1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 bool newns; /* Set if newly created ipc namespace */ 49 }; 50 51 #define MQUEUE_MAGIC 0x19800202 52 #define DIRENT_SIZE 20 53 #define FILENT_SIZE 80 54 55 #define SEND 0 56 #define RECV 1 57 58 #define STATE_NONE 0 59 #define STATE_READY 1 60 61 struct posix_msg_tree_node { 62 struct rb_node rb_node; 63 struct list_head msg_list; 64 int priority; 65 }; 66 67 /* 68 * Locking: 69 * 70 * Accesses to a message queue are synchronized by acquiring info->lock. 71 * 72 * There are two notable exceptions: 73 * - The actual wakeup of a sleeping task is performed using the wake_q 74 * framework. info->lock is already released when wake_up_q is called. 75 * - The exit codepaths after sleeping check ext_wait_queue->state without 76 * any locks. If it is STATE_READY, then the syscall is completed without 77 * acquiring info->lock. 78 * 79 * MQ_BARRIER: 80 * To achieve proper release/acquire memory barrier pairing, the state is set to 81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 83 * 84 * This prevents the following races: 85 * 86 * 1) With the simple wake_q_add(), the task could be gone already before 87 * the increase of the reference happens 88 * Thread A 89 * Thread B 90 * WRITE_ONCE(wait.state, STATE_NONE); 91 * schedule_hrtimeout() 92 * wake_q_add(A) 93 * if (cmpxchg()) // success 94 * ->state = STATE_READY (reordered) 95 * <timeout returns> 96 * if (wait.state == STATE_READY) return; 97 * sysret to user space 98 * sys_exit() 99 * get_task_struct() // UaF 100 * 101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 102 * the smp_store_release() that does ->state = STATE_READY. 103 * 104 * 2) Without proper _release/_acquire barriers, the woken up task 105 * could read stale data 106 * 107 * Thread A 108 * Thread B 109 * do_mq_timedreceive 110 * WRITE_ONCE(wait.state, STATE_NONE); 111 * schedule_hrtimeout() 112 * state = STATE_READY; 113 * <timeout returns> 114 * if (wait.state == STATE_READY) return; 115 * msg_ptr = wait.msg; // Access to stale data! 116 * receiver->msg = message; (reordered) 117 * 118 * Solution: use _release and _acquire barriers. 119 * 120 * 3) There is intentionally no barrier when setting current->state 121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 122 * release memory barrier, and the wakeup is triggered when holding 123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 124 * acquire memory barrier. 125 */ 126 127 struct ext_wait_queue { /* queue of sleeping tasks */ 128 struct task_struct *task; 129 struct list_head list; 130 struct msg_msg *msg; /* ptr of loaded message */ 131 int state; /* one of STATE_* values */ 132 }; 133 134 struct mqueue_inode_info { 135 spinlock_t lock; 136 struct inode vfs_inode; 137 wait_queue_head_t wait_q; 138 139 struct rb_root msg_tree; 140 struct rb_node *msg_tree_rightmost; 141 struct posix_msg_tree_node *node_cache; 142 struct mq_attr attr; 143 144 struct sigevent notify; 145 struct pid *notify_owner; 146 u32 notify_self_exec_id; 147 struct user_namespace *notify_user_ns; 148 struct ucounts *ucounts; /* user who created, for accounting */ 149 struct sock *notify_sock; 150 struct sk_buff *notify_cookie; 151 152 /* for tasks waiting for free space and messages, respectively */ 153 struct ext_wait_queue e_wait_q[2]; 154 155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 156 }; 157 158 static struct file_system_type mqueue_fs_type; 159 static const struct inode_operations mqueue_dir_inode_operations; 160 static const struct file_operations mqueue_file_operations; 161 static const struct super_operations mqueue_super_ops; 162 static const struct fs_context_operations mqueue_fs_context_ops; 163 static void remove_notification(struct mqueue_inode_info *info); 164 165 static struct kmem_cache *mqueue_inode_cachep; 166 167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 168 { 169 return container_of(inode, struct mqueue_inode_info, vfs_inode); 170 } 171 172 /* 173 * This routine should be called with the mq_lock held. 174 */ 175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 176 { 177 return get_ipc_ns(inode->i_sb->s_fs_info); 178 } 179 180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 181 { 182 struct ipc_namespace *ns; 183 184 spin_lock(&mq_lock); 185 ns = __get_ns_from_inode(inode); 186 spin_unlock(&mq_lock); 187 return ns; 188 } 189 190 /* Auxiliary functions to manipulate messages' list */ 191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 192 { 193 struct rb_node **p, *parent = NULL; 194 struct posix_msg_tree_node *leaf; 195 bool rightmost = true; 196 197 p = &info->msg_tree.rb_node; 198 while (*p) { 199 parent = *p; 200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 201 202 if (likely(leaf->priority == msg->m_type)) 203 goto insert_msg; 204 else if (msg->m_type < leaf->priority) { 205 p = &(*p)->rb_left; 206 rightmost = false; 207 } else 208 p = &(*p)->rb_right; 209 } 210 if (info->node_cache) { 211 leaf = info->node_cache; 212 info->node_cache = NULL; 213 } else { 214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 215 if (!leaf) 216 return -ENOMEM; 217 INIT_LIST_HEAD(&leaf->msg_list); 218 } 219 leaf->priority = msg->m_type; 220 221 if (rightmost) 222 info->msg_tree_rightmost = &leaf->rb_node; 223 224 rb_link_node(&leaf->rb_node, parent, p); 225 rb_insert_color(&leaf->rb_node, &info->msg_tree); 226 insert_msg: 227 info->attr.mq_curmsgs++; 228 info->qsize += msg->m_ts; 229 list_add_tail(&msg->m_list, &leaf->msg_list); 230 return 0; 231 } 232 233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 234 struct mqueue_inode_info *info) 235 { 236 struct rb_node *node = &leaf->rb_node; 237 238 if (info->msg_tree_rightmost == node) 239 info->msg_tree_rightmost = rb_prev(node); 240 241 rb_erase(node, &info->msg_tree); 242 if (info->node_cache) 243 kfree(leaf); 244 else 245 info->node_cache = leaf; 246 } 247 248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 249 { 250 struct rb_node *parent = NULL; 251 struct posix_msg_tree_node *leaf; 252 struct msg_msg *msg; 253 254 try_again: 255 /* 256 * During insert, low priorities go to the left and high to the 257 * right. On receive, we want the highest priorities first, so 258 * walk all the way to the right. 