1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 bool newns; /* Set if newly created ipc namespace */ 49 }; 50 51 #define MQUEUE_MAGIC 0x19800202 52 #define DIRENT_SIZE 20 53 #define FILENT_SIZE 80 54 55 #define SEND 0 56 #define RECV 1 57 58 #define STATE_NONE 0 59 #define STATE_READY 1 60 61 struct posix_msg_tree_node { 62 struct rb_node rb_node; 63 struct list_head msg_list; 64 int priority; 65 }; 66 67 /* 68 * Locking: 69 * 70 * Accesses to a message queue are synchronized by acquiring info->lock. 71 * 72 * There are two notable exceptions: 73 * - The actual wakeup of a sleeping task is performed using the wake_q 74 * framework. info->lock is already released when wake_up_q is called. 75 * - The exit codepaths after sleeping check ext_wait_queue->state without 76 * any locks. If it is STATE_READY, then the syscall is completed without 77 * acquiring info->lock. 78 * 79 * MQ_BARRIER: 80 * To achieve proper release/acquire memory barrier pairing, the state is set to 81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 83 * 84 * This prevents the following races: 85 * 86 * 1) With the simple wake_q_add(), the task could be gone already before 87 * the increase of the reference happens 88 * Thread A 89 * Thread B 90 * WRITE_ONCE(wait.state, STATE_NONE); 91 * schedule_hrtimeout() 92 * wake_q_add(A) 93 * if (cmpxchg()) // success 94 * ->state = STATE_READY (reordered) 95 * <timeout returns> 96 * if (wait.state == STATE_READY) return; 97 * sysret to user space 98 * sys_exit() 99 * get_task_struct() // UaF 100 * 101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 102 * the smp_store_release() that does ->state = STATE_READY. 103 * 104 * 2) Without proper _release/_acquire barriers, the woken up task 105 * could read stale data 106 * 107 * Thread A 108 * Thread B 109 * do_mq_timedreceive 110 * WRITE_ONCE(wait.state, STATE_NONE); 111 * schedule_hrtimeout() 112 * state = STATE_READY; 113 * <timeout returns> 114 * if (wait.state == STATE_READY) return; 115 * msg_ptr = wait.msg; // Access to stale data! 116 * receiver->msg = message; (reordered) 117 * 118 * Solution: use _release and _acquire barriers. 119 * 120 * 3) There is intentionally no barrier when setting current->state 121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 122 * release memory barrier, and the wakeup is triggered when holding 123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 124 * acquire memory barrier. 125 */ 126 127 struct ext_wait_queue { /* queue of sleeping tasks */ 128 struct task_struct *task; 129 struct list_head list; 130 struct msg_msg *msg; /* ptr of loaded message */ 131 int state; /* one of STATE_* values */ 132 }; 133 134 struct mqueue_inode_info { 135 spinlock_t lock; 136 struct inode vfs_inode; 137 wait_queue_head_t wait_q; 138 139 struct rb_root msg_tree; 140 struct rb_node *msg_tree_rightmost; 141 struct posix_msg_tree_node *node_cache; 142 struct mq_attr attr; 143 144 struct sigevent notify; 145 struct pid *notify_owner; 146 u32 notify_self_exec_id; 147 struct user_namespace *notify_user_ns; 148 struct ucounts *ucounts; /* user who created, for accounting */ 149 struct sock *notify_sock; 150 struct sk_buff *notify_cookie; 151 152 /* for tasks waiting for free space and messages, respectively */ 153 struct ext_wait_queue e_wait_q[2]; 154 155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 156 }; 157 158 static struct file_system_type mqueue_fs_type; 159 static const struct inode_operations mqueue_dir_inode_operations; 160 static const struct file_operations mqueue_file_operations; 161 static const struct super_operations mqueue_super_ops; 162 static const struct fs_context_operations mqueue_fs_context_ops; 163 static void remove_notification(struct mqueue_inode_info *info); 164 165 static struct kmem_cache *mqueue_inode_cachep; 166 167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 168 { 169 return container_of(inode, struct mqueue_inode_info, vfs_inode); 170 } 171 172 /* 173 * This routine should be called with the mq_lock held. 174 */ 175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 176 { 177 return get_ipc_ns(inode->i_sb->s_fs_info); 178 } 179 180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 181 { 182 struct ipc_namespace *ns; 183 184 spin_lock(&mq_lock); 185 ns = __get_ns_from_inode(inode); 186 spin_unlock(&mq_lock); 187 return ns; 188 } 189 190 /* Auxiliary functions to manipulate messages' list */ 191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 192 { 193 struct rb_node **p, *parent = NULL; 194 struct posix_msg_tree_node *leaf; 195 bool rightmost = true; 196 197 p = &info->msg_tree.rb_node; 198 while (*p) { 199 parent = *p; 200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 201 202 if (likely(leaf->priority == msg->m_type)) 203 goto insert_msg; 204 else if (msg->m_type < leaf->priority) { 205 p = &(*p)->rb_left; 206 rightmost = false; 207 } else 208 p = &(*p)->rb_right; 209 } 210 if (info->node_cache) { 211 leaf = info->node_cache; 212 info->node_cache = NULL; 213 } else { 214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 215 if (!leaf) 216 return -ENOMEM; 217 INIT_LIST_HEAD(&leaf->msg_list); 218 } 219 leaf->priority = msg->m_type; 220 221 if (rightmost) 222 info->msg_tree_rightmost = &leaf->rb_node; 223 224 rb_link_node(&leaf->rb_node, parent, p); 225 rb_insert_color(&leaf->rb_node, &info->msg_tree); 226 insert_msg: 227 info->attr.mq_curmsgs++; 228 info->qsize += msg->m_ts; 229 list_add_tail(&msg->m_list, &leaf->msg_list); 230 return 0; 231 } 232 233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 234 struct mqueue_inode_info *info) 235 { 236 struct rb_node *node = &leaf->rb_node; 237 238 if (info->msg_tree_rightmost == node) 239 info->msg_tree_rightmost = rb_prev(node); 240 241 rb_erase(node, &info->msg_tree); 242 if (info->node_cache) 243 kfree(leaf); 244 else 245 info->node_cache = leaf; 246 } 247 248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 249 { 250 struct rb_node *parent = NULL; 251 struct posix_msg_tree_node *leaf; 252 struct msg_msg *msg; 253 254 try_again: 255 /* 256 * During insert, low priorities go to the left and high to the 257 * right. On receive, we want the highest priorities first, so 258 * walk all the way to the right. 