_READ | MAY_WRITE }; 874 int acc; 875 876 if (d_really_is_negative(dentry)) { 877 if (!(oflag & O_CREAT)) 878 return -ENOENT; 879 if (ro) 880 return ro; 881 audit_inode_parent_hidden(name, dentry->d_parent); 882 return vfs_mkobj(dentry, mode & ~current_umask(), 883 mqueue_create_attr, attr); 884 } 885 /* it already existed */ 886 audit_inode(name, dentry, 0); 887 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 888 return -EEXIST; 889 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 890 return -EINVAL; 891 acc = oflag2acc[oflag & O_ACCMODE]; 892 return inode_permission(&init_user_ns, d_inode(dentry), acc); 893 } 894 895 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 896 struct mq_attr *attr) 897 { 898 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 899 struct dentry *root = mnt->mnt_root; 900 struct filename *name; 901 struct path path; 902 int fd, error; 903 int ro; 904 905 audit_mq_open(oflag, mode, attr); 906 907 if (IS_ERR(name = getname(u_name))) 908 return PTR_ERR(name); 909 910 fd = get_unused_fd_flags(O_CLOEXEC); 911 if (fd < 0) 912 goto out_putname; 913 914 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 915 inode_lock(d_inode(root)); 916 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 917 if (IS_ERR(path.dentry)) { 918 error = PTR_ERR(path.dentry); 919 goto out_putfd; 920 } 921 path.mnt = mntget(mnt); 922 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 923 if (!error) { 924 struct file *file = dentry_open(&path, oflag, current_cred()); 925 if (!IS_ERR(file)) 926 fd_install(fd, file); 927 else 928 error = PTR_ERR(file); 929 } 930 path_put(&path); 931 out_putfd: 932 if (error) { 933 put_unused_fd(fd); 934 fd = error; 935 } 936 inode_unlock(d_inode(root)); 937 if (!ro) 938 mnt_drop_write(mnt); 939 out_putname: 940 putname(name); 941 return fd; 942 } 943 944 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 945 struct mq_attr __user *, u_attr) 946 { 947 struct mq_attr attr; 948 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 949 return -EFAULT; 950 951 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 952 } 953 954 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 955 { 956 int err; 957 struct filename *name; 958 struct dentry *dentry; 959 struct inode *inode = NULL; 960 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 961 struct vfsmount *mnt = ipc_ns->mq_mnt; 962 963 name = getname(u_name); 964 if (IS_ERR(name)) 965 return PTR_ERR(name); 966 967 audit_inode_parent_hidden(name, mnt->mnt_root); 968 err = mnt_want_write(mnt); 969 if (err) 970 goto out_name; 971 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 972 dentry = lookup_one_len(name->name, mnt->mnt_root, 973 strlen(name->name)); 974 if (IS_ERR(dentry)) { 975 err = PTR_ERR(dentry); 976 goto out_unlock; 977 } 978 979 inode = d_inode(dentry); 980 if (!inode) { 981 err = -ENOENT; 982 } else { 983 ihold(inode); 984 err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent), 985 dentry, NULL); 986 } 987 dput(dentry); 988 989 out_unlock: 990 inode_unlock(d_inode(mnt->mnt_root)); 991 if (inode) 992 iput(inode); 993 mnt_drop_write(mnt); 994 out_name: 995 putname(name); 996 997 return err; 998 } 999 1000 /* Pipelined send and receive functions. 