259 */ 260 parent = info->msg_tree_rightmost; 261 if (!parent) { 262 if (info->attr.mq_curmsgs) { 263 pr_warn_once("Inconsistency in POSIX message queue, " 264 "no tree element, but supposedly messages " 265 "should exist!\n"); 266 info->attr.mq_curmsgs = 0; 267 } 268 return NULL; 269 } 270 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 271 if (unlikely(list_empty(&leaf->msg_list))) { 272 pr_warn_once("Inconsistency in POSIX message queue, " 273 "empty leaf node but we haven't implemented " 274 "lazy leaf delete!\n"); 275 msg_tree_erase(leaf, info); 276 goto try_again; 277 } else { 278 msg = list_first_entry(&leaf->msg_list, 279 struct msg_msg, m_list); 280 list_del(&msg->m_list); 281 if (list_empty(&leaf->msg_list)) { 282 msg_tree_erase(leaf, info); 283 } 284 } 285 info->attr.mq_curmsgs--; 286 info->qsize -= msg->m_ts; 287 return msg; 288 } 289 290 static struct inode *mqueue_get_inode(struct super_block *sb, 291 struct ipc_namespace *ipc_ns, umode_t mode, 292 struct mq_attr *attr) 293 { 294 struct inode *inode; 295 int ret = -ENOMEM; 296 297 inode = new_inode(sb); 298 if (!inode) 299 goto err; 300 301 inode->i_ino = get_next_ino(); 302 inode->i_mode = mode; 303 inode->i_uid = current_fsuid(); 304 inode->i_gid = current_fsgid(); 305 simple_inode_init_ts(inode); 306 307 if (S_ISREG(mode)) { 308 struct mqueue_inode_info *info; 309 unsigned long mq_bytes, mq_treesize; 310 311 inode->i_fop = &mqueue_file_operations; 312 inode->i_size = FILENT_SIZE; 313 /* mqueue specific info */ 314 info = MQUEUE_I(inode); 315 spin_lock_init(&info->lock); 316 init_waitqueue_head(&info->wait_q); 317 INIT_LIST_HEAD(&info->e_wait_q[0].list); 318 INIT_LIST_HEAD(&info->e_wait_q[1].list); 319 info->notify_owner = NULL; 320 info->notify_user_ns = NULL; 321 info->qsize = 0; 322 info->ucounts = NULL; /* set when all is ok */ 323 info->msg_tree = RB_ROOT; 324 info->msg_tree_rightmost = NULL; 325 info->node_cache = NULL; 326 memset(&info->attr, 0, sizeof(info->attr)); 327 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 328 ipc_ns->mq_msg_default); 329 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 330 ipc_ns->mq_msgsize_default); 331 if (attr) { 332 info->attr.mq_maxmsg = attr->mq_maxmsg; 333 info->attr.mq_msgsize = attr->mq_msgsize; 334 } 335 /* 336 * We used to allocate a static array of pointers and account 337 * the size of that array as well as one msg_msg struct per 338 * possible message into the queue size. That's no longer 339 * accurate as the queue is now an rbtree and will grow and 340 * shrink depending on usage patterns. We can, however, still 341 * account one msg_msg struct per message, but the nodes are 342 * allocated depending on priority usage, and most programs 343 * only use one, or a handful, of priorities. However, since 344 * this is pinned memory, we need to assume worst case, so 345 * that means the min(mq_maxmsg, max_priorities) * struct 346 * posix_msg_tree_node. 347 */ 348 349 ret = -EINVAL; 350 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 351 goto out_inode; 352 if (capable(CAP_SYS_RESOURCE)) { 353 if (info->attr.mq_maxmsg > HARD_MSGMAX || 354 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 355 goto out_inode; 356 } else { 357 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 358 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 359 goto out_inode; 360 } 361 ret = -EOVERFLOW; 362 /* check for overflow */ 363 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 364 goto out_inode; 365 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 366 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 367 sizeof(struct posix_msg_tree_node); 368 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 369 if (mq_bytes + mq_treesize < mq_bytes) 370 goto out_inode; 371 mq_bytes += mq_treesize; 372 info->ucounts = get_ucounts(current_ucounts()); 373 if (info->ucounts) { 374 long msgqueue; 375 376 spin_lock(&mq_lock); 377 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 378 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { 379 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 380 spin_unlock(&mq_lock); 381 put_ucounts(info->ucounts); 382 info->ucounts = NULL; 383 /* mqueue_evict_inode() releases info->messages */ 384 ret = -EMFILE; 385 goto out_inode; 386 } 387 spin_unlock(&mq_lock); 388 } 389 } else if (S_ISDIR(mode)) { 390 inc_nlink(inode); 391 /* Some things misbehave if size == 0 on a directory */ 392 inode->i_size = 2 * DIRENT_SIZE; 393 inode->i_op = &mqueue_dir_inode_operations; 394 inode->i_fop = &simple_dir_operations; 395 } 396 397 return inode; 398 out_inode: 399 iput(inode); 400 err: 401 return ERR_PTR(ret); 402 } 403 404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 405 { 406 struct inode *inode; 407 struct ipc_namespace *ns = sb->s_fs_info; 408 409 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 410 sb->s_blocksize = PAGE_SIZE; 411 sb->s_blocksize_bits = PAGE_SHIFT; 412 sb->s_magic = MQUEUE_MAGIC; 413 sb->s_op = &mqueue_super_ops; 414 sb->s_d_flags = DCACHE_DONTCACHE; 415 416 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 417 if (IS_ERR(inode)) 418 return PTR_ERR(inode); 419 420 sb->s_root = d_make_root(inode); 421 if (!sb->s_root) 422 return -ENOMEM; 423 return 0; 424 } 425 426 static int mqueue_get_tree(struct fs_context *fc) 427 { 428 struct mqueue_fs_context *ctx = fc->fs_private; 429 430 /* 431 * With a newly created ipc namespace, we don't need to do a search 432 * for an ipc namespace match, but we still need to set s_fs_info. 433 */ 434 if (ctx->newns) { 435 fc->s_fs_info = ctx->ipc_ns; 436 return get_tree_nodev(fc, mqueue_fill_super); 437 } 438 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 439 } 440 441 static void mqueue_fs_context_free(struct fs_context *fc) 442 { 443 struct mqueue_fs_context *ctx = fc->fs_private; 444 445 put_ipc_ns(ctx->ipc_ns); 446 kfree(ctx); 447 } 448 449 static int mqueue_init_fs_context(struct fs_context *fc) 450 { 451 struct mqueue_fs_context *ctx; 452 453 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 454 if (!ctx) 455 return -ENOMEM; 456 457 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 458 put_user_ns(fc->user_ns); 459 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 460 fc->fs_private = ctx; 461 fc->ops = &mqueue_fs_context_ops; 462 return 0; 463 } 464 465 /* 466 * mq_init_ns() is currently the only caller of mq_create_mount(). 467 * So the ns parameter is always a newly created ipc namespace. 468 */ 469 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 470 { 471 struct mqueue_fs_context *ctx; 472 struct fs_context *fc; 473 struct vfsmount *mnt; 474 475 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 476 if (IS_ERR(fc)) 477 return ERR_CAST(fc); 478 479 ctx = fc->fs_private; 480 ctx->newns = true; 481 put_ipc_ns(ctx->ipc_ns); 482 ctx->ipc_ns = get_ipc_ns(ns); 483 put_user_ns(fc->user_ns); 484 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 485 486 mnt = fc_mount_longterm(fc); 487 put_fs_context(fc); 488 return mnt; 489 } 490 491 static void init_once(void *foo) 492 { 493 struct mqueue_inode_info *p = foo; 494 495 inode_init_once(&p->vfs_inode); 496 } 497 498 static struct inode *mqueue_alloc_inode(struct super_block *sb) 499 { 500 struct mqueue_inode_info *ei; 501 502 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL); 503 if (!ei) 504 return NULL; 505 return &ei->vfs_inode; 506 } 507 508 static void mqueue_free_inode(struct inode *inode) 509 { 510 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 511 } 512 513 static void mqueue_evict_inode(struct inode *inode) 514 { 515 struct mqueue_inode_info *info; 516 struct ipc_namespace *ipc_ns; 517 struct msg_msg *msg, *nmsg; 518 LIST_HEAD(tmp_msg); 519 520 clear_inode(inode); 521 522 if (S_ISDIR(inode->i_mode)) 523 return; 524 525 ipc_ns = get_ns_from_inode(inode); 526 info = MQUEUE_I(inode); 527 spin_lock(&info->lock); 528 while ((msg = msg_get(info)) != NULL) 529 list_add_tail(&msg->m_list, &tmp_msg); 530 kfree(info->node_cache); 531 spin_unlock(&info->lock); 532 533 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 534 list_del(&msg->m_list); 535 free_msg(msg); 536 } 537 538 if (info->ucounts) { 539 unsigned long mq_bytes, mq_treesize; 540 541 /* Total amount of bytes accounted for the mqueue */ 542 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 543 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 544 sizeof(struct posix_msg_tree_node); 545 546 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 547 info->attr.mq_msgsize); 548 549 spin_lock(&mq_lock); 550 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 551 /* 552 * get_ns_from_inode() ensures that the 553 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 554 * to which we now hold a reference, or it is NULL. 555 * We can't put it here under mq_lock, though. 556 */ 557 if (ipc_ns) 558 ipc_ns->mq_queues_count--; 559 spin_unlock(&mq_lock); 560 put_ucounts(info->ucounts); 561 info->ucounts = NULL; 562 } 563 if (ipc_ns) 564 put_ipc_ns(ipc_ns); 565 } 566 567 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 568 { 569 struct inode *dir = dentry->d_parent->d_inode; 570 struct inode *inode; 571 struct mq_attr *attr = arg; 572 int error; 573 struct ipc_namespace *ipc_ns; 574 575 spin_lock(&mq_lock); 576 ipc_ns = __get_ns_from_inode(dir); 577 if (!ipc_ns) { 578 error = -EACCES; 579 goto out_unlock; 580 } 581 582 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 583 !capable(CAP_SYS_RESOURCE)) { 584 error = -ENOSPC; 585 goto out_unlock; 586 } 587 ipc_ns->mq_queues_count++; 588 spin_unlock(&mq_lock); 589 590 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 591 if (IS_ERR(inode)) { 592 error = PTR_ERR(inode); 593 spin_lock(&mq_lock); 594 ipc_ns->mq_queues_count--; 595 goto out_unlock; 596 } 597 598 put_ipc_ns(ipc_ns); 599 dir->i_size += DIRENT_SIZE; 600 simple_inode_init_ts(dir); 601 602 d_make_persistent(dentry, inode); 603 return 0; 604 out_unlock: 605 spin_unlock(&mq_lock); 606 if (ipc_ns) 607 put_ipc_ns(ipc_ns); 608 return error; 609 } 610 611 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir, 612 struct dentry *dentry, umode_t mode, bool excl) 613 { 614 return mqueue_create_attr(dentry, mode, NULL); 615 } 616 617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 618 { 619 dir->i_size -= DIRENT_SIZE; 620 return simple_unlink(dir, dentry); 621 } 622 623 /* 624 * This is routine for system read from queue file. 625 * To avoid mess with doing here some sort of mq_receive we allow 626 * to read only queue size & notification info (the only values 627 * that are interesting from user point of view and aren't accessible 628 * through std routines) 629 */ 630 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 631 size_t count, loff_t *off) 632 { 633 struct inode *inode = file_inode(filp); 634 struct mqueue_inode_info *info = MQUEUE_I(inode); 635 char buffer[FILENT_SIZE]; 636 ssize_t ret; 637 638 spin_lock(&info->lock); 639 snprintf(buffer, sizeof(buffer), 640 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 641 info->qsize, 642 info->notify_owner ? info->notify.sigev_notify : 0, 643 (info->notify_owner && 644 info->notify.sigev_notify == SIGEV_SIGNAL) ? 