259 */ 260 parent = info->msg_tree_rightmost; 261 if (!parent) { 262 if (info->attr.mq_curmsgs) { 263 pr_warn_once("Inconsistency in POSIX message queue, " 264 "no tree element, but supposedly messages " 265 "should exist!\n"); 266 info->attr.mq_curmsgs = 0; 267 } 268 return NULL; 269 } 270 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 271 if (unlikely(list_empty(&leaf->msg_list))) { 272 pr_warn_once("Inconsistency in POSIX message queue, " 273 "empty leaf node but we haven't implemented " 274 "lazy leaf delete!\n"); 275 msg_tree_erase(leaf, info); 276 goto try_again; 277 } else { 278 msg = list_first_entry(&leaf->msg_list, 279 struct msg_msg, m_list); 280 list_del(&msg->m_list); 281 if (list_empty(&leaf->msg_list)) { 282 msg_tree_erase(leaf, info); 283 } 284 } 285 info->attr.mq_curmsgs--; 286 info->qsize -= msg->m_ts; 287 return msg; 288 } 289 290 static struct inode *mqueue_get_inode(struct super_block *sb, 291 struct ipc_namespace *ipc_ns, umode_t mode, 292 struct mq_attr *attr) 293 { 294 struct inode *inode; 295 int ret = -ENOMEM; 296 297 inode = new_inode(sb); 298 if (!inode) 299 goto err; 300 301 inode->i_ino = get_next_ino(); 302 inode->i_mode = mode; 303 inode->i_uid = current_fsuid(); 304 inode->i_gid = current_fsgid(); 305 simple_inode_init_ts(inode); 306 307 if (S_ISREG(mode)) { 308 struct mqueue_inode_info *info; 309 unsigned long mq_bytes, mq_treesize; 310 311 inode->i_fop = &mqueue_file_operations; 312 inode->i_size = FILENT_SIZE; 313 /* mqueue specific info */ 314 info = MQUEUE_I(inode); 315 spin_lock_init(&info->lock); 316 init_waitqueue_head(&info->wait_q); 317 INIT_LIST_HEAD(&info->e_wait_q[0].list); 318 INIT_LIST_HEAD(&info->e_wait_q[1].list); 319 info->notify_owner = NULL; 320 info->notify_user_ns = NULL; 321 info->qsize = 0; 322 info->ucounts = NULL; /* set when all is ok */ 323 info->msg_tree = RB_ROOT; 324 info->msg_tree_rightmost = NULL; 325 info->node_cache = NULL; 326 memset(&info->attr, 0, sizeof(info->attr)); 327 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 328 ipc_ns->mq_msg_default); 329 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 330 ipc_ns->mq_msgsize_default); 331 if (attr) { 332 info->attr.mq_maxmsg = attr->mq_maxmsg; 333 info->attr.mq_msgsize = attr->mq_msgsize; 334 } 335 /* 336 * We used to allocate a static array of pointers and account 337 * the size of that array as well as one msg_msg struct per 338 * possible message into the queue size. That's no longer 339 * accurate as the queue is now an rbtree and will grow and 340 * shrink depending on usage patterns. We can, however, still 341 * account one msg_msg struct per message, but the nodes are 342 * allocated depending on priority usage, and most programs 343 * only use one, or a handful, of priorities. However, since 344 * this is pinned memory, we need to assume worst case, so 345 * that means the min(mq_maxmsg, max_priorities) * struct 346 * posix_msg_tree_node. 347 */ 348 349 ret = -EINVAL; 350 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 351 goto out_inode; 352 if (capable(CAP_SYS_RESOURCE)) { 353 if (info->attr.mq_maxmsg > HARD_MSGMAX || 354 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 355 goto out_inode; 356 } else { 357 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 358 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 359 goto out_inode; 360 } 361 ret = -EOVERFLOW; 362 /* check for overflow */ 363 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 364 goto out_inode; 365 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 366 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 367 sizeof(struct posix_msg_tree_node); 368 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 369 if (mq_bytes + mq_treesize < mq_bytes) 370 goto out_inode; 371 mq_bytes += mq_treesize; 372 info->ucounts = get_ucounts(current_ucounts()); 373 if (info->ucounts) { 374 long msgqueue; 375 376 spin_lock(&mq_lock); 377 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 378 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { 379 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 380 spin_unlock(&mq_lock); 381 put_ucounts(info->ucounts); 382 info->ucounts = NULL; 383 /* mqueue_evict_inode() releases info->messages */ 384 ret = -EMFILE; 385 goto out_inode; 386 } 387 spin_unlock(&mq_lock); 388 } 389 } else if (S_ISDIR(mode)) { 390 inc_nlink(inode); 391 /* Some things misbehave if size == 0 on a directory */ 392 inode->i_size = 2 * DIRENT_SIZE; 393 inode->i_op = &mqueue_dir_inode_operations; 394 inode->i_fop = &simple_dir_operations; 395 } 396 397 return inode; 398 out_inode: 399 iput(inode); 400 err: 401 return ERR_PTR(ret); 402 } 403 404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 405 { 406 struct inode *inode; 407 struct ipc_namespace *ns = sb->s_fs_info; 408 409 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 410 sb->s_blocksize = PAGE_SIZE; 411 sb->s_blocksize_bits = PAGE_SHIFT; 412 sb->s_magic = MQUEUE_MAGIC; 413 sb->s_op = &mqueue_super_ops; 414 sb->s_d_flags = DCACHE_DONTCACHE; 415 416 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 417 if (IS_ERR(inode)) 418 return PTR_ERR(inode); 419 420 sb->s_root = d_make_root(inode); 421 if (!sb->s_root) 422 return -ENOMEM; 423 return 0; 424 } 425 426 static int mqueue_get_tree(struct fs_context *fc) 427 { 428 struct mqueue_fs_context *ctx = fc->fs_private; 429 430 /* 431 * With a newly