xref: /linux/ipc/mqueue.c (revision a6021aa24f6417416d93318bbfa022ab229c33c8)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 	bool			 newns;	/* Set if newly created ipc namespace */
49 };
50 
51 #define MQUEUE_MAGIC	0x19800202
52 #define DIRENT_SIZE	20
53 #define FILENT_SIZE	80
54 
55 #define SEND		0
56 #define RECV		1
57 
58 #define STATE_NONE	0
59 #define STATE_READY	1
60 
61 struct posix_msg_tree_node {
62 	struct rb_node		rb_node;
63 	struct list_head	msg_list;
64 	int			priority;
65 };
66 
67 /*
68  * Locking:
69  *
70  * Accesses to a message queue are synchronized by acquiring info->lock.
71  *
72  * There are two notable exceptions:
73  * - The actual wakeup of a sleeping task is performed using the wake_q
74  *   framework. info->lock is already released when wake_up_q is called.
75  * - The exit codepaths after sleeping check ext_wait_queue->state without
76  *   any locks. If it is STATE_READY, then the syscall is completed without
77  *   acquiring info->lock.
78  *
79  * MQ_BARRIER:
80  * To achieve proper release/acquire memory barrier pairing, the state is set to
81  * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82  * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83  *
84  * This prevents the following races:
85  *
86  * 1) With the simple wake_q_add(), the task could be gone already before
87  *    the increase of the reference happens
88  * Thread A
89  *				Thread B
90  * WRITE_ONCE(wait.state, STATE_NONE);
91  * schedule_hrtimeout()
92  *				wake_q_add(A)
93  *				if (cmpxchg()) // success
94  *				   ->state = STATE_READY (reordered)
95  * <timeout returns>
96  * if (wait.state == STATE_READY) return;
97  * sysret to user space
98  * sys_exit()
99  *				get_task_struct() // UaF
100  *
101  * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102  * the smp_store_release() that does ->state = STATE_READY.
103  *
104  * 2) Without proper _release/_acquire barriers, the woken up task
105  *    could read stale data
106  *
107  * Thread A
108  *				Thread B
109  * do_mq_timedreceive
110  * WRITE_ONCE(wait.state, STATE_NONE);
111  * schedule_hrtimeout()
112  *				state = STATE_READY;
113  * <timeout returns>
114  * if (wait.state == STATE_READY) return;
115  * msg_ptr = wait.msg;		// Access to stale data!
116  *				receiver->msg = message; (reordered)
117  *
118  * Solution: use _release and _acquire barriers.
119  *
120  * 3) There is intentionally no barrier when setting current->state
121  *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122  *    release memory barrier, and the wakeup is triggered when holding
123  *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
124  *    acquire memory barrier.
125  */
126 
127 struct ext_wait_queue {		/* queue of sleeping tasks */
128 	struct task_struct *task;
129 	struct list_head list;
130 	struct msg_msg *msg;	/* ptr of loaded message */
131 	int state;		/* one of STATE_* values */
132 };
133 
134 struct mqueue_inode_info {
135 	spinlock_t lock;
136 	struct inode vfs_inode;
137 	wait_queue_head_t wait_q;
138 
139 	struct rb_root msg_tree;
140 	struct rb_node *msg_tree_rightmost;
141 	struct posix_msg_tree_node *node_cache;
142 	struct mq_attr attr;
143 
144 	struct sigevent notify;
145 	struct pid *notify_owner;
146 	u32 notify_self_exec_id;
147 	struct user_namespace *notify_user_ns;
148 	struct ucounts *ucounts;	/* user who created, for accounting */
149 	struct sock *notify_sock;
150 	struct sk_buff *notify_cookie;
151 
152 	/* for tasks waiting for free space and messages, respectively */
153 	struct ext_wait_queue e_wait_q[2];
154 
155 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 };
157 
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
164 
165 static struct kmem_cache *mqueue_inode_cachep;
166 
167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
168 {
169 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
170 }
171 
172 /*
173  * This routine should be called with the mq_lock held.
174  */
175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
176 {
177 	return get_ipc_ns(inode->i_sb->s_fs_info);
178 }
179 
180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
181 {
182 	struct ipc_namespace *ns;
183 
184 	spin_lock(&mq_lock);
185 	ns = __get_ns_from_inode(inode);
186 	spin_unlock(&mq_lock);
187 	return ns;
188 }
189 
190 /* Auxiliary functions to manipulate messages' list */
191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
192 {
193 	struct rb_node **p, *parent = NULL;
194 	struct posix_msg_tree_node *leaf;
195 	bool rightmost = true;
196 
197 	p = &info->msg_tree.rb_node;
198 	while (*p) {
199 		parent = *p;
200 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
201 
202 		if (likely(leaf->priority == msg->m_type))
203 			goto insert_msg;
204 		else if (msg->m_type < leaf->priority) {
205 			p = &(*p)->rb_left;
206 			rightmost = false;
207 		} else
208 			p = &(*p)->rb_right;
209 	}
210 	if (info->node_cache) {
211 		leaf = info->node_cache;
212 		info->node_cache = NULL;
213 	} else {
214 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215 		if (!leaf)
216 			return -ENOMEM;
217 		INIT_LIST_HEAD(&leaf->msg_list);
218 	}
219 	leaf->priority = msg->m_type;
220 
221 	if (rightmost)
222 		info->msg_tree_rightmost = &leaf->rb_node;
223 
224 	rb_link_node(&leaf->rb_node, parent, p);
225 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
226 insert_msg:
227 	info->attr.mq_curmsgs++;
228 	info->qsize += msg->m_ts;
229 	list_add_tail(&msg->m_list, &leaf->msg_list);
230 	return 0;
231 }
232 
233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 				  struct mqueue_inode_info *info)
235 {
236 	struct rb_node *node = &leaf->rb_node;
237 
238 	if (info->msg_tree_rightmost == node)
239 		info->msg_tree_rightmost = rb_prev(node);
240 
241 	rb_erase(node, &info->msg_tree);
242 	if (info->node_cache)
243 		kfree(leaf);
244 	else
245 		info->node_cache = leaf;
246 }
247 
248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
249 {
250 	struct rb_node *parent = NULL;
251 	struct posix_msg_tree_node *leaf;
252 	struct msg_msg *msg;
253 
254 try_again:
255 	/*
256 	 * During insert, low priorities go to the left and high to the
257 	 * right.  On receive, we want the highest priorities first, so
258 	 * walk all the way to the right.