645 info->notify.sigev_signo : 0, 646 pid_vnr(info->notify_owner)); 647 spin_unlock(&info->lock); 648 buffer[sizeof(buffer)-1] = '\0'; 649 650 ret = simple_read_from_buffer(u_data, count, off, buffer, 651 strlen(buffer)); 652 if (ret <= 0) 653 return ret; 654 655 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 656 return ret; 657 } 658 659 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 660 { 661 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 662 663 spin_lock(&info->lock); 664 if (task_tgid(current) == info->notify_owner) 665 remove_notification(info); 666 667 spin_unlock(&info->lock); 668 return 0; 669 } 670 671 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 672 { 673 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 674 __poll_t retval = 0; 675 676 poll_wait(filp, &info->wait_q, poll_tab); 677 678 spin_lock(&info->lock); 679 if (info->attr.mq_curmsgs) 680 retval = EPOLLIN | EPOLLRDNORM; 681 682 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 683 retval |= EPOLLOUT | EPOLLWRNORM; 684 spin_unlock(&info->lock); 685 686 return retval; 687 } 688 689 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 690 static void wq_add(struct mqueue_inode_info *info, int sr, 691 struct ext_wait_queue *ewp) 692 { 693 struct ext_wait_queue *walk; 694 695 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 696 if (walk->task->prio <= current->prio) { 697 list_add_tail(&ewp->list, &walk->list); 698 return; 699 } 700 } 701 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 702 } 703 704 /* 705 * Puts current task to sleep. Caller must hold queue lock. After return 706 * lock isn't held. 707 * sr: SEND or RECV 708 */ 709 static int wq_sleep(struct mqueue_inode_info *info, int sr, 710 ktime_t *timeout, struct ext_wait_queue *ewp) 711 __releases(&info->lock) 712 { 713 int retval; 714 signed long time; 715 716 wq_add(info, sr, ewp); 717 718 for (;;) { 719 /* memory barrier not required, we hold info->lock */ 720 __set_current_state(TASK_INTERRUPTIBLE); 721 722 spin_unlock(&info->lock); 723 time = schedule_hrtimeout_range_clock(timeout, 0, 724 HRTIMER_MODE_ABS, CLOCK_REALTIME); 725 726 if (READ_ONCE(ewp->state) == STATE_READY) { 727 /* see MQ_BARRIER for purpose/pairing */ 728 smp_acquire__after_ctrl_dep(); 729 retval = 0; 730 goto out; 731 } 732 spin_lock(&info->lock); 733 734 /* we hold info->lock, so no memory barrier required */ 735 if (READ_ONCE(ewp->state) == STATE_READY) { 736 retval = 0; 737 goto out_unlock; 738 } 739 if (signal_pending(current)) { 740 retval = -ERESTARTSYS; 741 break; 742 } 743 if (time == 0) { 744 retval = -ETIMEDOUT; 745 break; 746 } 747 } 748 list_del(&ewp->list); 749 out_unlock: 750 spin_unlock(&info->lock); 751 out: 752 return retval; 753 } 754 755 /* 756 * Returns waiting task that should be serviced first or NULL if none exists 757 */ 758 static struct ext_wait_queue *wq_get_first_waiter( 759 struct mqueue_inode_info *info, int sr) 760 { 761 struct list_head *ptr; 762 763 ptr = info->e_wait_q[sr].list.prev; 764 if (ptr == &info->e_wait_q[sr].list) 765 return NULL; 766 return list_entry(ptr, struct ext_wait_queue, list); 767 } 768 769 770 static inline void set_cookie(struct sk_buff *skb, char code) 771 { 772 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 773 } 774 775 /* 776 * The next function is only to split too long sys_mq_timedsend 777 */ 778 static void __do_notify(struct mqueue_inode_info *info) 779 { 780 /* notification 781 * invoked when there is registered process and there isn't process 782 * waiting synchronously for message AND state of queue changed from 783 * empty to not empty. Here we are sure that no one is waiting 784 * synchronously. */ 785 if (info->notify_owner && 786 info->attr.mq_curmsgs == 1) { 787 switch (info->notify.sigev_notify) { 788 case SIGEV_NONE: 789 break; 790 case SIGEV_SIGNAL: { 791 struct kernel_siginfo sig_i; 792 struct task_struct *task; 793 794 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 795 if (!info->notify.sigev_signo) 796 break; 797 798 clear_siginfo(&sig_i); 799 sig_i.si_signo = info->notify.sigev_signo; 800 sig_i.si_errno = 0; 801 sig_i.si_code = SI_MESGQ; 802 sig_i.si_value = info->notify.sigev_value; 803 rcu_read_lock(); 804 /* map current pid/uid into info->owner's namespaces */ 805 sig_i.si_pid = task_tgid_nr_ns(current, 806 ns_of_pid(info->notify_owner)); 807 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 808 current_uid()); 809 /* 810 * We can't use kill_pid_info(), this signal should 811 * bypass check_kill_permission(). It is from kernel 812 * but si_fromuser() can't know this. 813 * We do check the self_exec_id, to avoid sending 814 * signals to programs that don't expect them. 815 */ 816 task = pid_task(info->notify_owner, PIDTYPE_TGID); 817 if (task && task->self_exec_id == 818 info->notify_self_exec_id) { 819 do_send_sig_info(info->notify.sigev_signo, 820 &sig_i, task, PIDTYPE_TGID); 821 } 822 rcu_read_unlock(); 823 break; 824 } 825 case SIGEV_THREAD: 826 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 827 netlink_sendskb(info->notify_sock, info->notify_cookie); 828 break; 829 } 830 /* after notification unregisters process */ 831 put_pid(info->notify_owner); 832 put_user_ns(info->notify_user_ns); 833 info->notify_owner = NULL; 834 info->notify_user_ns = NULL; 835 } 836 wake_up(&info->wait_q); 837 } 838 839 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 840 struct timespec64 *ts) 841 { 842 if (get_timespec64(ts, u_abs_timeout)) 843 return -EFAULT; 844 if (!timespec64_valid(ts)) 845 return -EINVAL; 846 return 0; 847 } 848 849 static void remove_notification(struct mqueue_inode_info *info) 850 { 851 if (info->notify_owner != NULL && 852 info->notify.sigev_notify == SIGEV_THREAD) { 853 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 854 netlink_sendskb(info->notify_sock, info->notify_cookie); 855 } 856 put_pid(info->notify_owner); 857 put_user_ns(info->notify_user_ns); 858 info->notify_owner = NULL; 859 info->notify_user_ns = NULL; 860 } 861 862 static int prepare_open(struct dentry *dentry, int oflag, int ro, 863 umode_t mode, struct filename *name, 864 struct mq_attr *attr) 865 { 866 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 867 MAY_READ | MAY_WRITE }; 868 int acc; 869 870 if (d_really_is_negative(dentry)) { 871 if (!