1001 * 1002 * If a receiver finds no waiting message, then it registers itself in the 1003 * list of waiting receivers. A sender checks that list before adding the new 1004 * message into the message array. If there is a waiting receiver, then it 1005 * bypasses the message array and directly hands the message over to the 1006 * receiver. The receiver accepts the message and returns without grabbing the 1007 * queue spinlock: 1008 * 1009 * - Set pointer to message. 1010 * - Queue the receiver task for later wakeup (without the info->lock). 1011 * - Update its state to STATE_READY. Now the receiver can continue. 1012 * - Wake up the process after the lock is dropped. Should the process wake up 1013 * before this wakeup (due to a timeout or a signal) it will either see 1014 * STATE_READY and continue or acquire the lock to check the state again. 1015 * 1016 * The same algorithm is used for senders. 1017 */ 1018 1019 static inline void __pipelined_op(struct wake_q_head *wake_q, 1020 struct mqueue_inode_info *info, 1021 struct ext_wait_queue *this) 1022 { 1023 struct task_struct *task; 1024 1025 list_del(&this->list); 1026 task = get_task_struct(this->task); 1027 1028 /* see MQ_BARRIER for purpose/pairing */ 1029 smp_store_release(&this->state, STATE_READY); 1030 wake_q_add_safe(wake_q, task); 1031 } 1032 1033 /* pipelined_send() - send a message directly to the task waiting in 1034 * sys_mq_timedreceive() (without inserting message into a queue). 1035 */ 1036 static inline void pipelined_send(struct wake_q_head *wake_q, 1037 struct mqueue_inode_info *info, 1038 struct msg_msg *message, 1039 struct ext_wait_queue *receiver) 1040 { 1041 receiver->msg = message; 1042 __pipelined_op(wake_q, info, receiver); 1043 } 1044 1045 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1046 * gets its message and put to the queue (we have one free place for sure). */ 1047 static inline void pipelined_receive(struct wake_q_head *wake_q, 1048 struct mqueue_inode_info *info) 1049 { 1050 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1051 1052 if (!sender) { 1053 /* for poll */ 1054 wake_up_interruptible(&info->wait_q); 1055 return; 1056 } 1057 if (msg_insert(sender->msg, info)) 1058 return; 1059 1060 __pipelined_op(wake_q, info, sender); 1061 } 1062 1063 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1064 size_t msg_len, unsigned int msg_prio, 1065 struct timespec64 *ts) 1066 { 1067 struct fd f; 1068 struct inode *inode; 1069 struct ext_wait_queue wait; 1070 struct ext_wait_queue *receiver; 1071 struct msg_msg *msg_ptr; 1072 struct mqueue_inode_info *info; 1073 ktime_t expires, *timeout = NULL; 1074 struct posix_msg_tree_node *new_leaf = NULL; 1075 int ret = 0; 1076 DEFINE_WAKE_Q(wake_q); 1077 1078 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1079 return -EINVAL; 1080 1081 if (ts) { 1082 expires = timespec64_to_ktime(*ts); 1083 timeout = &expires; 1084 } 1085 1086 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1087 1088 f = fdget(mqdes); 1089 if (unlikely(!f.file)) { 1090 ret = -EBADF; 1091 goto out; 1092 } 1093 1094 inode = file_inode(f.file); 1095 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1096 ret = -EBADF; 1097 goto out_fput; 1098 } 1099 info = MQUEUE_I(inode); 1100 audit_file(f.file); 1101 1102 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1103 ret = -EBADF; 1104 goto out_fput; 1105 } 1106 1107 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1108 ret = -EMSGSIZE; 1109 goto out_fput; 1110 } 1111 1112 /* First try to allocate memory, before doing anything with 1113 * existing queues. */ 1114 msg_ptr = load_msg(u_msg_ptr, msg_len); 1115 if (IS_ERR(msg_ptr)) { 1116 ret = PTR_ERR(msg_ptr); 1117 goto out_fput; 1118 } 1119 msg_ptr->m_ts = msg_len; 1120 msg_ptr->m_type = msg_prio; 1121 1122 /* 1123 * msg_insert really wants us to have a valid, spare node struct so 1124 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1125 * fall back to that if necessary. 