259 	 */
260 	parent = info->msg_tree_rightmost;
261 	if (!parent) {
262 		if (info->attr.mq_curmsgs) {
263 			pr_warn_once("Inconsistency in POSIX message queue, "
264 				     "no tree element, but supposedly messages "
265 				     "should exist!\n");
266 			info->attr.mq_curmsgs = 0;
267 		}
268 		return NULL;
269 	}
270 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271 	if (unlikely(list_empty(&leaf->msg_list))) {
272 		pr_warn_once("Inconsistency in POSIX message queue, "
273 			     "empty leaf node but we haven't implemented "
274 			     "lazy leaf delete!\n");
275 		msg_tree_erase(leaf, info);
276 		goto try_again;
277 	} else {
278 		msg = list_first_entry(&leaf->msg_list,
279 				       struct msg_msg, m_list);
280 		list_del(&msg->m_list);
281 		if (list_empty(&leaf->msg_list)) {
282 			msg_tree_erase(leaf, info);
283 		}
284 	}
285 	info->attr.mq_curmsgs--;
286 	info->qsize -= msg->m_ts;
287 	return msg;
288 }
289 
290 static struct inode *mqueue_get_inode(struct super_block *sb,
291 		struct ipc_namespace *ipc_ns, umode_t mode,
292 		struct mq_attr *attr)
293 {
294 	struct inode *inode;
295 	int ret = -ENOMEM;
296 
297 	inode = new_inode(sb);
298 	if (!inode)
299 		goto err;
300 
301 	inode->i_ino = get_next_ino();
302 	inode->i_mode = mode;
303 	inode->i_uid = current_fsuid();
304 	inode->i_gid = current_fsgid();
305 	simple_inode_init_ts(inode);
306 
307 	if (S_ISREG(mode)) {
308 		struct mqueue_inode_info *info;
309 		unsigned long mq_bytes, mq_treesize;
310 
311 		inode->i_fop = &mqueue_file_operations;
312 		inode->i_size = FILENT_SIZE;
313 		/* mqueue specific info */
314 		info = MQUEUE_I(inode);
315 		spin_lock_init(&info->lock);
316 		init_waitqueue_head(&info->wait_q);
317 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
318 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
319 		info->notify_owner = NULL;
320 		info->notify_user_ns = NULL;
321 		info->qsize = 0;
322 		info->ucounts = NULL;	/* set when all is ok */
323 		info->msg_tree = RB_ROOT;
324 		info->msg_tree_rightmost = NULL;
325 		info->node_cache = NULL;
326 		memset(&info->attr, 0, sizeof(info->attr));
327 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328 					   ipc_ns->mq_msg_default);
329 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330 					    ipc_ns->mq_msgsize_default);
331 		if (attr) {
332 			info->attr.mq_maxmsg = attr->mq_maxmsg;
333 			info->attr.mq_msgsize = attr->mq_msgsize;
334 		}
335 		/*
336 		 * We used to allocate a static array of pointers and account
337 		 * the size of that array as well as one msg_msg struct per
338 		 * possible message into the queue size. That's no longer
339 		 * accurate as the queue is now an rbtree and will grow and
340 		 * shrink depending on usage patterns.  We can, however, still
341 		 * account one msg_msg struct per message, but the nodes are
342 		 * allocated depending on priority usage, and most programs
343 		 * only use one, or a handful, of priorities.  However, since
344 		 * this is pinned memory, we need to assume worst case, so
345 		 * that means the min(mq_maxmsg, max_priorities) * struct
346 		 * posix_msg_tree_node.
347 		 */
348 
349 		ret = -EINVAL;
350 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
351 			goto out_inode;
352 		if (capable(CAP_SYS_RESOURCE)) {
353 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
355 				goto out_inode;
356 		} else {
357 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
359 				goto out_inode;
360 		}
361 		ret = -EOVERFLOW;
362 		/* check for overflow */
363 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
364 			goto out_inode;
365 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367 			sizeof(struct posix_msg_tree_node);
368 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369 		if (mq_bytes + mq_treesize < mq_bytes)
370 			goto out_inode;
371 		mq_bytes += mq_treesize;
372 		info->ucounts = get_ucounts(current_ucounts());
373 		if (info->ucounts) {
374 			long msgqueue;
375 
376 			spin_lock(&mq_lock);
377 			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
378 			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379 				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380 				spin_unlock(&mq_lock);
381 				put_ucounts(info->ucounts);
382 				info->ucounts = NULL;
383 				/* mqueue_evict_inode() releases info->messages */
384 				ret = -EMFILE;
385 				goto out_inode;
386 			}
387 			spin_unlock(&mq_lock);
388 		}
389 	} else if (S_ISDIR(mode)) {
390 		inc_nlink(inode);
391 		/* Some things misbehave if size == 0 on a directory */
392 		inode->i_size = 2 * DIRENT_SIZE;
393 		inode->i_op = &mqueue_dir_inode_operations;
394 		inode->i_fop = &simple_dir_operations;
395 	}
396 
397 	return inode;
398 out_inode:
399 	iput(inode);
400 err:
401 	return ERR_PTR(ret);
402 }
403 
404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
405 {
406 	struct inode *inode;
407 	struct ipc_namespace *ns = sb->s_fs_info;
408 
409 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410 	sb->s_blocksize = PAGE_SIZE;
411 	sb->s_blocksize_bits = PAGE_SHIFT;
412 	sb->s_magic = MQUEUE_MAGIC;
413 	sb->s_op = &mqueue_super_ops;
414 
415 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
416 	if (IS_ERR(inode))
417 		return PTR_ERR(inode);
418 
419 	sb->s_root = d_make_root(inode);
420 	if (!sb->s_root)
421 		return -ENOMEM;
422 	return 0;
423 }
424 
425 static int mqueue_get_tree(struct fs_context *fc)
426 {
427 	struct mqueue_fs_context *ctx = fc->fs_private;
428 
429 	/*
430 	 * With a newly created ipc namespace, we don't need to do a search
431 	 * for an ipc namespace match, but we still need to set s_fs_info.
432 	 */
433 	if (ctx->newns) {
434 		fc->s_fs_info = ctx->ipc_ns;
435 		return get_tree_nodev(fc, mqueue_fill_super);
436 	}
437 	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
438 }
439 
440 static void mqueue_fs_context_free(struct fs_context *fc)
441 {
442 	struct mqueue_fs_context *ctx = fc->fs_private;
443 
444 	put_ipc_ns(ctx->ipc_ns);
445 	kfree(ctx);
446 }
447 
448 static int mqueue_init_fs_context(struct fs_context *fc)
449 {
450 	struct mqueue_fs_context *ctx;
451 
452 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
453 	if (!ctx)
454 		return -ENOMEM;
455 
456 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
457 	put_user_ns(fc->user_ns);
458 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
459 	fc->fs_private = ctx;
460 	fc->ops = &mqueue_fs_context_ops;
461 	return 0;
462 }
463 
464 /*
465  * mq_init_ns() is currently the only caller of mq_create_mount().
466  * So the ns parameter is always a newly created ipc namespace.