created ipc namespace, we don't need to do a search 432 * for an ipc namespace match, but we still need to set s_fs_info. 433 */ 434 if (ctx->newns) { 435 fc->s_fs_info = ctx->ipc_ns; 436 return get_tree_nodev(fc, mqueue_fill_super); 437 } 438 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 439 } 440 441 static void mqueue_fs_context_free(struct fs_context *fc) 442 { 443 struct mqueue_fs_context *ctx = fc->fs_private; 444 445 put_ipc_ns(ctx->ipc_ns); 446 kfree(ctx); 447 } 448 449 static int mqueue_init_fs_context(struct fs_context *fc) 450 { 451 struct mqueue_fs_context *ctx; 452 453 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 454 if (!ctx) 455 return -ENOMEM; 456 457 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 458 put_user_ns(fc->user_ns); 459 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 460 fc->fs_private = ctx; 461 fc->ops = &mqueue_fs_context_ops; 462 return 0; 463 } 464 465 /* 466 * mq_init_ns() is currently the only caller of mq_create_mount(). 467 * So the ns parameter is always a newly created ipc namespace. 468 */ 469 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 470 { 471 struct mqueue_fs_context *ctx; 472 struct fs_context *fc; 473 struct vfsmount *mnt; 474 475 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 476 if (IS_ERR(fc)) 477 return ERR_CAST(fc); 478 479 ctx = fc->fs_private; 480 ctx->newns = true; 481 put_ipc_ns(ctx->ipc_ns); 482 ctx->ipc_ns = get_ipc_ns(ns); 483 put_user_ns(fc->user_ns); 484 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 485 486 mnt = fc_mount_longterm(fc); 487 put_fs_context(fc); 488 return mnt; 489 } 490 491 static void init_once(void *foo) 492 { 493 struct mqueue_inode_info *p = foo; 494 495 inode_init_once(&p->vfs_inode); 496 } 497 498 static struct inode *mqueue_alloc_inode(struct super_block *sb) 499 { 500 struct mqueue_inode_info *ei; 501 502 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL); 503 if (!ei) 504 return NULL; 505 return &ei->vfs_inode; 506 } 507 508 static void mqueue_free_inode(struct inode *inode) 509 { 510 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 511 } 512 513 static void mqueue_evict_inode(struct inode *inode) 514 { 515 struct mqueue_inode_info *info; 516 struct ipc_namespace *ipc_ns; 517 struct msg_msg *msg, *nmsg; 518 LIST_HEAD(tmp_msg); 519 520 clear_inode(inode); 521 522 if (S_ISDIR(inode->i_mode)) 523 return; 524 525 ipc_ns = get_ns_from_inode(inode); 526 info = MQUEUE_I(inode); 527 spin_lock(&info->lock); 528 while ((msg = msg_get(info)) != NULL) 529 list_add_tail(&msg->m_list, &tmp_msg); 530 kfree(info->node_cache); 531 spin_unlock(&info->lock); 532 533 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 534 list_del(&msg->m_list); 535 free_msg(msg); 536 } 537 538 if (info->ucounts) { 539 unsigned long mq_bytes, mq_treesize; 540 541 /* Total amount of bytes accounted for the mqueue */ 542 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 543 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 544 sizeof(struct posix_msg_tree_node); 545 546 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 547 info->attr.mq_msgsize); 548 549 spin_lock(&mq_lock); 550 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 551 /* 552 * get_ns_from_inode() ensures that the 553 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 554 * to which we now hold a reference, or it is NULL. 555 * We can't put it here under mq_lock, though. 556 */ 557 if (ipc_ns) 558 ipc_ns->mq_queues_count--; 559 spin_unlock(&mq_lock); 560 put_ucounts(info->ucounts); 561 info->ucounts = NULL; 562 } 563 if (ipc_ns) 564 put_ipc_ns(ipc_ns); 565 } 566 567 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 568 { 569 struct inode *dir = dentry->d_parent->d_inode; 570 struct inode *inode; 571 struct mq_attr *attr = arg; 572 int error; 573 struct ipc_namespace *ipc_ns; 574 575 spin_lock(&mq_lock); 576 ipc_ns = __get_ns_from_inode(dir); 577 if (!ipc_ns) { 578 error = -EACCES; 579 goto out_unlock; 580 } 581 582 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 583 !capable(CAP_SYS_RESOURCE)) { 584 error = -ENOSPC; 585 goto out_unlock; 586 } 587 ipc_ns->mq_queues_count++; 588 spin_unlock(&mq_lock); 589 590 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 591 if (IS_ERR(inode)) { 592 error = PTR_ERR(inode); 593 spin_lock(&mq_lock); 594 ipc_ns->mq_queues_count--; 595 goto out_unlock; 596 } 597 598 put_ipc_ns(ipc_ns); 599 dir->i_size += DIRENT_SIZE; 600 simple_inode_init_ts(dir); 601 602 d_instantiate(dentry, inode); 603 dget(dentry); 604 return 0; 605 out_unlock: 606 spin_unlock(&mq_lock); 607 if (ipc_ns) 608 put_ipc_ns(ipc_ns); 609 return error; 610 } 611 612 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir, 613 struct dentry *dentry, umode_t mode, bool excl) 614 { 615 return mqueue_create_attr(dentry, mode, NULL); 616 } 617 618 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 619 { 620 struct inode *inode = d_inode(dentry); 621 622 simple_inode_init_ts(dir); 623 dir->i_size -= DIRENT_SIZE; 624 drop_nlink(inode); 625 dput(dentry); 626 return 0; 627 } 628 629 /* 630 * This is routine for system read from queue file. 631 * To avoid mess with doing here some sort of mq_receive we allow 632 * to read only queue size & notification info (the only values 633 * that are interesting from user point of view and aren't accessible 634 * through std routines) 635 */ 636 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 637 size_t count, loff_t *off) 638 { 639 struct inode *inode = file_inode(filp); 640 struct mqueue_inode_info *info = MQUEUE_I(inode); 641 char buffer[FILENT_SIZE]; 642 ssize_t ret; 643 644 spin_lock(&info->lock); 645 snprintf(buffer, sizeof(buffer), 646 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 647 info->qsize, 648 info->notify_owner ? info->notify.sigev_notify : 0, 649 (info->notify_owner && 650 info->notify.sigev_notify == SIGEV_SIGNAL) ? 