(oflag & O_CREAT)) 872 return -ENOENT; 873 if (ro) 874 return ro; 875 audit_inode_parent_hidden(name, dentry->d_parent); 876 return vfs_mkobj(dentry, mode & ~current_umask(), 877 mqueue_create_attr, attr); 878 } 879 /* it already existed */ 880 audit_inode(name, dentry, 0); 881 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 882 return -EEXIST; 883 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 884 return -EINVAL; 885 acc = oflag2acc[oflag & O_ACCMODE]; 886 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc); 887 } 888 889 static struct file *mqueue_file_open(struct filename *name, 890 struct vfsmount *mnt, int oflag, int ro, 891 umode_t mode, struct mq_attr *attr) 892 { 893 struct dentry *dentry; 894 struct file *file; 895 int ret; 896 897 dentry = start_creating_noperm(mnt->mnt_root, &QSTR(name->name)); 898 if (IS_ERR(dentry)) 899 return ERR_CAST(dentry); 900 901 ret = prepare_open(dentry, oflag, ro, mode, name, attr); 902 file = ERR_PTR(ret); 903 if (!ret) { 904 const struct path path = { .mnt = mnt, .dentry = dentry }; 905 file = dentry_open(&path, oflag, current_cred()); 906 } 907 908 end_creating(dentry); 909 return file; 910 } 911 912 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 913 struct mq_attr *attr) 914 { 915 struct filename *name __free(putname) = NULL;; 916 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 917 int fd, ro; 918 919 audit_mq_open(oflag, mode, attr); 920 921 name = getname(u_name); 922 if (IS_ERR(name)) 923 return PTR_ERR(name); 924 925 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 926 fd = FD_ADD(O_CLOEXEC, mqueue_file_open(name, mnt, oflag, ro, mode, attr)); 927 if (!ro) 928 mnt_drop_write(mnt); 929 return fd; 930 } 931 932 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 933 struct mq_attr __user *, u_attr) 934 { 935 struct mq_attr attr; 936 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 937 return -EFAULT; 938 939 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 940 } 941 942 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 943 { 944 int err; 945 struct filename *name; 946 struct dentry *dentry; 947 struct inode *inode; 948 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 949 struct vfsmount *mnt = ipc_ns->mq_mnt; 950 951 name = getname(u_name); 952 if (IS_ERR(name)) 953 return PTR_ERR(name); 954 955 audit_inode_parent_hidden(name, mnt->mnt_root); 956 err = mnt_want_write(mnt); 957 if (err) 958 goto out_name; 959 dentry = start_removing_noperm(mnt->mnt_root, &QSTR(name->name)); 960 if (IS_ERR(dentry)) { 961 err = PTR_ERR(dentry); 962 goto out_drop_write; 963 } 964 965 inode = d_inode(dentry); 966 ihold(inode); 967 err = vfs_unlink(&nop_mnt_idmap, d_inode(mnt->mnt_root), 968 dentry, NULL); 969 end_removing(dentry); 970 iput(inode); 971 972 out_drop_write: 973 mnt_drop_write(mnt); 974 out_name: 975 putname(name); 976 977 return err; 978 } 979 980 /* Pipelined send and receive functions. 981 * 982 * If a receiver finds no waiting message, then it registers itself in the 983 * list of waiting receivers. A sender checks that list before adding the new 984 * message into the message array. If there is a waiting receiver, then it 985 * bypasses the message array and directly hands the message over to the 986 * receiver. The receiver accepts the message and returns without grabbing the 987 * queue spinlock: 988 * 989 * - Set pointer to message. 990 * - Queue the receiver task for later wakeup (without the info->lock). 991 * - Update its state to STATE_READY. Now the receiver can continue. 992 * - Wake up the process after the lock is dropped. Should the process wake up 993 * before this wakeup (due to a timeout or a signal) it will either see 994 * STATE_READY and continue or acquire the lock to check the state again. 995 * 996 * The same algorithm is used for senders. 997 */ 998 999 static inline void __pipelined_op(struct wake_q_head *wake_q, 1000 struct mqueue_inode_info *info, 1001 struct ext_wait_queue *this) 1002 { 1003 struct task_struct *task; 1004 1005 list_del(&this->list); 1006 task = get_task_struct(this->task); 1007 1008 /* see MQ_BARRIER for purpose/pairing */ 1009 smp_store_release(&this->state, STATE_READY); 1010 wake_q_add_safe(wake_q, task); 1011 } 1012 1013 /* pipelined_send() - send a message directly to the task waiting in 1014 * sys_mq_timedreceive() (without inserting message into a queue). 1015 */ 1016 static inline void pipelined_send(struct wake_q_head *wake_q, 1017 struct mqueue_inode_info *info, 1018 struct msg_msg *message, 1019 struct ext_wait_queue *receiver) 1020 { 1021 receiver->msg = message; 1022 __pipelined_op(wake_q, info, receiver); 1023 } 1024 1025 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1026 * gets its message and put to the queue (we have one free place for sure). */ 1027 static inline void pipelined_receive(struct wake_q_head *wake_q, 1028 struct mqueue_inode_info *info) 1029 { 1030 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1031 1032 if (!sender) { 1033 /* for poll */ 1034 wake_up_interruptible(&info->wait_q); 1035 return; 1036 } 1037 if (msg_insert(sender->msg, info)) 1038 return; 1039 1040 __pipelined_op(wake_q, info, sender); 1041 } 1042 1043 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1044 size_t msg_len, unsigned int msg_prio, 1045 struct