467  */
468 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
469 {
470 	struct mqueue_fs_context *ctx;
471 	struct fs_context *fc;
472 	struct vfsmount *mnt;
473 
474 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
475 	if (IS_ERR(fc))
476 		return ERR_CAST(fc);
477 
478 	ctx = fc->fs_private;
479 	ctx->newns = true;
480 	put_ipc_ns(ctx->ipc_ns);
481 	ctx->ipc_ns = get_ipc_ns(ns);
482 	put_user_ns(fc->user_ns);
483 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
484 
485 	mnt = fc_mount(fc);
486 	put_fs_context(fc);
487 	return mnt;
488 }
489 
490 static void init_once(void *foo)
491 {
492 	struct mqueue_inode_info *p = foo;
493 
494 	inode_init_once(&p->vfs_inode);
495 }
496 
497 static struct inode *mqueue_alloc_inode(struct super_block *sb)
498 {
499 	struct mqueue_inode_info *ei;
500 
501 	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
502 	if (!ei)
503 		return NULL;
504 	return &ei->vfs_inode;
505 }
506 
507 static void mqueue_free_inode(struct inode *inode)
508 {
509 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
510 }
511 
512 static void mqueue_evict_inode(struct inode *inode)
513 {
514 	struct mqueue_inode_info *info;
515 	struct ipc_namespace *ipc_ns;
516 	struct msg_msg *msg, *nmsg;
517 	LIST_HEAD(tmp_msg);
518 
519 	clear_inode(inode);
520 
521 	if (S_ISDIR(inode->i_mode))
522 		return;
523 
524 	ipc_ns = get_ns_from_inode(inode);
525 	info = MQUEUE_I(inode);
526 	spin_lock(&info->lock);
527 	while ((msg = msg_get(info)) != NULL)
528 		list_add_tail(&msg->m_list, &tmp_msg);
529 	kfree(info->node_cache);
530 	spin_unlock(&info->lock);
531 
532 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533 		list_del(&msg->m_list);
534 		free_msg(msg);
535 	}
536 
537 	if (info->ucounts) {
538 		unsigned long mq_bytes, mq_treesize;
539 
540 		/* Total amount of bytes accounted for the mqueue */
541 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
542 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
543 			sizeof(struct posix_msg_tree_node);
544 
545 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
546 					  info->attr.mq_msgsize);
547 
548 		spin_lock(&mq_lock);
549 		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
550 		/*
551 		 * get_ns_from_inode() ensures that the
552 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
553 		 * to which we now hold a reference, or it is NULL.
554 		 * We can't put it here under mq_lock, though.
555 		 */
556 		if (ipc_ns)
557 			ipc_ns->mq_queues_count--;
558 		spin_unlock(&mq_lock);
559 		put_ucounts(info->ucounts);
560 		info->ucounts = NULL;
561 	}
562 	if (ipc_ns)
563 		put_ipc_ns(ipc_ns);
564 }
565 
566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567 {
568 	struct inode *dir = dentry->d_parent->d_inode;
569 	struct inode *inode;
570 	struct mq_attr *attr = arg;
571 	int error;
572 	struct ipc_namespace *ipc_ns;
573 
574 	spin_lock(&mq_lock);
575 	ipc_ns = __get_ns_from_inode(dir);
576 	if (!ipc_ns) {
577 		error = -EACCES;
578 		goto out_unlock;
579 	}
580 
581 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582 	    !capable(CAP_SYS_RESOURCE)) {
583 		error = -ENOSPC;
584 		goto out_unlock;
585 	}
586 	ipc_ns->mq_queues_count++;
587 	spin_unlock(&mq_lock);
588 
589 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
590 	if (IS_ERR(inode)) {
591 		error = PTR_ERR(inode);
592 		spin_lock(&mq_lock);
593 		ipc_ns->mq_queues_count--;
594 		goto out_unlock;
595 	}
596 
597 	put_ipc_ns(ipc_ns);
598 	dir->i_size += DIRENT_SIZE;
599 	simple_inode_init_ts(dir);
600 
601 	d_instantiate(dentry, inode);
602 	dget(dentry);
603 	return 0;
604 out_unlock:
605 	spin_unlock(&mq_lock);
606 	if (ipc_ns)
607 		put_ipc_ns(ipc_ns);
608 	return error;
609 }
610 
611 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
612 			 struct dentry *dentry, umode_t mode, bool excl)
613 {
614 	return mqueue_create_attr(dentry, mode, NULL);
615 }
616 
617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618 {
619 	struct inode *inode = d_inode(dentry);
620 
621 	simple_inode_init_ts(dir);
622 	dir->i_size -= DIRENT_SIZE;
623 	drop_nlink(inode);
624 	dput(dentry);
625 	return 0;
626 }
627 
628 /*
629 *	This is routine for system read from queue file.
630 *	To avoid mess with doing here some sort of mq_receive we allow
631 *	to read only queue size & notification info (the only values
632 *	that are interesting from user point of view and aren't accessible
633 *	through std routines)
634 */
635 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
636 				size_t count, loff_t *off)
637 {
638 	struct inode *inode = file_inode(filp);
639 	struct mqueue_inode_info *info = MQUEUE_I(inode);
640 	char buffer[FILENT_SIZE];
641 	ssize_t ret;
642 
643 	spin_lock(&info->lock);
644 	snprintf(buffer, sizeof(buffer),
645 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
646 			info->qsize,
647 			info->notify_owner ? info->notify.sigev_notify : 0,
648 			(info->notify_owner &&
649 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
650 				info->notify.sigev_signo : 0,
651 			pid_vnr(info->notify_owner));
652 	spin_unlock(&info->lock);
653 	buffer[sizeof(buffer)-1] = '\0';
654 
655 	ret = simple_read_from_buffer(u_data, count, off, buffer,
656 				strlen(buffer));
657 	if (ret <= 0)
658 		return ret;
659 
660 	inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
661 	return ret;
662 }
663 
664 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
665 {
666 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
667 
668 	spin_lock(&info->lock);
669 	if (task_tgid(current) == info->notify_owner)
670 		remove_notification(info);
671 
672 	spin_unlock(&info->lock);
673 	return 0;
674 }
675 
676 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
677 {
678 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
679 	__poll_t retval = 0;
680 
681 	poll_wait(filp, &info->wait_q, poll_tab);
682 
683 	spin_lock(&info->lock);
684 	if (info->attr.mq_curmsgs)
685 		retval = EPOLLIN | EPOLLRDNORM;
686 
687 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
688 		retval |= EPOLLOUT | EPOLLWRNORM;
689 	spin_unlock(&info->lock);
690 
691 	return retval;
692 }
693 
694 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
695 static void wq_add(struct mqueue_inode_info *info, int sr,
696 			struct ext_wait_queue *ewp)
697 {
698 	struct ext_wait_queue *walk;
699 
700 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
701 		if (walk->task->prio <= current->prio) {
702 			list_add_tail(&ewp->list, &walk->list);
703 			return;
704 		}
705 	}
706 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
707 }
708 
709 /*
710  * Puts current task to sleep. Caller must hold queue lock. After return
711  * lock isn't held.