651 info->notify.sigev_signo : 0, 652 pid_vnr(info->notify_owner)); 653 spin_unlock(&info->lock); 654 buffer[sizeof(buffer)-1] = '\0'; 655 656 ret = simple_read_from_buffer(u_data, count, off, buffer, 657 strlen(buffer)); 658 if (ret <= 0) 659 return ret; 660 661 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 662 return ret; 663 } 664 665 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 666 { 667 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 668 669 spin_lock(&info->lock); 670 if (task_tgid(current) == info->notify_owner) 671 remove_notification(info); 672 673 spin_unlock(&info->lock); 674 return 0; 675 } 676 677 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 678 { 679 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 680 __poll_t retval = 0; 681 682 poll_wait(filp, &info->wait_q, poll_tab); 683 684 spin_lock(&info->lock); 685 if (info->attr.mq_curmsgs) 686 retval = EPOLLIN | EPOLLRDNORM; 687 688 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 689 retval |= EPOLLOUT | EPOLLWRNORM; 690 spin_unlock(&info->lock); 691 692 return retval; 693 } 694 695 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 696 static void wq_add(struct mqueue_inode_info *info, int sr, 697 struct ext_wait_queue *ewp) 698 { 699 struct ext_wait_queue *walk; 700 701 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 702 if (walk->task->prio <= current->prio) { 703 list_add_tail(&ewp->list, &walk->list); 704 return; 705 } 706 } 707 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 708 } 709 710 /* 711 * Puts current task to sleep. Caller must hold queue lock. After return 712 * lock isn't held. 713 * sr: SEND or RECV 714 */ 715 static int wq_sleep(struct mqueue_inode_info *info, int sr, 716 ktime_t *timeout, struct ext_wait_queue *ewp) 717 __releases(&info->lock) 718 { 719 int retval; 720 signed long time; 721 722 wq_add(info, sr, ewp); 723 724 for (;;) { 725 /* memory barrier not required, we hold info->lock */ 726 __set_current_state(TASK_INTERRUPTIBLE); 727 728 spin_unlock(&info->lock); 729 time = schedule_hrtimeout_range_clock(timeout, 0, 730 HRTIMER_MODE_ABS, CLOCK_REALTIME); 731 732 if (READ_ONCE(ewp->state) == STATE_READY) { 733 /* see MQ_BARRIER for purpose/pairing */ 734 smp_acquire__after_ctrl_dep(); 735 retval = 0; 736 goto out; 737 } 738 spin_lock(&info->lock); 739 740 /* we hold info->lock, so no memory barrier required */ 741 if (READ_ONCE(ewp->state) == STATE_READY) { 742 retval = 0; 743 goto out_unlock; 744 } 745 if (signal_pending(current)) { 746 retval = -ERESTARTSYS; 747 break; 748 } 749 if (time == 0) { 750 retval = -ETIMEDOUT; 751 break; 752 } 753 } 754 list_del(&ewp->list); 755 out_unlock: 756 spin_unlock(&info->lock); 757 out: 758 return retval; 759 } 760 761 /* 762 * Returns waiting task that should be serviced first or NULL if none exists 763 */ 764 static struct ext_wait_queue *wq_get_first_waiter( 765 struct mqueue_inode_info *info, int sr) 766 { 767 struct list_head *ptr; 768 769 ptr = info->e_wait_q[sr].list.prev; 770 if (ptr == &info->e_wait_q[sr].list) 771 return NULL; 772 return list_entry(ptr, struct ext_wait_queue, list); 773 } 774 775 776 static inline void set_cookie(struct sk_buff *skb, char code) 777 { 778 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 779 } 780 781 /* 782 * The next function is only to split too long sys_mq_timedsend 783 */ 784 static void __do_notify(struct mqueue_inode_info *info) 785 { 786 /* notification 787 * invoked when there is registered process and there isn't process 788 * waiting synchronously for message AND state of queue changed from 789 * empty to not empty. Here we are sure that no one is waiting 790 * synchronously. */ 791 if (info->notify_owner && 792 info->attr.mq_curmsgs == 1) { 793 switch (info->notify.sigev_notify) { 794 case SIGEV_NONE: 795 break; 796 case SIGEV_SIGNAL: { 797 struct kernel_siginfo sig_i; 798 struct task_struct *task; 799 800 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 801 if (!info->notify.sigev_signo) 802 break; 803 804 clear_siginfo(&sig_i); 805 sig_i.si_signo = info->notify.sigev_signo; 806 sig_i.si_errno = 0; 807 sig_i.si_code = SI_MESGQ; 808 sig_i.si_value = info->notify.sigev_value; 809 rcu_read_lock(); 810 /* map current pid/uid into info->owner's namespaces */ 811 sig_i.si_pid = task_tgid_nr_ns(current, 812 ns_of_pid(info->notify_owner)); 813 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 814 current_uid()); 815 /* 816 * We can't use kill_pid_info(), this signal should 817 * bypass check_kill_permission(). It is from kernel 818 * but si_fromuser() can't know this. 819 * We do check the self_exec_id, to avoid sending 820 * signals to programs that don't expect them. 821 */ 822 task = pid_task(info->notify_owner, PIDTYPE_TGID); 823 if (task && task->self_exec_id == 824 info->notify_self_exec_id) { 825 do_send_sig_info(info->notify.sigev_signo, 826 &sig_i, task, PIDTYPE_TGID); 827 } 828 rcu_read_unlock(); 829 break; 830 } 831 case SIGEV_THREAD: 832 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 833 netlink_sendskb(info->notify_sock, info->notify_cookie); 834 break; 835 } 836 /* after notification unregisters process */ 837 put_pid(info->notify_owner); 838 put_user_ns(info->notify_user_ns); 839 info->notify_owner = NULL; 840 info->notify_user_ns = NULL; 841 } 842 wake_up(&info->wait_q); 843 } 844 845 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 846 struct timespec64 *ts) 847 { 848 if (get_timespec64(ts, u_abs_timeout)) 849 return -EFAULT; 850 if (!timespec64_valid(ts)) 851 return -EINVAL; 852 return 0; 853 } 854 855 static void remove_notification(struct mqueue_inode_info *info) 856 { 857 if (info->notify_owner != NULL && 858 info->notify.sigev_notify == SIGEV_THREAD) { 859 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 860 netlink_sendskb(info->notify_sock, info->notify_cookie); 861 } 862 put_pid(info->notify_owner); 863 put_user_ns(info->notify_user_ns); 864 info->notify_owner = NULL; 865 info->notify_user_ns = NULL; 866 } 867 868 static int prepare_open(struct dentry *dentry, int oflag, int ro, 869 umode_t mode, struct filename *name, 870 struct mq_attr *attr) 871 { 872 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 873 MAY_READ | MAY_WRITE }; 874 int acc; 875 876 if (d_really_is_negative(dentry)) { 877 if (!