1126 */ 1127 if (!info->node_cache) 1128 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1129 1130 spin_lock(&info->lock); 1131 1132 if (!info->node_cache && new_leaf) { 1133 /* Save our speculative allocation into the cache */ 1134 INIT_LIST_HEAD(&new_leaf->msg_list); 1135 info->node_cache = new_leaf; 1136 new_leaf = NULL; 1137 } else { 1138 kfree(new_leaf); 1139 } 1140 1141 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1142 if (f.file->f_flags & O_NONBLOCK) { 1143 ret = -EAGAIN; 1144 } else { 1145 wait.task = current; 1146 wait.msg = (void *) msg_ptr; 1147 1148 /* memory barrier not required, we hold info->lock */ 1149 WRITE_ONCE(wait.state, STATE_NONE); 1150 ret = wq_sleep(info, SEND, timeout, &wait); 1151 /* 1152 * wq_sleep must be called with info->lock held, and 1153 * returns with the lock released 1154 */ 1155 goto out_free; 1156 } 1157 } else { 1158 receiver = wq_get_first_waiter(info, RECV); 1159 if (receiver) { 1160 pipelined_send(&wake_q, info, msg_ptr, receiver); 1161 } else { 1162 /* adds message to the queue */ 1163 ret = msg_insert(msg_ptr, info); 1164 if (ret) 1165 goto out_unlock; 1166 __do_notify(info); 1167 } 1168 inode->i_atime = inode->i_mtime = inode->i_ctime = 1169 current_time(inode); 1170 } 1171 out_unlock: 1172 spin_unlock(&info->lock); 1173 wake_up_q(&wake_q); 1174 out_free: 1175 if (ret) 1176 free_msg(msg_ptr); 1177 out_fput: 1178 fdput(f); 1179 out: 1180 return ret; 1181 } 1182 1183 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1184 size_t msg_len, unsigned int __user *u_msg_prio, 1185 struct timespec64 *ts) 1186 { 1187 ssize_t ret; 1188 struct msg_msg *msg_ptr; 1189 struct fd f; 1190 struct inode *inode; 1191 struct mqueue_inode_info *info; 1192 struct ext_wait_queue wait; 1193 ktime_t expires, *timeout = NULL; 1194 struct posix_msg_tree_node *new_leaf = NULL; 1195 1196 if (ts) { 1197 expires = timespec64_to_ktime(*ts); 1198 timeout = &expires; 1199 } 1200 1201 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1202 1203 f = fdget(mqdes); 1204 if (unlikely(!f.file)) { 1205 ret = -EBADF; 1206 goto out; 1207 } 1208 1209 inode = file_inode(f.file); 1210 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1211 ret = -EBADF; 1212 goto out_fput; 1213 } 1214 info = MQUEUE_I(inode); 1215 audit_file(f.file); 1216 1217 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1218 ret = -EBADF; 1219 goto out_fput; 1220 } 1221 1222 /* checks if buffer is big enough */ 1223 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1224 ret = -EMSGSIZE; 1225 goto out_fput; 1226 } 1227 1228 /* 1229 * msg_insert really wants us to have a valid, spare node struct so 1230 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1231 * fall back to that if necessary. 