712  * sr: SEND or RECV
713  */
714 static int wq_sleep(struct mqueue_inode_info *info, int sr,
715 		    ktime_t *timeout, struct ext_wait_queue *ewp)
716 	__releases(&info->lock)
717 {
718 	int retval;
719 	signed long time;
720 
721 	wq_add(info, sr, ewp);
722 
723 	for (;;) {
724 		/* memory barrier not required, we hold info->lock */
725 		__set_current_state(TASK_INTERRUPTIBLE);
726 
727 		spin_unlock(&info->lock);
728 		time = schedule_hrtimeout_range_clock(timeout, 0,
729 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
730 
731 		if (READ_ONCE(ewp->state) == STATE_READY) {
732 			/* see MQ_BARRIER for purpose/pairing */
733 			smp_acquire__after_ctrl_dep();
734 			retval = 0;
735 			goto out;
736 		}
737 		spin_lock(&info->lock);
738 
739 		/* we hold info->lock, so no memory barrier required */
740 		if (READ_ONCE(ewp->state) == STATE_READY) {
741 			retval = 0;
742 			goto out_unlock;
743 		}
744 		if (signal_pending(current)) {
745 			retval = -ERESTARTSYS;
746 			break;
747 		}
748 		if (time == 0) {
749 			retval = -ETIMEDOUT;
750 			break;
751 		}
752 	}
753 	list_del(&ewp->list);
754 out_unlock:
755 	spin_unlock(&info->lock);
756 out:
757 	return retval;
758 }
759 
760 /*
761  * Returns waiting task that should be serviced first or NULL if none exists
762  */
763 static struct ext_wait_queue *wq_get_first_waiter(
764 		struct mqueue_inode_info *info, int sr)
765 {
766 	struct list_head *ptr;
767 
768 	ptr = info->e_wait_q[sr].list.prev;
769 	if (ptr == &info->e_wait_q[sr].list)
770 		return NULL;
771 	return list_entry(ptr, struct ext_wait_queue, list);
772 }
773 
774 
775 static inline void set_cookie(struct sk_buff *skb, char code)
776 {
777 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
778 }
779 
780 /*
781  * The next function is only to split too long sys_mq_timedsend
782  */
783 static void __do_notify(struct mqueue_inode_info *info)
784 {
785 	/* notification
786 	 * invoked when there is registered process and there isn't process
787 	 * waiting synchronously for message AND state of queue changed from
788 	 * empty to not empty. Here we are sure that no one is waiting
789 	 * synchronously. */
790 	if (info->notify_owner &&
791 	    info->attr.mq_curmsgs == 1) {
792 		switch (info->notify.sigev_notify) {
793 		case SIGEV_NONE:
794 			break;
795 		case SIGEV_SIGNAL: {
796 			struct kernel_siginfo sig_i;
797 			struct task_struct *task;
798 
799 			/* do_mq_notify() accepts sigev_signo == 0, why?? */
800 			if (!info->notify.sigev_signo)
801 				break;
802 
803 			clear_siginfo(&sig_i);
804 			sig_i.si_signo = info->notify.sigev_signo;
805 			sig_i.si_errno = 0;
806 			sig_i.si_code = SI_MESGQ;
807 			sig_i.si_value = info->notify.sigev_value;
808 			rcu_read_lock();
809 			/* map current pid/uid into info->owner's namespaces */
810 			sig_i.si_pid = task_tgid_nr_ns(current,
811 						ns_of_pid(info->notify_owner));
812 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
813 						current_uid());
814 			/*
815 			 * We can't use kill_pid_info(), this signal should
816 			 * bypass check_kill_permission(). It is from kernel
817 			 * but si_fromuser() can't know this.
818 			 * We do check the self_exec_id, to avoid sending
819 			 * signals to programs that don't expect them.
820 			 */
821 			task = pid_task(info->notify_owner, PIDTYPE_TGID);
822 			if (task && task->self_exec_id ==
823 						info->notify_self_exec_id) {
824 				do_send_sig_info(info->notify.sigev_signo,
825 						&sig_i, task, PIDTYPE_TGID);
826 			}
827 			rcu_read_unlock();
828 			break;
829 		}
830 		case SIGEV_THREAD:
831 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
832 			netlink_sendskb(info->notify_sock, info->notify_cookie);
833 			break;
834 		}
835 		/* after notification unregisters process */
836 		put_pid(info->notify_owner);
837 		put_user_ns(info->notify_user_ns);
838 		info->notify_owner = NULL;
839 		info->notify_user_ns = NULL;
840 	}
841 	wake_up(&info->wait_q);
842 }
843 
844 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
845 			   struct timespec64 *ts)
846 {
847 	if (get_timespec64(ts, u_abs_timeout))
848 		return -EFAULT;
849 	if (!timespec64_valid(ts))
850 		return -EINVAL;
851 	return 0;
852 }
853 
854 static void remove_notification(struct mqueue_inode_info *info)
855 {
856 	if (info->notify_owner != NULL &&
857 	    info->notify.sigev_notify == SIGEV_THREAD) {
858 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
859 		netlink_sendskb(info->notify_sock, info->notify_cookie);
860 	}
861 	put_pid(info->notify_owner);
862 	put_user_ns(info->notify_user_ns);
863 	info->notify_owner = NULL;
864 	info->notify_user_ns = NULL;
865 }
866 
867 static int prepare_open(struct dentry *dentry, int oflag, int ro,
868 			umode_t mode, struct filename *name,
869 			struct mq_attr *attr)
870 {
871 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
872 						  MAY_READ | MAY_WRITE };
873 	int acc;
874 
875 	if (d_really_is_negative(dentry)) {
876 		if (!(oflag & O_CREAT))
877 			return -ENOENT;
878 		if (ro)
879 			return ro;
880 		audit_inode_parent_hidden(name, dentry->d_parent);
881 		return vfs_mkobj(dentry, mode & ~current_umask(),
882 				  mqueue_create_attr, attr);
883 	}
884 	/* it already existed */
885 	audit_inode(name, dentry, 0);
886 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
887 		return -EEXIST;
888 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
889 		return -EINVAL;
890 	acc = oflag2acc[oflag & O_ACCMODE];
891 	return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
892 }
893 
894 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
895 		      struct mq_attr *attr)
896 {
897 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
898 	struct dentry *root = mnt->mnt_root;
899 	struct filename *name;
900 	struct path path;
901 	int fd, error;
902 	int ro;
903 
904 	audit_mq_open(oflag, mode, attr);
905 
906 	name = getname(u_name);
907 	if (IS_ERR(name))
908 		return PTR_ERR(name);
909 
910 	fd = get_unused_fd_flags(O_CLOEXEC);
911 	if (fd < 0)
912 		goto out_putname;
913 
914 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
915 	inode_lock(d_inode(root));
916 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