timespec64 *ts) 1046 { 1047 struct inode *inode; 1048 struct ext_wait_queue wait; 1049 struct ext_wait_queue *receiver; 1050 struct msg_msg *msg_ptr; 1051 struct mqueue_inode_info *info; 1052 ktime_t expires, *timeout = NULL; 1053 struct posix_msg_tree_node *new_leaf = NULL; 1054 int ret = 0; 1055 DEFINE_WAKE_Q(wake_q); 1056 1057 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1058 return -EINVAL; 1059 1060 if (ts) { 1061 expires = timespec64_to_ktime(*ts); 1062 timeout = &expires; 1063 } 1064 1065 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1066 1067 CLASS(fd, f)(mqdes); 1068 if (fd_empty(f)) 1069 return -EBADF; 1070 1071 inode = file_inode(fd_file(f)); 1072 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1073 return -EBADF; 1074 info = MQUEUE_I(inode); 1075 audit_file(fd_file(f)); 1076 1077 if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE))) 1078 return -EBADF; 1079 1080 if (unlikely(msg_len > info->attr.mq_msgsize)) 1081 return -EMSGSIZE; 1082 1083 /* First try to allocate memory, before doing anything with 1084 * existing queues. */ 1085 msg_ptr = load_msg(u_msg_ptr, msg_len); 1086 if (IS_ERR(msg_ptr)) 1087 return PTR_ERR(msg_ptr); 1088 msg_ptr->m_ts = msg_len; 1089 msg_ptr->m_type = msg_prio; 1090 1091 /* 1092 * msg_insert really wants us to have a valid, spare node struct so 1093 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1094 * fall back to that if necessary. 1095 */ 1096 if (!info->node_cache) 1097 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1098 1099 spin_lock(&info->lock); 1100 1101 if (!info->node_cache && new_leaf) { 1102 /* Save our speculative allocation into the cache */ 1103 INIT_LIST_HEAD(&new_leaf->msg_list); 1104 info->node_cache = new_leaf; 1105 new_leaf = NULL; 1106 } else { 1107 kfree(new_leaf); 1108 } 1109 1110 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1111 if (fd_file(f)->f_flags & O_NONBLOCK) { 1112 ret = -EAGAIN; 1113 } else { 1114 wait.task = current; 1115 wait.msg = (void *) msg_ptr; 1116 1117 /* memory barrier not required, we hold info->lock */ 1118 WRITE_ONCE(wait.state, STATE_NONE); 1119 ret = wq_sleep(info, SEND, timeout, &wait); 1120 /* 1121 * wq_sleep must be called with info->lock held, and 1122 * returns with the lock released 1123 */ 1124 goto out_free; 1125 } 1126 } else { 1127 receiver = wq_get_first_waiter(info, RECV); 1128 if (receiver) { 1129 pipelined_send(&wake_q, info, msg_ptr, receiver); 1130 } else { 1131 /* adds message to the queue */ 1132 ret = msg_insert(msg_ptr, info); 1133 if (ret) 1134 goto out_unlock; 1135 __do_notify(info); 1136 } 1137 simple_inode_init_ts(inode); 1138 } 1139 out_unlock: 1140 spin_unlock(&info->lock); 1141 wake_up_q(&wake_q); 1142 out_free: 1143 if (ret) 1144 free_msg(msg_ptr); 1145 return ret; 1146 } 1147 1148 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1149 size_t msg_len, unsigned int __user *u_msg_prio, 1150 struct timespec64 *ts) 1151 { 1152 ssize_t ret; 1153 struct msg_msg *msg_ptr; 1154 struct inode *inode; 1155 struct mqueue_inode_info *info; 1156 struct ext_wait_queue wait; 1157 ktime_t expires, *timeout = NULL; 1158 struct posix_msg_tree_node *new_leaf = NULL; 1159 1160 if (ts) { 1161 expires = timespec64_to_ktime(*ts); 1162 timeout = &expires; 1163 } 1164 1165 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1166 1167 CLASS(fd, f)(mqdes); 1168 if (fd_empty(f)) 1169 return -EBADF; 1170 1171 inode = file_inode(fd_file(f)); 1172 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1173 return -EBADF; 1174 info = MQUEUE_I(inode); 1175 audit_file(fd_file(f)); 1176 1177 if (unlikely(!(fd_file(f)->f_mode & FMODE_READ))) 1178 return -EBADF; 1179 1180 /* checks if buffer is big enough */ 1181 if (unlikely(msg_len < info->attr.mq_msgsize)) 1182 return -EMSGSIZE; 1183 1184 /* 1185 * msg_insert really wants us to have a valid, spare node struct so 1186 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1187 * fall back to that if necessary. 1188 */ 1189 if (!info->node_cache) 1190 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1191 1192 spin_lock(&info->lock); 1193 1194 if (!info->node_cache && new_leaf) { 1195 /* Save our speculative allocation into the cache */ 1196 INIT_LIST_HEAD(&new_leaf->msg_list); 1197 info->node_cache = new_leaf; 1198 } else { 1199 kfree(new_leaf); 1200 } 1201 1202 if (info->attr.mq_curmsgs == 0) { 1203 if (fd_file(f)->f_flags & O_NONBLOCK) { 1204 spin_unlock(&info->lock); 1205 ret = -EAGAIN; 1206 } else { 1207 wait.task = current; 1208 1209 /* memory barrier not required, we hold info->lock */ 1210 WRITE_ONCE(wait.state, STATE_NONE); 1211 ret = wq_sleep(info, RECV, timeout, &wait); 1212 msg_ptr = wait.msg; 1213 } 1214 } else { 1215 DEFINE_WAKE_Q(wake_q); 1216 1217 msg_ptr = msg_get(info); 1218 1219 simple_inode_init_ts(inode); 1220 1221 /* There is now free space in queue. */ 1222 pipelined_receive(&wake_q, info); 1223 spin_unlock(&info->lock); 1224 wake_up_q(&wake_q); 1225 ret = 0; 1226 } 1227 if (ret == 0) { 1228 ret = msg_ptr->m_ts; 1229 1230 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1231 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1232 ret = -EFAULT; 1233 } 1234 free_msg(msg_ptr); 1235 } 1236 return ret; 1237 } 1238 1239 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1240 size_t, msg_len, unsigned int, msg_prio, 1241 const struct __kernel_timespec __user *, u_abs_timeout) 1242 { 1243 struct timespec64 ts, *p = NULL; 1244 if (u_abs_timeout) { 1245 int res = prepare_timeout(u_abs_timeout, &ts); 1246 if (res) 1247 return res; 1248 p = &ts; 1249 } 1250 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1251 } 1252 1253 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1254 size_t, msg_len, unsigned int __user *, u_msg_prio, 1255 const struct __kernel_timespec __user *, u_abs_timeout) 1256 { 1257 struct timespec64 ts, *p = NULL; 1258 if (u_abs_timeout) { 1259 int res = prepare_timeout(u_abs_timeout, &ts); 1260 if (res) 1261 return res; 1262 p = &ts; 1263 } 1264 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1265 } 1266 1267 /* 1268 * Notes: the case when user wants us to deregister (with NULL as pointer) 1269 * and he isn't currently owner of notification, will be silently discarded. 