1232 */ 1233 if (!info->node_cache) 1234 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1235 1236 spin_lock(&info->lock); 1237 1238 if (!info->node_cache && new_leaf) { 1239 /* Save our speculative allocation into the cache */ 1240 INIT_LIST_HEAD(&new_leaf->msg_list); 1241 info->node_cache = new_leaf; 1242 } else { 1243 kfree(new_leaf); 1244 } 1245 1246 if (info->attr.mq_curmsgs == 0) { 1247 if (f.file->f_flags & O_NONBLOCK) { 1248 spin_unlock(&info->lock); 1249 ret = -EAGAIN; 1250 } else { 1251 wait.task = current; 1252 1253 /* memory barrier not required, we hold info->lock */ 1254 WRITE_ONCE(wait.state, STATE_NONE); 1255 ret = wq_sleep(info, RECV, timeout, &wait); 1256 msg_ptr = wait.msg; 1257 } 1258 } else { 1259 DEFINE_WAKE_Q(wake_q); 1260 1261 msg_ptr = msg_get(info); 1262 1263 inode->i_atime = inode->i_mtime = inode->i_ctime = 1264 current_time(inode); 1265 1266 /* There is now free space in queue. */ 1267 pipelined_receive(&wake_q, info); 1268 spin_unlock(&info->lock); 1269 wake_up_q(&wake_q); 1270 ret = 0; 1271 } 1272 if (ret == 0) { 1273 ret = msg_ptr->m_ts; 1274 1275 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1276 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1277 ret = -EFAULT; 1278 } 1279 free_msg(msg_ptr); 1280 } 1281 out_fput: 1282 fdput(f); 1283 out: 1284 return ret; 1285 } 1286 1287 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1288 size_t, msg_len, unsigned int, msg_prio, 1289 const struct __kernel_timespec __user *, u_abs_timeout) 1290 { 1291 struct timespec64 ts, *p = NULL; 1292 if (u_abs_timeout) { 1293 int res = prepare_timeout(u_abs_timeout, &ts); 1294 if (res) 1295 return res; 1296 p = &ts; 1297 } 1298 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1299 } 1300 1301 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1302 size_t, msg_len, unsigned int __user *, u_msg_prio, 1303 const struct __kernel_timespec __user *, u_abs_timeout) 1304 { 1305 struct timespec64 ts, *p = NULL; 1306 if (u_abs_timeout) { 1307 int res = prepare_timeout(u_abs_timeout, &ts); 1308 if (res) 1309 return res; 1310 p = &ts; 1311 } 1312 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1313 } 1314 1315 /* 1316 * Notes: the case when user wants us to deregister (with NULL as pointer) 1317 * and he isn't currently owner of notification, will be silently discarded. 1318 * It isn't explicitly defined in the POSIX. 1319 */ 1320 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1321 { 1322 int ret; 1323 struct fd f; 1324 struct sock *sock; 1325 struct inode *inode; 1326 struct mqueue_inode_info *info; 1327 struct sk_buff *nc; 1328 1329 audit_mq_notify(mqdes, notification); 1330 1331 nc = NULL; 1332 sock = NULL; 1333 if (notification != NULL) { 1334 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1335 notification->sigev_notify != SIGEV_SIGNAL && 1336 notification->sigev_notify != SIGEV_THREAD)) 1337 return -EINVAL; 1338 if (notification->sigev_notify == SIGEV_SIGNAL && 1339 !valid_signal(notification->sigev_signo)) { 1340 return -EINVAL; 1341 } 1342 if (notification->sigev_notify == SIGEV_THREAD) { 1343 long timeo; 1344 1345 /* create the notify skb */ 1346 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1347 if (!nc) 1348 return -ENOMEM; 1349 1350 if (copy_from_user(nc->data, 1351 notification->sigev_value.sival_ptr, 1352 NOTIFY_COOKIE_LEN)) { 1353 ret = -EFAULT; 1354 goto free_skb; 1355 } 1356 1357 /* TODO: add a header? */ 1358 skb_put(nc, NOTIFY_COOKIE_LEN); 1359 /* and attach it to the socket */ 1360 retry: 1361 f = fdget(notification->sigev_signo); 1362 if (!f.file) { 1363 ret = -EBADF; 1364 goto out; 1365 } 1366 sock = netlink_getsockbyfilp(f.file); 