917 	if (IS_ERR(path.dentry)) {
918 		error = PTR_ERR(path.dentry);
919 		goto out_putfd;
920 	}
921 	path.mnt = mntget(mnt);
922 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
923 	if (!error) {
924 		struct file *file = dentry_open(&path, oflag, current_cred());
925 		if (!IS_ERR(file))
926 			fd_install(fd, file);
927 		else
928 			error = PTR_ERR(file);
929 	}
930 	path_put(&path);
931 out_putfd:
932 	if (error) {
933 		put_unused_fd(fd);
934 		fd = error;
935 	}
936 	inode_unlock(d_inode(root));
937 	if (!ro)
938 		mnt_drop_write(mnt);
939 out_putname:
940 	putname(name);
941 	return fd;
942 }
943 
944 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
945 		struct mq_attr __user *, u_attr)
946 {
947 	struct mq_attr attr;
948 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
949 		return -EFAULT;
950 
951 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
952 }
953 
954 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
955 {
956 	int err;
957 	struct filename *name;
958 	struct dentry *dentry;
959 	struct inode *inode = NULL;
960 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
961 	struct vfsmount *mnt = ipc_ns->mq_mnt;
962 
963 	name = getname(u_name);
964 	if (IS_ERR(name))
965 		return PTR_ERR(name);
966 
967 	audit_inode_parent_hidden(name, mnt->mnt_root);
968 	err = mnt_want_write(mnt);
969 	if (err)
970 		goto out_name;
971 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
972 	dentry = lookup_one_len(name->name, mnt->mnt_root,
973 				strlen(name->name));
974 	if (IS_ERR(dentry)) {
975 		err = PTR_ERR(dentry);
976 		goto out_unlock;
977 	}
978 
979 	inode = d_inode(dentry);
980 	if (!inode) {
981 		err = -ENOENT;
982 	} else {
983 		ihold(inode);
984 		err = vfs_unlink(&nop_mnt_idmap, d_inode(dentry->d_parent),
985 				 dentry, NULL);
986 	}
987 	dput(dentry);
988 
989 out_unlock:
990 	inode_unlock(d_inode(mnt->mnt_root));
991 	iput(inode);
992 	mnt_drop_write(mnt);
993 out_name:
994 	putname(name);
995 
996 	return err;
997 }
998 
999 /* Pipelined send and receive functions.
1000  *
1001  * If a receiver finds no waiting message, then it registers itself in the
1002  * list of waiting receivers. A sender checks that list before adding the new
1003  * message into the message array. If there is a waiting receiver, then it
1004  * bypasses the message array and directly hands the message over to the
1005  * receiver. The receiver accepts the message and returns without grabbing the
1006  * queue spinlock:
1007  *
1008  * - Set pointer to message.
1009  * - Queue the receiver task for later wakeup (without the info->lock).
1010  * - Update its state to STATE_READY. Now the receiver can continue.
1011  * - Wake up the process after the lock is dropped. Should the process wake up
1012  *   before this wakeup (due to a timeout or a signal) it will either see
1013  *   STATE_READY and continue or acquire the lock to check the state again.
1014  *
1015  * The same algorithm is used for senders.
1016  */
1017 
1018 static inline void __pipelined_op(struct wake_q_head *wake_q,
1019 				  struct mqueue_inode_info *info,
1020 				  struct ext_wait_queue *this)
1021 {
1022 	struct task_struct *task;
1023 
1024 	list_del(&this->list);
1025 	task = get_task_struct(this->task);
1026 
1027 	/* see MQ_BARRIER for purpose/pairing */
1028 	smp_store_release(&this->state, STATE_READY);
1029 	wake_q_add_safe(wake_q, task);
1030 }
1031 
1032 /* pipelined_send() - send a message directly to the task waiting in
1033  * sys_mq_timedreceive() (without inserting message into a queue).
1034  */
1035 static inline void pipelined_send(struct wake_q_head *wake_q,
1036 				  struct mqueue_inode_info *info,
1037 				  struct msg_msg *message,
1038 				  struct ext_wait_queue *receiver)
1039 {
1040 	receiver->msg = message;
1041 	__pipelined_op(wake_q, info, receiver);
1042 }
1043 
1044 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1045  * gets its message and put to the queue (we have one free place for sure). */
1046 static inline void pipelined_receive(struct wake_q_head *wake_q,
1047 				     struct mqueue_inode_info *info)
1048 {
1049 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1050 
1051 	if (!sender) {
1052 		/* for poll */
1053 		wake_up_interruptible(&info->wait_q);
1054 		return;
1055 	}
1056 	if (msg_insert(sender->msg, info))
1057 		return;
1058 
1059 	__pipelined_op(wake_q, info, sender);
1060 }
1061 
1062 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1063 		size_t msg_len, unsigned int msg_prio,
1064 		struct timespec64 *ts)
1065 {
1066 	struct fd f;
1067 	struct inode *inode;
1068 	struct ext_wait_queue wait;
1069 	struct ext_wait_queue *receiver;
1070 	struct msg_msg *msg_ptr;
1071 	struct mqueue_inode_info *info;
1072 	ktime_t expires, *timeout = NULL;
1073 	struct posix_msg_tree_node *new_leaf = NULL;
1074 	int ret = 0;
1075 	DEFINE_WAKE_Q(wake_q);
1076 
1077 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1078 		return -EINVAL;
1079 
1080 	if (ts) {
1081 		expires = timespec64_to_ktime(*ts);
1082 		timeout = &expires;
1083 	}
1084 
1085 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1086 
1087 	f = fdget(mqdes);
1088 	if (unlikely(!fd_file(f))) {
1089 		ret = -EBADF;
1090 		goto out;
1091 	}
1092 
1093 	inode = file_inode(fd_file(f));
1094 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1095 		ret = -EBADF;
1096 		goto out_fput;
1097 	}
1098 	info = MQUEUE_I(inode);
1099 	audit_file(fd_file(f));
1100 
1101 	if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE))) {
1102 		ret = -EBADF;
1103 		goto out_fput;
1104 	}
1105 
1106 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1107 		ret = -EMSGSIZE;
1108 		goto out_fput;
1109 	}
1110 
1111 	/* First try to allocate memory, before doing anything with
1112 	 * existing queues. */
1113 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1114 	if (IS_ERR(msg_ptr)) {
1115 		ret = PTR_ERR(msg_ptr);
1116 		goto out_fput;
1117 	}
1118 	msg_ptr->m_ts = msg_len;
1119 	msg_ptr->m_type = msg_prio;
1120 
1121 	/*
1122 	 * msg_insert really wants us to have a valid, spare node struct so
1123 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1124 	 * fall back to that if necessary.