1270 * It isn't explicitly defined in the POSIX. 1271 */ 1272 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1273 { 1274 int ret; 1275 struct sock *sock; 1276 struct inode *inode; 1277 struct mqueue_inode_info *info; 1278 struct sk_buff *nc; 1279 1280 audit_mq_notify(mqdes, notification); 1281 1282 nc = NULL; 1283 sock = NULL; 1284 if (notification != NULL) { 1285 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1286 notification->sigev_notify != SIGEV_SIGNAL && 1287 notification->sigev_notify != SIGEV_THREAD)) 1288 return -EINVAL; 1289 if (notification->sigev_notify == SIGEV_SIGNAL && 1290 !valid_signal(notification->sigev_signo)) { 1291 return -EINVAL; 1292 } 1293 if (notification->sigev_notify == SIGEV_THREAD) { 1294 long timeo; 1295 1296 /* create the notify skb */ 1297 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1298 if (!nc) 1299 return -ENOMEM; 1300 1301 if (copy_from_user(nc->data, 1302 notification->sigev_value.sival_ptr, 1303 NOTIFY_COOKIE_LEN)) { 1304 kfree_skb(nc); 1305 return -EFAULT; 1306 } 1307 1308 /* TODO: add a header? */ 1309 skb_put(nc, NOTIFY_COOKIE_LEN); 1310 /* and attach it to the socket */ 1311 retry: 1312 sock = netlink_getsockbyfd(notification->sigev_signo); 1313 if (IS_ERR(sock)) { 1314 kfree_skb(nc); 1315 return PTR_ERR(sock); 1316 } 1317 1318 timeo = MAX_SCHEDULE_TIMEOUT; 1319 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1320 if (ret == 1) 1321 goto retry; 1322 if (ret) 1323 return ret; 1324 } 1325 } 1326 1327 CLASS(fd, f)(mqdes); 1328 if (fd_empty(f)) { 1329 ret = -EBADF; 1330 goto out; 1331 } 1332 1333 inode = file_inode(fd_file(f)); 1334 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) { 1335 ret = -EBADF; 1336 goto out; 1337 } 1338 info = MQUEUE_I(inode); 1339 1340 ret = 0; 1341 spin_lock(&info->lock); 1342 if (notification == NULL) { 1343 if (info->notify_owner == task_tgid(current)) { 1344 remove_notification(info); 1345 inode_set_atime_to_ts(inode, 1346 inode_set_ctime_current(inode)); 1347 } 1348 } else if (info->notify_owner != NULL) { 1349 ret = -EBUSY; 1350 } else { 1351 switch (notification->sigev_notify) { 1352 case SIGEV_NONE: 1353 info->notify.sigev_notify = SIGEV_NONE; 1354 break; 1355 case SIGEV_THREAD: 1356 info->notify_sock = sock; 1357 info->notify_cookie = nc; 1358 sock = NULL; 1359 nc = NULL; 1360 info->notify.sigev_notify = SIGEV_THREAD; 1361 break; 1362 case SIGEV_SIGNAL: 1363 info->notify.sigev_signo = notification->sigev_signo; 1364 info->notify.sigev_value = notification->sigev_value; 1365 info->notify.sigev_notify = SIGEV_SIGNAL; 1366 info->notify_self_exec_id = current->self_exec_id; 1367 break; 1368 } 1369 1370 info->notify_owner = get_pid(task_tgid(current)); 1371 info->notify_user_ns = get_user_ns(current_user_ns()); 1372 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1373 } 1374 spin_unlock(&info->lock); 1375 out: 1376 if (sock) 1377 netlink_detachskb(sock, nc); 1378 return ret; 1379 } 1380 1381 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1382 const struct sigevent __user *, u_notification) 1383 { 1384 struct sigevent n, *p = NULL; 1385 if (u_notification) { 1386 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1387 return -EFAULT; 1388 p = &n; 1389 } 1390 return do_mq_notify(mqdes, p); 1391 } 1392 1393 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1394 { 1395 struct inode *inode; 1396 struct mqueue_inode_info *info; 1397 1398 if (new && (new->mq_flags & (~O_NONBLOCK))) 1399 return -EINVAL; 1400 1401 CLASS(fd, f)(mqdes); 1402 if (fd_empty(f)) 1403 return -EBADF; 1404 1405 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1406 return -EBADF; 1407 1408 inode = file_inode(fd_file(f)); 1409 info = MQUEUE_I(inode); 1410 1411 spin_lock(&info->lock); 1412 1413 if (old) { 1414 *old = info->attr; 1415 old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK; 1416 } 1417 if (new) { 1418 audit_mq_getsetattr(mqdes, new); 1419 spin_lock(&fd_file(f)->f_lock); 1420 if (new->mq_flags & O_NONBLOCK) 1421 fd_file(f)->f_flags |= O_NONBLOCK; 1422 else 1423 fd_file(f)->f_flags &= ~O_NONBLOCK; 1424 spin_unlock(&fd_file(f)->f_lock); 1425 1426 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1427 } 1428 1429 spin_unlock(&info->lock); 1430 return 0; 1431 } 1432 1433 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1434 const struct mq_attr __user *, u_mqstat, 1435 struct mq_attr __user *, u_omqstat) 1436 { 1437 int ret; 1438 struct mq_attr mqstat, omqstat; 1439 struct mq_attr *new = NULL, *old = NULL; 1440 1441 if (u_mqstat) { 1442 new = &mqstat; 1443 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1444 return -EFAULT; 1445 } 1446 if (u_omqstat) 1447 old = &omqstat; 1448 1449 ret = do_mq_getsetattr(mqdes, new, old); 1450 if (ret || !old) 1451 return ret; 1452 1453 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1454 return -EFAULT; 1455 return 0; 1456 } 1457 1458 #ifdef CONFIG_COMPAT 1459 1460 struct compat_mq_attr { 1461 compat_long_t mq_flags; /* message queue flags */ 1462 compat_long_t mq_maxmsg; /* maximum number of messages */ 1463 compat_long_t mq_msgsize; /* maximum message size */ 1464 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1465 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1466 }; 1467 1468 static inline int get_compat_mq_attr(struct mq_attr *attr, 1469 const struct compat_mq_attr __user *uattr) 1470 { 1471 struct compat_mq_attr v; 1472 1473 