1367 fdput(f); 1368 if (IS_ERR(sock)) { 1369 ret = PTR_ERR(sock); 1370 goto free_skb; 1371 } 1372 1373 timeo = MAX_SCHEDULE_TIMEOUT; 1374 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1375 if (ret == 1) { 1376 sock = NULL; 1377 goto retry; 1378 } 1379 if (ret) 1380 return ret; 1381 } 1382 } 1383 1384 f = fdget(mqdes); 1385 if (!f.file) { 1386 ret = -EBADF; 1387 goto out; 1388 } 1389 1390 inode = file_inode(f.file); 1391 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1392 ret = -EBADF; 1393 goto out_fput; 1394 } 1395 info = MQUEUE_I(inode); 1396 1397 ret = 0; 1398 spin_lock(&info->lock); 1399 if (notification == NULL) { 1400 if (info->notify_owner == task_tgid(current)) { 1401 remove_notification(info); 1402 inode->i_atime = inode->i_ctime = current_time(inode); 1403 } 1404 } else if (info->notify_owner != NULL) { 1405 ret = -EBUSY; 1406 } else { 1407 switch (notification->sigev_notify) { 1408 case SIGEV_NONE: 1409 info->notify.sigev_notify = SIGEV_NONE; 1410 break; 1411 case SIGEV_THREAD: 1412 info->notify_sock = sock; 1413 info->notify_cookie = nc; 1414 sock = NULL; 1415 nc = NULL; 1416 info->notify.sigev_notify = SIGEV_THREAD; 1417 break; 1418 case SIGEV_SIGNAL: 1419 info->notify.sigev_signo = notification->sigev_signo; 1420 info->notify.sigev_value = notification->sigev_value; 1421 info->notify.sigev_notify = SIGEV_SIGNAL; 1422 info->notify_self_exec_id = current->self_exec_id; 1423 break; 1424 } 1425 1426 info->notify_owner = get_pid(task_tgid(current)); 1427 info->notify_user_ns = get_user_ns(current_user_ns()); 1428 inode->i_atime = inode->i_ctime = current_time(inode); 1429 } 1430 spin_unlock(&info->lock); 1431 out_fput: 1432 fdput(f); 1433 out: 1434 if (sock) 1435 netlink_detachskb(sock, nc); 1436 else 1437 free_skb: 1438 dev_kfree_skb(nc); 1439 1440 return ret; 1441 } 1442 1443 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1444 const struct sigevent __user *, u_notification) 1445 { 1446 struct sigevent n, *p = NULL; 1447 if (u_notification) { 1448 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1449 return -EFAULT; 1450 p = &n; 1451 } 1452 return do_mq_notify(mqdes, p); 1453 } 1454 1455 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1456 { 1457 struct fd f; 1458 struct inode *inode; 1459 struct mqueue_inode_info *info; 1460 1461 if (new && (new->mq_flags & (~O_NONBLOCK))) 1462 return -EINVAL; 1463 1464 f = fdget(mqdes); 1465 if (!f.file) 1466 return -EBADF; 1467 1468 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1469 fdput(f); 1470 return -EBADF; 1471 } 1472 1473 inode = file_inode(f.file); 1474 info = MQUEUE_I(inode); 1475 1476 spin_lock(&info->lock); 1477 1478 if (old) { 1479 *old = info->attr; 1480 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1481 } 1482 if (new) { 1483 audit_mq_getsetattr(mqdes, new); 1484 spin_lock(&f.file->f_lock); 1485 if (new->mq_flags & O_NONBLOCK) 1486 f.file->f_flags |= O_NONBLOCK; 1487 else 1488 f.file->f_flags &= ~O_NONBLOCK; 1489 spin_unlock(&f.file->f_lock); 1490 1491 inode->i_atime = inode->i_ctime = current_time(inode); 1492 } 1493 1494 spin_unlock(&info->lock); 1495 fdput(f); 1496 return 0; 1497 } 1498 1499 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1500 const struct mq_attr __user *, u_mqstat, 1501 struct mq_attr __user *, u_omqstat) 1502 { 1503 int ret; 1504 struct mq_attr mqstat, omqstat; 1505 struct mq_attr *new = NULL, *old = NULL; 1506 1507 if (u_mqstat) { 1508 new = &mqstat; 1509 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1510 return -EFAULT; 1511 } 1512 if (u_omqstat) 1513 old = &omqstat; 1514 1515 ret = do_mq_getsetattr(mqdes, new, old); 1516 if (ret || !old) 1517 return ret; 1518 1519 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1520 return -EFAULT; 1521 return 0; 1522 } 1523 1524 #ifdef CONFIG_COMPAT 1525 1526 struct compat_mq_attr { 1527 compat_long_t mq_flags; /* message queue flags */ 1528 compat_long_t mq_maxmsg; /* maximum number of messages */ 1529 compat_long_t mq_msgsize; /* maximum message size */ 1530 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1531 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1532 }; 1533 1534 static inline int get_compat_mq_attr(struct mq_attr *attr, 1535 const struct compat_mq_attr __user *uattr) 1536 { 1537 struct compat_mq_attr v; 1538 1539 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1540 return -EFAULT; 1541 1542 memset(attr, 0, sizeof(*attr)); 1543 attr->mq_flags = v.mq_flags; 1544 attr->mq_maxmsg = v.mq_maxmsg; 1545 attr->mq_msgsize = v.mq_msgsize; 1546 attr->mq_curmsgs = v.mq_curmsgs; 1547 return 0; 1548 } 1549 1550 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1551 struct compat_mq_attr __user *uattr) 1552 { 1553 struct compat_mq_attr v; 1554 1555 memset(&v, 0, sizeof(v)); 1556 v.mq_flags = attr->mq_flags; 1557 v.mq_maxmsg = attr->mq_maxmsg; 1558 v.mq_msgsize = attr->mq_msgsize; 1559 v.mq_curmsgs = attr->mq_curmsgs; 1560 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1561 return -EFAULT; 1562 return 0; 1563 } 1564 1565 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1566 int, oflag, compat_mode_t, mode, 1567 struct compat_mq_attr __user *, u_attr) 1568 { 1569 struct mq_attr attr, *p = NULL; 1570 if (u_attr && oflag & O_CREAT) { 1571 p = &attr; 1572 if (get_compat_mq_attr(&attr, u_attr)) 1573 return -EFAULT; 1574 } 1575 return do_mq_open(u_name, oflag, mode, p); 1576 } 1577 1578 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1579 const struct compat_sigevent __user *, u_notification) 1580 { 1581 struct sigevent n, *p = NULL; 1582 if (u_notification) { 1583 if (get_compat_sigevent(&n, u_notification)) 1584 return -EFAULT; 1585 if (n.sigev_notify == SIGEV_THREAD) 1586 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1587 p = &n; 1588 } 1589 return do_mq_notify(mqdes, p); 1590 } 1591 1592 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1593 const struct compat_mq_attr __user *, u_mqstat, 1594 struct compat_mq_attr __user *, u_omqstat) 1595 { 1596 int ret; 1597 struct mq_attr mqstat, omqstat; 1598 struct mq_attr *new = NULL, *old = NULL; 1599 1600 if (u_mqstat) { 1601 new = &mqstat; 1602 if (get_compat_mq_attr(new, u_mqstat)) 1603 return -EFAULT; 1604 } 1605 if (u_omqstat) 1606 old = &omqstat; 1607 1608 ret = do_mq_getsetattr(mqdes, new, old); 1609 if (ret || !old) 1610 return ret; 1611 1612 if (put_compat_mq_attr(old, u_omqstat)) 1613 return -EFAULT; 1614 return 0; 1615 } 1616 #endif 1617 1618 #ifdef CONFIG_COMPAT_32BIT_TIME 1619 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1620 struct timespec64 *ts) 1621 { 1622 if (get_old_timespec32(ts, p)) 1623 return -EFAULT; 1624 if (!timespec64_valid(ts)) 1625 return -EINVAL; 1626 return 0; 1627 } 1628 1629 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1630 const char __user *, u_msg_ptr, 