1125 	 */
1126 	if (!info->node_cache)
1127 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1128 
1129 	spin_lock(&info->lock);
1130 
1131 	if (!info->node_cache && new_leaf) {
1132 		/* Save our speculative allocation into the cache */
1133 		INIT_LIST_HEAD(&new_leaf->msg_list);
1134 		info->node_cache = new_leaf;
1135 		new_leaf = NULL;
1136 	} else {
1137 		kfree(new_leaf);
1138 	}
1139 
1140 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1141 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1142 			ret = -EAGAIN;
1143 		} else {
1144 			wait.task = current;
1145 			wait.msg = (void *) msg_ptr;
1146 
1147 			/* memory barrier not required, we hold info->lock */
1148 			WRITE_ONCE(wait.state, STATE_NONE);
1149 			ret = wq_sleep(info, SEND, timeout, &wait);
1150 			/*
1151 			 * wq_sleep must be called with info->lock held, and
1152 			 * returns with the lock released
1153 			 */
1154 			goto out_free;
1155 		}
1156 	} else {
1157 		receiver = wq_get_first_waiter(info, RECV);
1158 		if (receiver) {
1159 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1160 		} else {
1161 			/* adds message to the queue */
1162 			ret = msg_insert(msg_ptr, info);
1163 			if (ret)
1164 				goto out_unlock;
1165 			__do_notify(info);
1166 		}
1167 		simple_inode_init_ts(inode);
1168 	}
1169 out_unlock:
1170 	spin_unlock(&info->lock);
1171 	wake_up_q(&wake_q);
1172 out_free:
1173 	if (ret)
1174 		free_msg(msg_ptr);
1175 out_fput:
1176 	fdput(f);
1177 out:
1178 	return ret;
1179 }
1180 
1181 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1182 		size_t msg_len, unsigned int __user *u_msg_prio,
1183 		struct timespec64 *ts)
1184 {
1185 	ssize_t ret;
1186 	struct msg_msg *msg_ptr;
1187 	struct fd f;
1188 	struct inode *inode;
1189 	struct mqueue_inode_info *info;
1190 	struct ext_wait_queue wait;
1191 	ktime_t expires, *timeout = NULL;
1192 	struct posix_msg_tree_node *new_leaf = NULL;
1193 
1194 	if (ts) {
1195 		expires = timespec64_to_ktime(*ts);
1196 		timeout = &expires;
1197 	}
1198 
1199 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1200 
1201 	f = fdget(mqdes);
1202 	if (unlikely(!fd_file(f))) {
1203 		ret = -EBADF;
1204 		goto out;
1205 	}
1206 
1207 	inode = file_inode(fd_file(f));
1208 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1209 		ret = -EBADF;
1210 		goto out_fput;
1211 	}
1212 	info = MQUEUE_I(inode);
1213 	audit_file(fd_file(f));
1214 
1215 	if (unlikely(!(fd_file(f)->f_mode & FMODE_READ))) {
1216 		ret = -EBADF;
1217 		goto out_fput;
1218 	}
1219 
1220 	/* checks if buffer is big enough */
1221 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1222 		ret = -EMSGSIZE;
1223 		goto out_fput;
1224 	}
1225 
1226 	/*
1227 	 * msg_insert really wants us to have a valid, spare node struct so
1228 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1229 	 * fall back to that if necessary.
1230 	 */
1231 	if (!info->node_cache)
1232 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1233 
1234 	spin_lock(&info->lock);
1235 
1236 	if (!info->node_cache && new_leaf) {
1237 		/* Save our speculative allocation into the cache */
1238 		INIT_LIST_HEAD(&new_leaf->msg_list);
1239 		info->node_cache = new_leaf;
1240 	} else {
1241 		kfree(new_leaf);
1242 	}
1243 
1244 	if (info->attr.mq_curmsgs == 0) {
1245 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1246 			spin_unlock(&info->lock);
1247 			ret = -EAGAIN;
1248 		} else {
1249 			wait.task = current;
1250 
1251 			/* memory barrier not required, we hold info->lock */
1252 			WRITE_ONCE(wait.state, STATE_NONE);
1253 			ret = wq_sleep(info, RECV, timeout, &wait);
1254 			msg_ptr = wait.msg;
1255 		}
1256 	} else {
1257 		DEFINE_WAKE_Q(wake_q);
1258 
1259 		msg_ptr = msg_get(info);
1260 
1261 		simple_inode_init_ts(inode);
1262 
1263 		/* There is now free space in queue. */
1264 		pipelined_receive(&wake_q, info);
1265 		spin_unlock(&info->lock);
1266 		wake_up_q(&wake_q);
1267 		ret = 0;
1268 	}
1269 	if (ret == 0) {
1270 		ret = msg_ptr->m_ts;
1271 
1272 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1273 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1274 			ret = -EFAULT;
1275 		}
1276 		free_msg(msg_ptr);
1277 	}
1278 out_fput:
1279 	fdput(f);
1280 out:
1281 	return ret;
1282 }
1283 
1284 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1285 		size_t, msg_len, unsigned int, msg_prio,
1286 		const struct __kernel_timespec __user *, u_abs_timeout)
1287 {
1288 	struct timespec64 ts, *p = NULL;
1289 	if (u_abs_timeout) {
1290 		int res = prepare_timeout(u_abs_timeout, &ts);
1291 		if (res)
1292 			return res;
1293 		p = &ts;
1294 	}
1295 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1296 }
1297 
1298 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1299 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1300 		const struct __kernel_timespec __user *, u_abs_timeout)
1301 {
1302 	struct timespec64 ts, *p = NULL;
1303 	if (u_abs_timeout) {
1304 		int res = prepare_timeout(u_abs_timeout, &ts);
1305 		if (res)
1306 			return res;
1307 		p = &ts;
1308 	}
1309 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1310 }
1311 
1312 /*
1313  * Notes: the case when user wants us to deregister (with NULL as pointer)
1314  * and he isn't currently owner of notification, will be silently discarded.
1315  * It isn't explicitly defined in the POSIX.
