1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 struct ext_wait_queue { /* queue of sleeping tasks */ 67 struct task_struct *task; 68 struct list_head list; 69 struct msg_msg *msg; /* ptr of loaded message */ 70 int state; /* one of STATE_* values */ 71 }; 72 73 struct mqueue_inode_info { 74 spinlock_t lock; 75 struct inode vfs_inode; 76 wait_queue_head_t wait_q; 77 78 struct rb_root msg_tree; 79 struct posix_msg_tree_node *node_cache; 80 struct mq_attr attr; 81 82 struct sigevent notify; 83 struct pid *notify_owner; 84 struct user_namespace *notify_user_ns; 85 struct user_struct *user; /* user who created, for accounting */ 86 struct sock *notify_sock; 87 struct sk_buff *notify_cookie; 88 89 /* for tasks waiting for free space and messages, respectively */ 90 struct ext_wait_queue e_wait_q[2]; 91 92 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 93 }; 94 95 static struct file_system_type mqueue_fs_type; 96 static const struct inode_operations mqueue_dir_inode_operations; 97 static const struct file_operations mqueue_file_operations; 98 static const struct super_operations mqueue_super_ops; 99 static const struct fs_context_operations mqueue_fs_context_ops; 100 static void remove_notification(struct mqueue_inode_info *info); 101 102 static struct kmem_cache *mqueue_inode_cachep; 103 104 static struct ctl_table_header *mq_sysctl_table; 105 106 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 107 { 108 return container_of(inode, struct mqueue_inode_info, vfs_inode); 109 } 110 111 /* 112 * This routine should be called with the mq_lock held. 113 */ 114 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 115 { 116 return get_ipc_ns(inode->i_sb->s_fs_info); 117 } 118 119 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 120 { 121 struct ipc_namespace *ns; 122 123 spin_lock(&mq_lock); 124 ns = __get_ns_from_inode(inode); 125 spin_unlock(&mq_lock); 126 return ns; 127 } 128 129 /* Auxiliary functions to manipulate messages' list */ 130 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 131 { 132 struct rb_node **p, *parent = NULL; 133 struct posix_msg_tree_node *leaf; 134 135 p = &info->msg_tree.rb_node; 136 while (*p) { 137 parent = *p; 138 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 139 140 if (likely(leaf->priority == msg->m_type)) 141 goto insert_msg; 142 else if (msg->m_type < leaf->priority) 143 p = &(*p)->rb_left; 144 else 145 p = &(*p)->rb_right; 146 } 147 if (info->node_cache) { 148 leaf = info->node_cache; 149 info->node_cache = NULL; 150 } else { 151 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 152 if (!leaf) 153 return -ENOMEM; 154 INIT_LIST_HEAD(&leaf->msg_list); 155 } 156 leaf->priority = msg->m_type; 157 rb_link_node(&leaf->rb_node, parent, p); 158 rb_insert_color(&leaf->rb_node, &info->msg_tree); 159 insert_msg: 160 info->attr.mq_curmsgs++; 161 info->qsize += msg->m_ts; 162 list_add_tail(&msg->m_list, &leaf->msg_list); 163 return 0; 164 } 165 166 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 167 { 168 struct rb_node **p, *parent = NULL; 169 struct posix_msg_tree_node *leaf; 170 struct msg_msg *msg; 171 172 try_again: 173 p = &info->msg_tree.rb_node; 174 while (*p) { 175 parent = *p; 176 /* 177 * During insert, low priorities go to the left and high to the 178 * right. On receive, we want the highest priorities first, so 179 * walk all the way to the right. 180 */ 181 p = &(*p)->rb_right; 182 } 183 if (!parent) { 184 if (info->attr.mq_curmsgs) { 185 pr_warn_once("Inconsistency in POSIX message queue, " 186 "no tree element, but supposedly messages " 187 "should exist!