1631 unsigned int, msg_len, unsigned int, msg_prio, 1632 const struct old_timespec32 __user *, u_abs_timeout) 1633 { 1634 struct timespec64 ts, *p = NULL; 1635 if (u_abs_timeout) { 1636 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1637 if (res) 1638 return res; 1639 p = &ts; 1640 } 1641 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1642 } 1643 1644 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1645 char __user *, u_msg_ptr, 1646 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1647 const struct old_timespec32 __user *, u_abs_timeout) 1648 { 1649 struct timespec64 ts, *p = NULL; 1650 if (u_abs_timeout) { 1651 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1652 if (res) 1653 return res; 1654 p = &ts; 1655 } 1656 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1657 } 1658 #endif 1659 1660 static const struct inode_operations mqueue_dir_inode_operations = { 1661 .lookup = simple_lookup, 1662 .create = mqueue_create, 1663 .unlink = mqueue_unlink, 1664 }; 1665 1666 static const struct file_operations mqueue_file_operations = { 1667 .flush = mqueue_flush_file, 1668 .poll = mqueue_poll_file, 1669 .read = mqueue_read_file, 1670 .llseek = default_llseek, 1671 }; 1672 1673 static const struct super_operations mqueue_super_ops = { 1674 .alloc_inode = mqueue_alloc_inode, 1675 .free_inode = mqueue_free_inode, 1676 .evict_inode = mqueue_evict_inode, 1677 .statfs = simple_statfs, 1678 }; 1679 1680 static const struct fs_context_operations mqueue_fs_context_ops = { 1681 .free = mqueue_fs_context_free, 1682 .get_tree = mqueue_get_tree, 1683 }; 1684 1685 static struct file_system_type mqueue_fs_type = { 1686 .name = "mqueue", 1687 .init_fs_context = mqueue_init_fs_context, 1688 .kill_sb = kill_litter_super, 1689 .fs_flags = FS_USERNS_MOUNT, 1690 }; 1691 1692 int mq_init_ns(struct ipc_namespace *ns) 1693 { 1694 struct vfsmount *m; 1695 1696 ns->mq_queues_count = 0; 1697 ns->mq_queues_max = DFLT_QUEUESMAX; 1698 ns->mq_msg_max = DFLT_MSGMAX; 1699 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1700 ns->mq_msg_default = DFLT_MSG; 1701 ns->mq_msgsize_default = DFLT_MSGSIZE; 1702 1703 m = mq_create_mount(ns); 1704 if (IS_ERR(m)) 1705 return PTR_ERR(m); 1706 ns->mq_mnt = m; 1707 return 0; 1708 } 1709 1710 void mq_clear_sbinfo(struct ipc_namespace *ns) 1711 { 1712 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1713 } 1714 1715 void mq_put_mnt(struct ipc_namespace *ns) 1716 { 1717 kern_unmount(ns->mq_mnt); 1718 } 1719 1720 static int __init init_mqueue_fs(void) 1721 { 1722 int error; 1723 1724 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1725 sizeof(struct mqueue_inode_info), 0, 1726 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1727 if (mqueue_inode_cachep == NULL) 1728 return -ENOMEM; 1729 1730 /* ignore failures - they are not fatal */ 1731 mq_sysctl_table = mq_register_sysctl_table(); 1732 1733 error = register_filesystem(&mqueue_fs_type); 1734 if (error) 1735 goto out_sysctl; 1736 1737 spin_lock_init(&mq_lock); 1738 1739 error = mq_init_ns(&init_ipc_ns); 1740 if (error) 1741 goto out_filesystem; 1742 1743 return 0; 1744 1745 out_filesystem: 1746 unregister_filesystem(&mqueue_fs_type); 1747 out_sysctl: 1748 if (mq_sysctl_table) 1749 unregister_sysctl_table(mq_sysctl_table); 1750 kmem_cache_destroy(mqueue_inode_cachep); 1751 return error; 1752 } 1753 1754 device_initcall(init_mqueue_fs); 1755