(oflag & O_CREAT)) 878 return -ENOENT; 879 if (ro) 880 return ro; 881 audit_inode_parent_hidden(name, dentry->d_parent); 882 return vfs_mkobj(dentry, mode & ~current_umask(), 883 mqueue_create_attr, attr); 884 } 885 /* it already existed */ 886 audit_inode(name, dentry, 0); 887 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 888 return -EEXIST; 889 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 890 return -EINVAL; 891 acc = oflag2acc[oflag & O_ACCMODE]; 892 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc); 893 } 894 895 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 896 struct mq_attr *attr) 897 { 898 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 899 struct dentry *root = mnt->mnt_root; 900 struct filename *name; 901 struct path path; 902 int fd, error; 903 int ro; 904 905 audit_mq_open(oflag, mode, attr); 906 907 name = getname(u_name); 908 if (IS_ERR(name)) 909 return PTR_ERR(name); 910 911 fd = get_unused_fd_flags(O_CLOEXEC); 912 if (fd < 0) 913 goto out_putname; 914 915 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 916 path.dentry = start_creating_noperm(root, &QSTR(name->name)); 917 if (IS_ERR(path.dentry)) { 918 error = PTR_ERR(path.dentry); 919 goto out_putfd; 920 } 921 path.mnt = mnt; 922 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 923 if (!error) { 924 struct file *file = dentry_open(&path, oflag, current_cred()); 925 if (!IS_ERR(file)) 926 fd_install(fd, file); 927 else 928 error = PTR_ERR(file); 929 } 930 out_putfd: 931 if (error) { 932 put_unused_fd(fd); 933 fd = error; 934 } 935 end_creating(path.dentry); 936 if (!ro) 937 mnt_drop_write(mnt); 938 out_putname: 939 putname(name); 940 return fd; 941 } 942 943 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 944 struct mq_attr __user *, u_attr) 945 { 946 struct mq_attr attr; 947 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 948 return -EFAULT; 949 950 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 951 } 952 953 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 954 { 955 int err; 956 struct filename *name; 957 struct dentry *dentry; 958 struct inode *inode; 959 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 960 struct vfsmount *mnt = ipc_ns->mq_mnt; 961 962 name = getname(u_name); 963 if (IS_ERR(name)) 964 return PTR_ERR(name); 965 966 audit_inode_parent_hidden(name, mnt->mnt_root); 967 err = mnt_want_write(mnt); 968 if (err) 969 goto out_name; 970 dentry = start_removing_noperm(mnt->mnt_root, &QSTR(name->name)); 971 if (IS_ERR(dentry)) { 972 err = PTR_ERR(dentry); 973 goto out_drop_write; 974 } 975 976 inode = d_inode(dentry); 977 ihold(inode); 978 err = vfs_unlink(&nop_mnt_idmap, d_inode(mnt->mnt_root), 979 dentry, NULL); 980 end_removing(dentry); 981 iput(inode); 982 983 out_drop_write: 984 mnt_drop_write(mnt); 985 out_name: 986 putname(name); 987 988 return err; 989 } 990 991 /* Pipelined send and receive functions. 992 * 993 * If a receiver finds no waiting message, then it registers itself in the 994 * list of waiting receivers. A sender checks that list before adding the new 995 * message into the message array. If there is a waiting receiver, then it 996 * bypasses the message array and directly hands the message over to the 997 * receiver. The receiver accepts the message and returns without grabbing the 998 * queue spinlock: 999 * 1000 * - Set pointer to message. 1001 * - Queue the receiver task for later wakeup (without the info->lock). 1002 * - Update its state to STATE_READY. Now the receiver can continue. 1003 * - Wake up the process after the lock is dropped. Should the process wake up 1004 * before this wakeup (due to a timeout or a signal) it will either see 1005 * STATE_READY and continue or acquire the lock to check the state again. 1006 * 1007 * The same algorithm is used for senders. 1008 */ 1009 1010 static inline void __pipelined_op(struct wake_q_head *wake_q, 1011 struct mqueue_inode_info *info, 1012 struct ext_wait_queue *this) 1013 { 1014 struct task_struct *task; 1015 1016 list_del(&this->list); 1017 task = get_task_struct(this->task); 1018 1019 /* see MQ_BARRIER for purpose/pairing */ 1020 smp_store_release(&this->state, STATE_READY); 1021 wake_q_add_safe(wake_q, task); 1022 } 1023 1024 /* pipelined_send() - send a message directly to the task waiting in 1025 * sys_mq_timedreceive() (without inserting message into a queue). 1026 */ 1027 static inline void pipelined_send(struct wake_q_head *wake_q, 1028 struct mqueue_inode_info *info, 1029 struct msg_msg *message, 1030 struct ext_wait_queue *receiver) 1031 { 1032 receiver->msg = message; 1033 __pipelined_op(wake_q, info, receiver); 1034 } 1035 1036 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1037 * gets its message and put to the queue (we have one free place for sure). */ 1038 static inline void pipelined_receive(struct wake_q_head *wake_q, 1039 struct mqueue_inode_info *info) 1040 { 1041 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1042 1043 if (!sender) { 1044 /* for poll */ 1045 wake_up_interruptible(&info->wait_q); 1046 return; 1047 } 1048 if (msg_insert(sender->msg, info)) 1049 return; 1050 1051 __pipelined_op(wake_q, info, sender); 1052 } 1053 1054 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1055 size_t msg_len, unsigned