\n"); 188 info->attr.mq_curmsgs = 0; 189 } 190 return NULL; 191 } 192 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 193 if (unlikely(list_empty(&leaf->msg_list))) { 194 pr_warn_once("Inconsistency in POSIX message queue, " 195 "empty leaf node but we haven't implemented " 196 "lazy leaf delete!\n"); 197 rb_erase(&leaf->rb_node, &info->msg_tree); 198 if (info->node_cache) { 199 kfree(leaf); 200 } else { 201 info->node_cache = leaf; 202 } 203 goto try_again; 204 } else { 205 msg = list_first_entry(&leaf->msg_list, 206 struct msg_msg, m_list); 207 list_del(&msg->m_list); 208 if (list_empty(&leaf->msg_list)) { 209 rb_erase(&leaf->rb_node, &info->msg_tree); 210 if (info->node_cache) { 211 kfree(leaf); 212 } else { 213 info->node_cache = leaf; 214 } 215 } 216 } 217 info->attr.mq_curmsgs--; 218 info->qsize -= msg->m_ts; 219 return msg; 220 } 221 222 static struct inode *mqueue_get_inode(struct super_block *sb, 223 struct ipc_namespace *ipc_ns, umode_t mode, 224 struct mq_attr *attr) 225 { 226 struct user_struct *u = current_user(); 227 struct inode *inode; 228 int ret = -ENOMEM; 229 230 inode = new_inode(sb); 231 if (!inode) 232 goto err; 233 234 inode->i_ino = get_next_ino(); 235 inode->i_mode = mode; 236 inode->i_uid = current_fsuid(); 237 inode->i_gid = current_fsgid(); 238 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 239 240 if (S_ISREG(mode)) { 241 struct mqueue_inode_info *info; 242 unsigned long mq_bytes, mq_treesize; 243 244 inode->i_fop = &mqueue_file_operations; 245 inode->i_size = FILENT_SIZE; 246 /* mqueue specific info */ 247 info = MQUEUE_I(inode); 248 spin_lock_init(&info->lock); 249 init_waitqueue_head(&info->wait_q); 250 INIT_LIST_HEAD(&info->e_wait_q[0].list); 251 INIT_LIST_HEAD(&info->e_wait_q[1].list); 252 info->notify_owner = NULL; 253 info->notify_user_ns = NULL; 254 info->qsize = 0; 255 info->user = NULL; /* set when all is ok */ 256 info->msg_tree = RB_ROOT; 257 info->node_cache = NULL; 258 memset(&info->attr, 0, sizeof(info->attr)); 259 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 260 ipc_ns->mq_msg_default); 261 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 262 ipc_ns->mq_msgsize_default); 263 if (attr) { 264 info->attr.mq_maxmsg = attr->mq_maxmsg; 265 info->attr.mq_msgsize = attr->mq_msgsize; 266 } 267 /* 268 * We used to allocate a static array of pointers and account 269 * the size of that array as well as one msg_msg struct per 270 * possible message into the queue size. That's no longer 271 * accurate as the queue is now an rbtree and will grow and 272 * shrink depending on usage patterns. We can, however, still 273 * account one msg_msg struct per message, but the nodes are 274 * allocated depending on priority usage, and most programs 275 * only use one, or a handful, of priorities. However, since 276 * this is pinned memory, we need to assume worst case, so 277 * that means the min(mq_maxmsg, max_priorities) * struct 278 * posix_msg_tree_node. 279 */ 280 281 ret = -EINVAL; 282 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 283 goto out_inode; 284 if (capable(CAP_SYS_RESOURCE)) { 285 if (info->attr.mq_maxmsg > HARD_MSGMAX || 286 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 287 goto out_inode; 288 } else { 289 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 290 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 291 goto out_inode; 292 } 293 ret = -EOVERFLOW; 294 /* check for overflow */ 295 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 296 goto out_inode; 297 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 298 