1316  */
1317 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1318 {
1319 	int ret;
1320 	struct fd f;
1321 	struct sock *sock;
1322 	struct inode *inode;
1323 	struct mqueue_inode_info *info;
1324 	struct sk_buff *nc;
1325 
1326 	audit_mq_notify(mqdes, notification);
1327 
1328 	nc = NULL;
1329 	sock = NULL;
1330 	if (notification != NULL) {
1331 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1332 			     notification->sigev_notify != SIGEV_SIGNAL &&
1333 			     notification->sigev_notify != SIGEV_THREAD))
1334 			return -EINVAL;
1335 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1336 			!valid_signal(notification->sigev_signo)) {
1337 			return -EINVAL;
1338 		}
1339 		if (notification->sigev_notify == SIGEV_THREAD) {
1340 			long timeo;
1341 
1342 			/* create the notify skb */
1343 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1344 			if (!nc)
1345 				return -ENOMEM;
1346 
1347 			if (copy_from_user(nc->data,
1348 					notification->sigev_value.sival_ptr,
1349 					NOTIFY_COOKIE_LEN)) {
1350 				ret = -EFAULT;
1351 				goto free_skb;
1352 			}
1353 
1354 			/* TODO: add a header? */
1355 			skb_put(nc, NOTIFY_COOKIE_LEN);
1356 			/* and attach it to the socket */
1357 retry:
1358 			f = fdget(notification->sigev_signo);
1359 			if (!fd_file(f)) {
1360 				ret = -EBADF;
1361 				goto out;
1362 			}
1363 			sock = netlink_getsockbyfilp(fd_file(f));
1364 			fdput(f);
1365 			if (IS_ERR(sock)) {
1366 				ret = PTR_ERR(sock);
1367 				goto free_skb;
1368 			}
1369 
1370 			timeo = MAX_SCHEDULE_TIMEOUT;
1371 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1372 			if (ret == 1) {
1373 				sock = NULL;
1374 				goto retry;
1375 			}
1376 			if (ret)
1377 				return ret;
1378 		}
1379 	}
1380 
1381 	f = fdget(mqdes);
1382 	if (!fd_file(f)) {
1383 		ret = -EBADF;
1384 		goto out;
1385 	}
1386 
1387 	inode = file_inode(fd_file(f));
1388 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1389 		ret = -EBADF;
1390 		goto out_fput;
1391 	}
1392 	info = MQUEUE_I(inode);
1393 
1394 	ret = 0;
1395 	spin_lock(&info->lock);
1396 	if (notification == NULL) {
1397 		if (info->notify_owner == task_tgid(current)) {
1398 			remove_notification(info);
1399 			inode_set_atime_to_ts(inode,
1400 					      inode_set_ctime_current(inode));
1401 		}
1402 	} else if (info->notify_owner != NULL) {
1403 		ret = -EBUSY;
1404 	} else {
1405 		switch (notification->sigev_notify) {
1406 		case SIGEV_NONE:
1407 			info->notify.sigev_notify = SIGEV_NONE;
1408 			break;
1409 		case SIGEV_THREAD:
1410 			info->notify_sock = sock;
1411 			info->notify_cookie = nc;
1412 			sock = NULL;
1413 			nc = NULL;
1414 			info->notify.sigev_notify = SIGEV_THREAD;
1415 			break;
1416 		case SIGEV_SIGNAL:
1417 			info->notify.sigev_signo = notification->sigev_signo;
1418 			info->notify.sigev_value = notification->sigev_value;
1419 			info->notify.sigev_notify = SIGEV_SIGNAL;
1420 			info->notify_self_exec_id = current->self_exec_id;
1421 			break;
1422 		}
1423 
1424 		info->notify_owner = get_pid(task_tgid(current));
1425 		info->notify_user_ns = get_user_ns(current_user_ns());
1426 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1427 	}
1428 	spin_unlock(&info->lock);
1429 out_fput:
1430 	fdput(f);
1431 out:
1432 	if (sock)
1433 		netlink_detachskb(sock, nc);
1434 	else
1435 free_skb:
1436 		dev_kfree_skb(nc);
1437 
1438 	return ret;
1439 }
1440 
1441 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1442 		const struct sigevent __user *, u_notification)
1443 {
1444 	struct sigevent n, *p = NULL;
1445 	if (u_notification) {
1446 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1447 			return -EFAULT;
1448 		p = &n;
1449 	}
1450 	return do_mq_notify(mqdes, p);
1451 }
1452 
1453 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1454 {
1455 	struct fd f;
1456 	struct inode *inode;
1457 	struct mqueue_inode_info *info;
1458 
1459 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1460 		return -EINVAL;
1461 
1462 	f = fdget(mqdes);
1463 	if (!fd_file(f))
1464 		return -EBADF;
1465 
1466 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1467 		fdput(f);
1468 		return -EBADF;
1469 	}
1470 
1471 	inode = file_inode(fd_file(f));
1472 	info = MQUEUE_I(inode);
1473 
1474 	spin_lock(&info->lock);
1475 
1476 	if (old) {
1477 		*old = info->attr;
1478 		old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK;
1479 	}
1480 	if (new) {
1481 		audit_mq_getsetattr(mqdes, new);
1482 		spin_lock(&fd_file(f)->f_lock);
1483 		if (new->mq_flags & O_NONBLOCK)
1484 			fd_file(f)->f_flags |= O_NONBLOCK;
1485 		else
1486 			fd_file(f)->f_flags &= ~O_NONBLOCK;
1487 		spin_unlock(&fd_file(f)->f_lock);
1488 
1489 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1490 	}
1491 
1492 	spin_unlock(&info->lock);
1493 	fdput(f);
1494 	return 0;
1495 }
1496 
1497 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1498 		const struct mq_attr __user *, u_mqstat,
1499 		struct mq_attr __user *, u_omqstat)
1500 {
1501 	int ret;
1502 	struct mq_attr mqstat, omqstat;
1503 	struct mq_attr *new = NULL, *old = NULL;
1504 
1505 	if (u_mqstat) {
1506 		new = &mqstat;
1507 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1508 			return -EFAULT;
1509 	}
1510 	if (u_omqstat)
1511 		old = &omqstat;
1512 
1513 	ret = do_mq_getsetattr(mqdes, new, old);
1514 	if (ret || !old)
1515 		return ret;
1516 
1517 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1518 		return -EFAULT;
1519 	return 0;
1520 }
1521 
1522 #ifdef CONFIG_COMPAT
1523 
1524 struct compat_mq_attr {
1525 	compat_long_t mq_flags;      /* message queue flags		     */
1526 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1527 	compat_long_t mq_msgsize;    /* maximum message size		     */
1528 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1529 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1530 };
1531 
1532 static inline int get_compat_mq_attr(struct mq_attr *attr,
1533 			const struct compat_mq_attr __user *uattr)
1534 {
1535 	struct compat_mq_attr v;
1536 
1537 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1538 		return -EFAULT;