int msg_prio, 1056 struct timespec64 *ts) 1057 { 1058 struct inode *inode; 1059 struct ext_wait_queue wait; 1060 struct ext_wait_queue *receiver; 1061 struct msg_msg *msg_ptr; 1062 struct mqueue_inode_info *info; 1063 ktime_t expires, *timeout = NULL; 1064 struct posix_msg_tree_node *new_leaf = NULL; 1065 int ret = 0; 1066 DEFINE_WAKE_Q(wake_q); 1067 1068 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1069 return -EINVAL; 1070 1071 if (ts) { 1072 expires = timespec64_to_ktime(*ts); 1073 timeout = &expires; 1074 } 1075 1076 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1077 1078 CLASS(fd, f)(mqdes); 1079 if (fd_empty(f)) 1080 return -EBADF; 1081 1082 inode = file_inode(fd_file(f)); 1083 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1084 return -EBADF; 1085 info = MQUEUE_I(inode); 1086 audit_file(fd_file(f)); 1087 1088 if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE))) 1089 return -EBADF; 1090 1091 if (unlikely(msg_len > info->attr.mq_msgsize)) 1092 return -EMSGSIZE; 1093 1094 /* First try to allocate memory, before doing anything with 1095 * existing queues. */ 1096 msg_ptr = load_msg(u_msg_ptr, msg_len); 1097 if (IS_ERR(msg_ptr)) 1098 return PTR_ERR(msg_ptr); 1099 msg_ptr->m_ts = msg_len; 1100 msg_ptr->m_type = msg_prio; 1101 1102 /* 1103 * msg_insert really wants us to have a valid, spare node struct so 1104 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1105 * fall back to that if necessary. 1106 */ 1107 if (!info->node_cache) 1108 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1109 1110 spin_lock(&info->lock); 1111 1112 if (!info->node_cache && new_leaf) { 1113 /* Save our speculative allocation into the cache */ 1114 INIT_LIST_HEAD(&new_leaf->msg_list); 1115 info->node_cache = new_leaf; 1116 new_leaf = NULL; 1117 } else { 1118 kfree(new_leaf); 1119 } 1120 1121 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1122 if (fd_file(f)->f_flags & O_NONBLOCK) { 1123 ret = -EAGAIN; 1124 } else { 1125 wait.task = current; 1126 wait.msg = (void *) msg_ptr; 1127 1128 /* memory barrier not required, we hold info->lock */ 1129 WRITE_ONCE(wait.state, STATE_NONE); 1130 ret = wq_sleep(info, SEND, timeout, &wait); 1131 /* 1132 * wq_sleep must be called with info->lock held, and 1133 * returns with the lock released 1134 */ 1135 goto out_free; 1136 } 1137 } else { 1138 receiver = wq_get_first_waiter(info, RECV); 1139 if (receiver) { 1140 pipelined_send(&wake_q, info, msg_ptr, receiver); 1141 } else { 1142 /* adds message to the queue */ 1143 ret = msg_insert(msg_ptr, info); 1144 if (ret) 1145 goto out_unlock; 1146 __do_notify(info); 1147 } 1148 simple_inode_init_ts(inode); 1149 } 1150 out_unlock: 1151 spin_unlock(&info->lock); 1152 wake_up_q(&wake_q); 1153 out_free: 1154 if (ret) 1155 free_msg(msg_ptr); 1156 return ret; 1157 } 1158 1159 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1160 size_t msg_len, unsigned int __user *u_msg_prio, 1161 struct timespec64 *ts) 1162 { 1163 ssize_t ret; 1164 struct msg_msg *msg_ptr; 1165 struct inode *inode; 1166 struct mqueue_inode_info *info; 1167 struct ext_wait_queue wait; 1168 ktime_t expires, *timeout = NULL; 1169 struct posix_msg_tree_node *new_leaf = NULL; 1170 1171 if (ts) { 1172 expires = timespec64_to_ktime(*ts); 1173 timeout = &expires; 1174 } 1175 1176 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1177 1178 CLASS(fd, f)(mqdes); 1179 if (fd_empty(f)) 1180 return -EBADF; 1181 1182 inode = file_inode(fd_file(f)); 1183 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1184 return -EBADF; 1185 info = MQUEUE_I(inode); 1186 audit_file(fd_file(f)); 1187 1188 if (unlikely(!(fd_file(f)->f_mode & FMODE_READ))) 1189 return -EBADF; 1190 1191 /* checks if buffer is big enough */ 1192 if (unlikely(msg_len < info->attr.mq_msgsize)) 1193 return -EMSGSIZE; 1194 1195 /* 1196 * msg_insert really wants us to have a valid, spare node struct so 1197 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1198 * fall back to that if necessary. 1199 */ 1200 if (!info->node_cache) 1201 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1202 1203 spin_lock(&info->lock); 1204 1205 if (!info->node_cache && new_leaf) { 1206 /* Save our speculative allocation into the cache */ 1207 INIT_LIST_HEAD(&new_leaf->msg_list); 1208 info->node_cache = new_leaf; 1209 } else { 1210 kfree(new_leaf); 1211 } 1212 1213 if (info->attr.mq_curmsgs == 0) { 1214 if (fd_file(f)->f_flags & O_NONBLOCK) { 1215 spin_unlock(&info->lock); 1216 ret = -EAGAIN; 1217 } else { 1218 wait.task = current; 1219 1220 /* memory barrier not required, we hold info->lock */ 1221 WRITE_ONCE(wait.state, STATE_NONE); 1222 ret = wq_sleep(info, RECV, timeout, &wait); 1223 msg_ptr = wait.msg; 1224 } 1225 } else { 1226 DEFINE_WAKE_Q(wake_q); 1227 1228 msg_ptr = msg_get(info); 1229 1230 simple_inode_init_ts(inode); 1231 1232 /* There is now free space in queue. */ 1233 pipelined_receive(&wake_q, info); 1234 spin_unlock(&info->lock); 1235 wake_up_q(&wake_q); 1236 ret = 0; 1237 } 1238 if (ret == 0) { 1239 ret = msg_ptr->m_ts; 1240 1241 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1242 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1243 ret = -EFAULT; 1244 } 1245 free_msg(msg_ptr); 1246 } 1247 return ret; 1248 } 1249 1250 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1251 size_t, msg_len, unsigned int, msg_prio, 1252 const struct __kernel_timespec __user *, u_abs_timeout) 1253 { 1254 struct timespec64 ts, *p = NULL; 1255 if (u_abs_timeout) { 1256 int res = prepare_timeout(u_abs_timeout, &ts); 1257 if (res) 1258 return res; 1259 p = &ts; 1260 } 1261 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1262 } 1263 1264 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1265 size_t, msg_len, unsigned int __user *, u_msg_prio, 1266 const struct __kernel_timespec __user *, u_abs_timeout) 1267 { 1268 struct timespec64 ts, *p = NULL; 1269 if (u_abs_timeout) { 1270 int res = prepare_timeout(u_abs_timeout, &ts); 1271 if (res) 1272 return res; 1273 p = &ts; 1274 } 1275 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1276 } 1277 1278 /* 1279 * Notes: the case when user wants us to deregister (with NULL as pointer) 1280 * and he isn't currently owner of notification, will be silently discarded. 