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 299 sizeof(struct posix_msg_tree_node); 300 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 301 if (mq_bytes + mq_treesize < mq_bytes) 302 goto out_inode; 303 mq_bytes += mq_treesize; 304 spin_lock(&mq_lock); 305 if (u->mq_bytes + mq_bytes < u->mq_bytes || 306 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 307 spin_unlock(&mq_lock); 308 /* mqueue_evict_inode() releases info->messages */ 309 ret = -EMFILE; 310 goto out_inode; 311 } 312 u->mq_bytes += mq_bytes; 313 spin_unlock(&mq_lock); 314 315 /* all is ok */ 316 info->user = get_uid(u); 317 } else if (S_ISDIR(mode)) { 318 inc_nlink(inode); 319 /* Some things misbehave if size == 0 on a directory */ 320 inode->i_size = 2 * DIRENT_SIZE; 321 inode->i_op = &mqueue_dir_inode_operations; 322 inode->i_fop = &simple_dir_operations; 323 } 324 325 return inode; 326 out_inode: 327 iput(inode); 328 err: 329 return ERR_PTR(ret); 330 } 331 332 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 333 { 334 struct inode *inode; 335 struct ipc_namespace *ns = sb->s_fs_info; 336 337 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 338 sb->s_blocksize = PAGE_SIZE; 339 sb->s_blocksize_bits = PAGE_SHIFT; 340 sb->s_magic = MQUEUE_MAGIC; 341 sb->s_op = &mqueue_super_ops; 342 343 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 344 if (IS_ERR(inode)) 345 return PTR_ERR(inode); 346 347 sb->s_root = d_make_root(inode); 348 if (!sb->s_root) 349 return -ENOMEM; 350 return 0; 351 } 352 353 static int mqueue_get_tree(struct fs_context *fc) 354 { 355 struct mqueue_fs_context *ctx = fc->fs_private; 356 357 put_user_ns(fc->user_ns); 358 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 359 fc->s_fs_info = ctx->ipc_ns; 360 return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super); 361 } 362 363 static void mqueue_fs_context_free(struct fs_context *fc) 364 { 365 struct mqueue_fs_context *ctx = fc->fs_private; 366 367 if (ctx->ipc_ns) 368 put_ipc_ns(ctx->ipc_ns); 369 kfree(ctx); 370 } 371 372 static int mqueue_init_fs_context(struct fs_context *fc) 373 { 374 struct mqueue_fs_context *ctx; 375 376 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 377 if (!ctx) 378 return -ENOMEM; 379 380 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 381 fc->fs_private = ctx; 382 fc->ops = &mqueue_fs_context_ops; 383 return 0; 384 } 385 386 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 387 { 388 struct mqueue_fs_context *ctx; 389 struct fs_context *fc; 390 struct vfsmount *mnt; 391 392 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 393 if (IS_ERR(fc)) 394 return ERR_CAST(fc); 395 396 ctx = fc->fs_private; 397 put_ipc_ns(ctx->ipc_ns); 398 ctx->ipc_ns = get_ipc_ns(ns); 399 400 mnt = fc_mount(fc); 401 put_fs_context(fc); 402 return mnt; 403 } 404 405 static void init_once(void *foo) 406 { 407 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 408 409 inode_init_once(&p->vfs_inode); 410 } 411 412 static struct inode *mqueue_alloc_inode(struct super_block *sb) 413 { 414 struct mqueue_inode_info *ei; 415 416 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 417 if (!ei) 418 return NULL; 419 return &ei->vfs_inode; 420 } 421 422 static void mqueue_i_callback(struct rcu_head *head) 423 { 424 struct inode *inode = container_of(head, struct inode, i_rcu); 425 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 426 } 427 428 static void mqueue_destroy_inode(struct inode *inode) 429 { 430 call_rcu(&inode->i_rcu, mqueue_i_callback); 431 } 432 433 static void mqueue_evict_inode(struct inode *inode) 434 { 435 struct mqueue_inode_info *info; 