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1474 return -EFAULT; 1475 1476 memset(attr, 0, sizeof(*attr)); 1477 attr->mq_flags = v.mq_flags; 1478 attr->mq_maxmsg = v.mq_maxmsg; 1479 attr->mq_msgsize = v.mq_msgsize; 1480 attr->mq_curmsgs = v.mq_curmsgs; 1481 return 0; 1482 } 1483 1484 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1485 struct compat_mq_attr __user *uattr) 1486 { 1487 struct compat_mq_attr v; 1488 1489 memset(&v, 0, sizeof(v)); 1490 v.mq_flags = attr->mq_flags; 1491 v.mq_maxmsg = attr->mq_maxmsg; 1492 v.mq_msgsize = attr->mq_msgsize; 1493 v.mq_curmsgs = attr->mq_curmsgs; 1494 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1495 return -EFAULT; 1496 return 0; 1497 } 1498 1499 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1500 int, oflag, compat_mode_t, mode, 1501 struct compat_mq_attr __user *, u_attr) 1502 { 1503 struct mq_attr attr, *p = NULL; 1504 if (u_attr && oflag & O_CREAT) { 1505 p = &attr; 1506 if (get_compat_mq_attr(&attr, u_attr)) 1507 return -EFAULT; 1508 } 1509 return do_mq_open(u_name, oflag, mode, p); 1510 } 1511 1512 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1513 const struct compat_sigevent __user *, u_notification) 1514 { 1515 struct sigevent n, *p = NULL; 1516 if (u_notification) { 1517 if (get_compat_sigevent(&n, u_notification)) 1518 return -EFAULT; 1519 if (n.sigev_notify == SIGEV_THREAD) 1520 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1521 p = &n; 1522 } 1523 return do_mq_notify(mqdes, p); 1524 } 1525 1526 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1527 const struct compat_mq_attr __user *, u_mqstat, 1528 struct compat_mq_attr __user *, u_omqstat) 1529 { 1530 int ret; 1531 struct mq_attr mqstat, omqstat; 1532 struct mq_attr *new = NULL, *old = NULL; 1533 1534 if (u_mqstat) { 1535 new = &mqstat; 1536 if (get_compat_mq_attr(new, u_mqstat)) 1537 return -EFAULT; 1538 } 1539 if (u_omqstat) 1540 old = &omqstat; 1541 1542 ret = do_mq_getsetattr(mqdes, new, old); 1543 if (ret || !old) 1544 return ret; 1545 1546 if (put_compat_mq_attr(old, u_omqstat)) 1547 return -EFAULT; 1548 return 0; 1549 } 1550 #endif 1551 1552 #ifdef CONFIG_COMPAT_32BIT_TIME 1553 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1554 struct timespec64 *ts) 1555 { 1556 if (get_old_timespec32(ts, p)) 1557 return -EFAULT; 1558 if (!timespec64_valid(ts)) 1559 return -EINVAL; 1560 return 0; 1561 } 1562 1563 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1564 const char __user *, u_msg_ptr, 1565 unsigned int, msg_len, unsigned int, msg_prio, 1566 const struct old_timespec32 __user *, u_abs_timeout) 1567 { 1568 struct timespec64 ts, *p = NULL; 1569 if (u_abs_timeout) { 1570 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1571 if (res) 1572 return res; 1573 p = &ts; 1574 } 1575 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1576 } 1577 1578 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1579 char __user *, u_msg_ptr, 1580 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1581 const struct old_timespec32 __user *, u_abs_timeout) 1582 { 1583 struct timespec64 ts, *p = NULL; 1584 if (u_abs_timeout) { 1585 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1586 if (res) 1587 return res; 1588 p = &ts; 1589 } 1590 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1591 } 1592 #endif 1593 1594 static const struct inode_operations mqueue_dir_inode_operations = { 1595 .lookup = simple_lookup, 1596 .create = mqueue_create, 1597 .unlink = mqueue_unlink, 1598 }; 1599 1600 static const struct file_operations mqueue_file_operations = { 1601 .flush = mqueue_flush_file, 1602 .poll = mqueue_poll_file, 1603 .read = mqueue_read_file, 1604 .llseek = default_llseek, 1605 }; 1606 1607 static const struct super_operations mqueue_super_ops = { 1608 .alloc_inode = mqueue_alloc_inode, 1609 .free_inode = mqueue_free_inode, 1610 .evict_inode = mqueue_evict_inode, 1611 .statfs = simple_statfs, 1612 }; 1613 1614 static const struct fs_context_operations mqueue_fs_context_ops = { 1615 .free = mqueue_fs_context_free, 1616 .get_tree = mqueue_get_tree, 1617 }; 1618 1619 static struct file_system_type mqueue_fs_type = { 1620 .name = "mqueue", 1621 .init_fs_context = mqueue_init_fs_context, 1622 .kill_sb = kill_anon_super, 1623 .fs_flags = FS_USERNS_MOUNT, 1624 }; 1625 1626 int mq_init_ns(struct ipc_namespace *ns) 1627 { 1628 struct vfsmount *m; 1629 1630 ns->mq_queues_count = 0; 1631 ns->mq_queues_max = DFLT_QUEUESMAX; 1632 ns->mq_msg_max = DFLT_MSGMAX; 1633 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1634 ns->mq_msg_default = DFLT_MSG; 1635 ns->mq_msgsize_default = DFLT_MSGSIZE; 1636 1637 m = mq_create_mount(ns); 1638 if (IS_ERR(m)) 1639 return PTR_ERR(m); 1640 ns->mq_mnt = m; 1641 return 0; 1642 } 1643 1644 void mq_clear_sbinfo(struct ipc_namespace *ns) 1645 { 1646 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1647 } 1648 1649 static int __init init_mqueue_fs(void) 1650 { 1651 int error; 1652 1653 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1654 sizeof(struct mqueue_inode_info), 0, 1655 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1656 if (mqueue_inode_cachep == NULL) 1657 return -ENOMEM; 1658 1659 if (!setup_mq_sysctls(&init_ipc_ns)) { 1660 pr_warn("sysctl registration failed\n"); 1661 error = -ENOMEM; 1662 goto out_kmem; 1663 } 1664 1665 error = register_filesystem(&mqueue_fs_type); 1666 if (error) 1667 goto out_sysctl; 1668 1669 spin_lock_init(&mq_lock); 1670 1671 error = mq_init_ns(&init_ipc_ns); 1672 if (error) 1673 goto out_filesystem; 1674 1675 return 0; 1676 1677 out_filesystem: 1678 unregister_filesystem(&mqueue_fs_type); 1679 out_sysctl: 1680 retire_mq_sysctls(&init_ipc_ns); 1681 out_kmem: 1682 kmem_cache_destroy(mqueue_inode_cachep); 1683 return error; 1684 } 1685 1686 device_initcall(init_mqueue_fs); 1687