1281 * It isn't explicitly defined in the POSIX. 1282 */ 1283 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1284 { 1285 int ret; 1286 struct sock *sock; 1287 struct inode *inode; 1288 struct mqueue_inode_info *info; 1289 struct sk_buff *nc; 1290 1291 audit_mq_notify(mqdes, notification); 1292 1293 nc = NULL; 1294 sock = NULL; 1295 if (notification != NULL) { 1296 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1297 notification->sigev_notify != SIGEV_SIGNAL && 1298 notification->sigev_notify != SIGEV_THREAD)) 1299 return -EINVAL; 1300 if (notification->sigev_notify == SIGEV_SIGNAL && 1301 !valid_signal(notification->sigev_signo)) { 1302 return -EINVAL; 1303 } 1304 if (notification->sigev_notify == SIGEV_THREAD) { 1305 long timeo; 1306 1307 /* create the notify skb */ 1308 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1309 if (!nc) 1310 return -ENOMEM; 1311 1312 if (copy_from_user(nc->data, 1313 notification->sigev_value.sival_ptr, 1314 NOTIFY_COOKIE_LEN)) { 1315 kfree_skb(nc); 1316 return -EFAULT; 1317 } 1318 1319 /* TODO: add a header? */ 1320 skb_put(nc, NOTIFY_COOKIE_LEN); 1321 /* and attach it to the socket */ 1322 retry: 1323 sock = netlink_getsockbyfd(notification->sigev_signo); 1324 if (IS_ERR(sock)) { 1325 kfree_skb(nc); 1326 return PTR_ERR(sock); 1327 } 1328 1329 timeo = MAX_SCHEDULE_TIMEOUT; 1330 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1331 if (ret == 1) 1332 goto retry; 1333 if (ret) 1334 return ret; 1335 } 1336 } 1337 1338 CLASS(fd, f)(mqdes); 1339 if (fd_empty(f)) { 1340 ret = -EBADF; 1341 goto out; 1342 } 1343 1344 inode = file_inode(fd_file(f)); 1345 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) { 1346 ret = -EBADF; 1347 goto out; 1348 } 1349 info = MQUEUE_I(inode); 1350 1351 ret = 0; 1352 spin_lock(&info->lock); 1353 if (notification == NULL) { 1354 if (info->notify_owner == task_tgid(current)) { 1355 remove_notification(info); 1356 inode_set_atime_to_ts(inode, 1357 inode_set_ctime_current(inode)); 1358 } 1359 } else if (info->notify_owner != NULL) { 1360 ret = -EBUSY; 1361 } else { 1362 switch (notification->sigev_notify) { 1363 case SIGEV_NONE: 1364 info->notify.sigev_notify = SIGEV_NONE; 1365 break; 1366 case SIGEV_THREAD: 1367 info->notify_sock = sock; 1368 info->notify_cookie = nc; 1369 sock = NULL; 1370 nc = NULL; 1371 info->notify.sigev_notify = SIGEV_THREAD; 1372 break; 1373 case SIGEV_SIGNAL: 1374 info->notify.sigev_signo = notification->sigev_signo; 1375 info->notify.sigev_value = notification->sigev_value; 1376 info->notify.sigev_notify = SIGEV_SIGNAL; 1377 info->notify_self_exec_id = current->self_exec_id; 1378 break; 1379 } 1380 1381 info->notify_owner = get_pid(task_tgid(current)); 1382 info->notify_user_ns = get_user_ns(current_user_ns()); 1383 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1384 } 1385 spin_unlock(&info->lock); 1386 out: 1387 if (sock) 1388 netlink_detachskb(sock, nc); 1389 return ret; 1390 } 1391 1392 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1393 const struct sigevent __user *, u_notification) 1394 { 1395 struct sigevent n, *p = NULL; 1396 if (u_notification) { 1397 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1398 return -EFAULT; 1399 p = &n; 1400 } 1401 return do_mq_notify(mqdes, p); 1402 } 1403 1404 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1405 { 1406 struct inode *inode; 1407 struct mqueue_inode_info *info; 1408 1409 if (new && (new->mq_flags & (~O_NONBLOCK))) 1410 return -EINVAL; 1411 1412 CLASS(fd, f)(mqdes); 1413 if (fd_empty(f)) 1414 return -EBADF; 1415 1416 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1417 return -EBADF; 1418 1419 inode = file_inode(fd_file(f)); 1420 info = MQUEUE_I(inode); 1421 1422 spin_lock(&info->lock); 1423 1424 if (old) { 1425 *old = info->attr; 1426 old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK; 1427 } 1428 if (new) { 1429 audit_mq_getsetattr(mqdes, new); 1430 spin_lock(&fd_file(f)->f_lock); 1431 if (new->mq_flags & O_NONBLOCK) 1432 fd_file(f)->f_flags |= O_NONBLOCK; 1433 else 1434 fd_file(f)->f_flags &= ~O_NONBLOCK; 1435 spin_unlock(&fd_file(f)->f_lock); 1436 1437 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1438 } 1439 1440 spin_unlock(&info->lock); 1441 return 0; 1442 } 1443 1444 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1445 const struct mq_attr __user *, u_mqstat, 1446 struct mq_attr __user *, u_omqstat) 1447 { 1448 int ret; 1449 struct mq_attr mqstat, omqstat; 1450 struct mq_attr *new = NULL, *old = NULL; 1451 1452 if (u_mqstat) { 1453 new = &mqstat; 1454 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1455 return -EFAULT; 1456 } 1457 if (u_omqstat) 1458 old = &omqstat; 1459 1460 ret = do_mq_getsetattr(mqdes, new, old); 1461 if (ret || !old) 1462 return ret; 1463 1464 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1465 return -EFAULT; 1466 return 0; 1467 } 1468 1469 #ifdef CONFIG_COMPAT 1470 1471 struct compat_mq_attr { 1472 compat_long_t mq_flags; /* message queue flags */ 1473 compat_long_t mq_maxmsg; /* maximum number of messages */ 1474 compat_long_t mq_msgsize; /* maximum message size */ 1475 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1476 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1477 }; 1478 1479 static inline int get_compat_mq_attr(struct mq_attr *attr, 1480 const struct compat_mq_attr __user *uattr) 1481 { 1482 struct compat_mq_attr v; 1483 