436 struct user_struct *user; 437 unsigned long mq_bytes, mq_treesize; 438 struct ipc_namespace *ipc_ns; 439 struct msg_msg *msg; 440 441 clear_inode(inode); 442 443 if (S_ISDIR(inode->i_mode)) 444 return; 445 446 ipc_ns = get_ns_from_inode(inode); 447 info = MQUEUE_I(inode); 448 spin_lock(&info->lock); 449 while ((msg = msg_get(info)) != NULL) 450 free_msg(msg); 451 kfree(info->node_cache); 452 spin_unlock(&info->lock); 453 454 /* Total amount of bytes accounted for the mqueue */ 455 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 456 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 457 sizeof(struct posix_msg_tree_node); 458 459 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 460 info->attr.mq_msgsize); 461 462 user = info->user; 463 if (user) { 464 spin_lock(&mq_lock); 465 user->mq_bytes -= mq_bytes; 466 /* 467 * get_ns_from_inode() ensures that the 468 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 469 * to which we now hold a reference, or it is NULL. 470 * We can't put it here under mq_lock, though. 471 */ 472 if (ipc_ns) 473 ipc_ns->mq_queues_count--; 474 spin_unlock(&mq_lock); 475 free_uid(user); 476 } 477 if (ipc_ns) 478 put_ipc_ns(ipc_ns); 479 } 480 481 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 482 { 483 struct inode *dir = dentry->d_parent->d_inode; 484 struct inode *inode; 485 struct mq_attr *attr = arg; 486 int error; 487 struct ipc_namespace *ipc_ns; 488 489 spin_lock(&mq_lock); 490 ipc_ns = __get_ns_from_inode(dir); 491 if (!ipc_ns) { 492 error = -EACCES; 493 goto out_unlock; 494 } 495 496 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 497 !capable(CAP_SYS_RESOURCE)) { 498 error = -ENOSPC; 499 goto out_unlock; 500 } 501 ipc_ns->mq_queues_count++; 502 spin_unlock(&mq_lock); 503 504 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 505 if (IS_ERR(inode)) { 506 error = PTR_ERR(inode); 507 spin_lock(&mq_lock); 508 ipc_ns->mq_queues_count--; 509 goto out_unlock; 510 } 511 512 put_ipc_ns(ipc_ns); 513 dir->i_size += DIRENT_SIZE; 514 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 515 516 d_instantiate(dentry, inode); 517 dget(dentry); 518 return 0; 519 out_unlock: 520 spin_unlock(&mq_lock); 521 if (ipc_ns) 522 put_ipc_ns(ipc_ns); 523 return error; 524 } 525 526 static int mqueue_create(struct inode *dir, struct dentry *dentry, 527 umode_t mode, bool excl) 528 { 529 return mqueue_create_attr(dentry, mode, NULL); 530 } 531 532 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 533 { 534 struct inode *inode = d_inode(dentry); 535 536 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 537 dir->i_size -= DIRENT_SIZE; 538 drop_nlink(inode); 539 dput(dentry); 540 return 0; 541 } 542 543 /* 544 * This is routine for system read from queue file. 545 * To avoid mess with doing here some sort of mq_receive we allow 546 * to read only queue size & notification info (the only values 547 * that are interesting from user point of view and aren't accessible 548 * through std routines) 549 */ 550 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 551 size_t count, loff_t *off) 552 { 553 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 554 char buffer[FILENT_SIZE]; 555 ssize_t ret; 556 557 spin_lock(&info->lock); 558 snprintf(buffer, sizeof(buffer), 559 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 560 info->qsize, 561 info->notify_owner ? info->notify.sigev_notify : 0, 562 (info->notify_owner && 563 info->notify.sigev_notify == SIGEV_SIGNAL) ? 