1539 
1540 	memset(attr, 0, sizeof(*attr));
1541 	attr->mq_flags = v.mq_flags;
1542 	attr->mq_maxmsg = v.mq_maxmsg;
1543 	attr->mq_msgsize = v.mq_msgsize;
1544 	attr->mq_curmsgs = v.mq_curmsgs;
1545 	return 0;
1546 }
1547 
1548 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1549 			struct compat_mq_attr __user *uattr)
1550 {
1551 	struct compat_mq_attr v;
1552 
1553 	memset(&v, 0, sizeof(v));
1554 	v.mq_flags = attr->mq_flags;
1555 	v.mq_maxmsg = attr->mq_maxmsg;
1556 	v.mq_msgsize = attr->mq_msgsize;
1557 	v.mq_curmsgs = attr->mq_curmsgs;
1558 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1559 		return -EFAULT;
1560 	return 0;
1561 }
1562 
1563 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1564 		       int, oflag, compat_mode_t, mode,
1565 		       struct compat_mq_attr __user *, u_attr)
1566 {
1567 	struct mq_attr attr, *p = NULL;
1568 	if (u_attr && oflag & O_CREAT) {
1569 		p = &attr;
1570 		if (get_compat_mq_attr(&attr, u_attr))
1571 			return -EFAULT;
1572 	}
1573 	return do_mq_open(u_name, oflag, mode, p);
1574 }
1575 
1576 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1577 		       const struct compat_sigevent __user *, u_notification)
1578 {
1579 	struct sigevent n, *p = NULL;
1580 	if (u_notification) {
1581 		if (get_compat_sigevent(&n, u_notification))
1582 			return -EFAULT;
1583 		if (n.sigev_notify == SIGEV_THREAD)
1584 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1585 		p = &n;
1586 	}
1587 	return do_mq_notify(mqdes, p);
1588 }
1589 
1590 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1591 		       const struct compat_mq_attr __user *, u_mqstat,
1592 		       struct compat_mq_attr __user *, u_omqstat)
1593 {
1594 	int ret;
1595 	struct mq_attr mqstat, omqstat;
1596 	struct mq_attr *new = NULL, *old = NULL;
1597 
1598 	if (u_mqstat) {
1599 		new = &mqstat;
1600 		if (get_compat_mq_attr(new, u_mqstat))
1601 			return -EFAULT;
1602 	}
1603 	if (u_omqstat)
1604 		old = &omqstat;
1605 
1606 	ret = do_mq_getsetattr(mqdes, new, old);
1607 	if (ret || !old)
1608 		return ret;
1609 
1610 	if (put_compat_mq_attr(old, u_omqstat))
1611 		return -EFAULT;
1612 	return 0;
1613 }
1614 #endif
1615 
1616 #ifdef CONFIG_COMPAT_32BIT_TIME
1617 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1618 				   struct timespec64 *ts)
1619 {
1620 	if (get_old_timespec32(ts, p))
1621 		return -EFAULT;
1622 	if (!timespec64_valid(ts))
1623 		return -EINVAL;
1624 	return 0;
1625 }
1626 
1627 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1628 		const char __user *, u_msg_ptr,
1629 		unsigned int, msg_len, unsigned int, msg_prio,
1630 		const struct old_timespec32 __user *, u_abs_timeout)
1631 {
1632 	struct timespec64 ts, *p = NULL;
1633 	if (u_abs_timeout) {
1634 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1635 		if (res)
1636 			return res;
1637 		p = &ts;
1638 	}
1639 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1640 }
1641 
1642 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1643 		char __user *, u_msg_ptr,
1644 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1645 		const struct old_timespec32 __user *, u_abs_timeout)
1646 {
1647 	struct timespec64 ts, *p = NULL;
1648 	if (u_abs_timeout) {
1649 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1650 		if (res)
1651 			return res;
1652 		p = &ts;
1653 	}
1654 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1655 }
1656 #endif
1657 
1658 static const struct inode_operations mqueue_dir_inode_operations = {
1659 	.lookup = simple_lookup,
1660 	.create = mqueue_create,
1661 	.unlink = mqueue_unlink,
1662 };
1663 
1664 static const struct file_operations mqueue_file_operations = {
1665 	.flush = mqueue_flush_file,
1666 	.poll = mqueue_poll_file,
1667 	.read = mqueue_read_file,
1668 	.llseek = default_llseek,
1669 };
1670 
1671 static const struct super_operations mqueue_super_ops = {
1672 	.alloc_inode = mqueue_alloc_inode,
1673 	.free_inode = mqueue_free_inode,
1674 	.evict_inode = mqueue_evict_inode,
1675 	.statfs = simple_statfs,
1676 };
1677 
1678 static const struct fs_context_operations mqueue_fs_context_ops = {
1679 	.free		= mqueue_fs_context_free,
1680 	.get_tree	= mqueue_get_tree,
1681 };
1682 
1683 static struct file_system_type mqueue_fs_type = {
1684 	.name			= "mqueue",
1685 	.init_fs_context	= mqueue_init_fs_context,
1686 	.kill_sb		= kill_litter_super,
1687 	.fs_flags		= FS_USERNS_MOUNT,
1688 };
1689 
1690 int mq_init_ns(struct ipc_namespace *ns)
1691 {
1692 	struct vfsmount *m;
1693 
1694 	ns->mq_queues_count  = 0;
1695 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1696 	ns->mq_msg_max       = DFLT_MSGMAX;
1697 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1698 	ns->mq_msg_default   = DFLT_MSG;
1699 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1700 
1701 	m = mq_create_mount(ns);
1702 	if (IS_ERR(m))
1703 		return PTR_ERR(m);
1704 	ns->mq_mnt = m;
1705 	return 0;
1706 }
1707 
1708 void mq_clear_sbinfo(struct ipc_namespace *ns)
1709 {
1710 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1711 }
1712 
1713 static int __init init_mqueue_fs(void)
1714 {
1715 	int error;
1716 
1717 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1718 				sizeof(struct mqueue_inode_info), 0,
1719 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1720 	if (mqueue_inode_cachep == NULL)
1721 		return -ENOMEM;
1722 
1723 	if (!setup_mq_sysctls(&init_ipc_ns)) {
1724 		pr_warn("sysctl registration failed\n");
1725 		error = -ENOMEM;
1726 		goto out_kmem;
1727 	}
1728 
1729 	error = register_filesystem(&mqueue_fs_type);
1730 	if (error)
1731 		goto out_sysctl;
1732 
1733 	spin_lock_init(&mq_lock);
1734 
1735 	error = mq_init_ns(&init_ipc_ns);
1736 	if (error)
1737 		goto out_filesystem;
1738 
1739 	return 0;
1740 
1741 out_filesystem:
1742 	unregister_filesystem(&mqueue_fs_type);
1743 out_sysctl:
1744 	retire_mq_sysctls(&init_ipc_ns);
1745 out_kmem:
1746 	kmem_cache_destroy(mqueue_inode_cachep);
1747 	return error;
1748 }
1749 
1750 device_initcall(init_mqueue_fs);
1751