1484 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1485 return -EFAULT; 1486 1487 memset(attr, 0, sizeof(*attr)); 1488 attr->mq_flags = v.mq_flags; 1489 attr->mq_maxmsg = v.mq_maxmsg; 1490 attr->mq_msgsize = v.mq_msgsize; 1491 attr->mq_curmsgs = v.mq_curmsgs; 1492 return 0; 1493 } 1494 1495 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1496 struct compat_mq_attr __user *uattr) 1497 { 1498 struct compat_mq_attr v; 1499 1500 memset(&v, 0, sizeof(v)); 1501 v.mq_flags = attr->mq_flags; 1502 v.mq_maxmsg = attr->mq_maxmsg; 1503 v.mq_msgsize = attr->mq_msgsize; 1504 v.mq_curmsgs = attr->mq_curmsgs; 1505 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1506 return -EFAULT; 1507 return 0; 1508 } 1509 1510 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1511 int, oflag, compat_mode_t, mode, 1512 struct compat_mq_attr __user *, u_attr) 1513 { 1514 struct mq_attr attr, *p = NULL; 1515 if (u_attr && oflag & O_CREAT) { 1516 p = &attr; 1517 if (get_compat_mq_attr(&attr, u_attr)) 1518 return -EFAULT; 1519 } 1520 return do_mq_open(u_name, oflag, mode, p); 1521 } 1522 1523 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1524 const struct compat_sigevent __user *, u_notification) 1525 { 1526 struct sigevent n, *p = NULL; 1527 if (u_notification) { 1528 if (get_compat_sigevent(&n, u_notification)) 1529 return -EFAULT; 1530 if (n.sigev_notify == SIGEV_THREAD) 1531 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1532 p = &n; 1533 } 1534 return do_mq_notify(mqdes, p); 1535 } 1536 1537 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1538 const struct compat_mq_attr __user *, u_mqstat, 1539 struct compat_mq_attr __user *, u_omqstat) 1540 { 1541 int ret; 1542 struct mq_attr mqstat, omqstat; 1543 struct mq_attr *new = NULL, *old = NULL; 1544 1545 if (u_mqstat) { 1546 new = &mqstat; 1547 if (get_compat_mq_attr(new, u_mqstat)) 1548 return -EFAULT; 1549 } 1550 if (u_omqstat) 1551 old = &omqstat; 1552 1553 ret = do_mq_getsetattr(mqdes, new, old); 1554 if (ret || !old) 1555 return ret; 1556 1557 if (put_compat_mq_attr(old, u_omqstat)) 1558 return -EFAULT; 1559 return 0; 1560 } 1561 #endif 1562 1563 #ifdef CONFIG_COMPAT_32BIT_TIME 1564 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1565 struct timespec64 *ts) 1566 { 1567 if (get_old_timespec32(ts, p)) 1568 return -EFAULT; 1569 if (!timespec64_valid(ts)) 1570 return -EINVAL; 1571 return 0; 1572 } 1573 1574 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1575 const char __user *, u_msg_ptr, 1576 unsigned int, msg_len, unsigned int, msg_prio, 1577 const struct old_timespec32 __user *, u_abs_timeout) 1578 { 1579 struct timespec64 ts, *p = NULL; 1580 if (u_abs_timeout) { 1581 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1582 if (res) 1583 return res; 1584 p = &ts; 1585 } 1586 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1587 } 1588 1589 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1590 char __user *, u_msg_ptr, 1591 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1592 const struct old_timespec32 __user *, u_abs_timeout) 1593 { 1594 struct timespec64 ts, *p = NULL; 1595 if (u_abs_timeout) { 1596 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1597 if (res) 1598 return res; 1599 p = &ts; 1600 } 1601 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1602 } 1603 #endif 1604 1605 static const struct inode_operations mqueue_dir_inode_operations = { 1606 .lookup = simple_lookup, 1607 .create = mqueue_create, 1608 .unlink = mqueue_unlink, 1609 }; 1610 1611 static const struct file_operations mqueue_file_operations = { 1612 .flush = mqueue_flush_file, 1613 .poll = mqueue_poll_file, 1614 .read = mqueue_read_file, 1615 .llseek = default_llseek, 1616 }; 1617 1618 static const struct super_operations mqueue_super_ops = { 1619 .alloc_inode = mqueue_alloc_inode, 1620 .free_inode = mqueue_free_inode, 1621 .evict_inode = mqueue_evict_inode, 1622 .statfs = simple_statfs, 1623 }; 1624 1625 static const struct fs_context_operations mqueue_fs_context_ops = { 1626 .free = mqueue_fs_context_free, 1627 .get_tree = mqueue_get_tree, 1628 }; 1629 1630 static struct file_system_type mqueue_fs_type = { 1631 .name = "mqueue", 1632 .init_fs_context = mqueue_init_fs_context, 1633 .kill_sb = kill_litter_super, 1634 .fs_flags = FS_USERNS_MOUNT, 1635 }; 1636 1637 int mq_init_ns(struct ipc_namespace *ns) 1638 { 1639 struct vfsmount *m; 1640 1641 ns->mq_queues_count = 0; 1642 ns->mq_queues_max = DFLT_QUEUESMAX; 1643 ns->mq_msg_max = DFLT_MSGMAX; 1644 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1645 ns->mq_msg_default = DFLT_MSG; 1646 ns->mq_msgsize_default = DFLT_MSGSIZE; 1647 1648 m = mq_create_mount(ns); 1649 if (IS_ERR(m)) 1650 return PTR_ERR(m); 1651 ns->mq_mnt = m; 1652 return 0; 1653 } 1654 1655 void mq_clear_sbinfo(struct ipc_namespace *ns) 1656 { 1657 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1658 } 1659 1660 static int __init init_mqueue_fs(void) 1661 { 1662 int error; 1663 1664 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1665 sizeof(struct mqueue_inode_info), 0, 1666 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1667 if (mqueue_inode_cachep == NULL) 1668 return -ENOMEM; 1669 1670 if (!setup_mq_sysctls(&init_ipc_ns)) { 1671 pr_warn("sysctl registration failed\n"); 1672 error = -ENOMEM; 1673 goto out_kmem; 1674 } 1675 1676 error = register_filesystem(&mqueue_fs_type); 1677 if (error) 1678 goto out_sysctl; 1679 1680 spin_lock_init(&mq_lock); 1681 1682 error = mq_init_ns(&init_ipc_ns); 1683 if (error) 1684 goto out_filesystem; 1685 1686 return 0; 1687 1688 out_filesystem: 1689 unregister_filesystem(&mqueue_fs_type); 1690 out_sysctl: 1691 retire_mq_sysctls(&init_ipc_ns); 1692 out_kmem: 1693 kmem_cache_destroy(mqueue_inode_cachep); 1694 return error; 1695 } 1696 1697 device_initcall(init_mqueue_fs); 1698