564 info->notify.sigev_signo : 0, 565 pid_vnr(info->notify_owner)); 566 spin_unlock(&info->lock); 567 buffer[sizeof(buffer)-1] = '\0'; 568 569 ret = simple_read_from_buffer(u_data, count, off, buffer, 570 strlen(buffer)); 571 if (ret <= 0) 572 return ret; 573 574 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 575 return ret; 576 } 577 578 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 579 { 580 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 581 582 spin_lock(&info->lock); 583 if (task_tgid(current) == info->notify_owner) 584 remove_notification(info); 585 586 spin_unlock(&info->lock); 587 return 0; 588 } 589 590 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 591 { 592 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 593 __poll_t retval = 0; 594 595 poll_wait(filp, &info->wait_q, poll_tab); 596 597 spin_lock(&info->lock); 598 if (info->attr.mq_curmsgs) 599 retval = EPOLLIN | EPOLLRDNORM; 600 601 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 602 retval |= EPOLLOUT | EPOLLWRNORM; 603 spin_unlock(&info->lock); 604 605 return retval; 606 } 607 608 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 609 static void wq_add(struct mqueue_inode_info *info, int sr, 610 struct ext_wait_queue *ewp) 611 { 612 struct ext_wait_queue *walk; 613 614 ewp->task = current; 615 616 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 617 if (walk->task->prio <= current->prio) { 618 list_add_tail(&ewp->list, &walk->list); 619 return; 620 } 621 } 622 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 623 } 624 625 /* 626 * Puts current task to sleep. Caller must hold queue lock. After return 627 * lock isn't held. 628 * sr: SEND or RECV 629 */ 630 static int wq_sleep(struct mqueue_inode_info *info, int sr, 631 ktime_t *timeout, struct ext_wait_queue *ewp) 632 __releases(&info->lock) 633 { 634 int retval; 635 signed long time; 636 637 wq_add(info, sr, ewp); 638 639 for (;;) { 640 __set_current_state(TASK_INTERRUPTIBLE); 641 642 spin_unlock(&info->lock); 643 time = schedule_hrtimeout_range_clock(timeout, 0, 644 HRTIMER_MODE_ABS, CLOCK_REALTIME); 645 646 if (ewp->state == STATE_READY) { 647 retval = 0; 648 goto out; 649 } 650 spin_lock(&info->lock); 651 if (ewp->state == STATE_READY) { 652 retval = 0; 653 goto out_unlock; 654 } 655 if (signal_pending(current)) { 656 retval = -ERESTARTSYS; 657 break; 658 } 659 if (time == 0) { 660 retval = -ETIMEDOUT; 661 break; 662 } 663 } 664 list_del(&ewp->list); 665 out_unlock: 666 spin_unlock(&info->lock); 667 out: 668 return retval; 669 } 670 671 /* 672 * Returns waiting task that should be serviced first or NULL if none exists 673 */ 674 static struct ext_wait_queue *wq_get_first_waiter( 675 struct mqueue_inode_info *info, int sr) 676 { 677 struct list_head *ptr; 678 679 ptr = info->e_wait_q[sr].list.prev; 680 if (ptr == &info->e_wait_q[sr].list) 681 return NULL; 682 return list_entry(ptr, struct ext_wait_queue, list); 683 } 684 685 686 static inline void set_cookie(struct sk_buff *skb, char code) 687 { 688 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 689 } 690 691 /* 692 * The next function is only to split too long sys_mq_timedsend 693 */ 694 static void __do_notify(struct mqueue_inode_info *info) 695 { 696 /* notification 697 * invoked when there is registered process and there isn't process 698 * waiting synchronously for message AND state of queue changed from 699 * empty to not empty. Here we are sure that no one is waiting 700 * synchronously. */ 701 if (info->notify_owner && 702 info->attr.mq_curmsgs == 1) { 703 struct kernel_siginfo sig_i; 704 switch (info->notify.sigev_notify) { 705 case SIGEV_NONE: 706 break; 707 case SIGEV_SIGNAL: 708 /* sends signal */ 709 710 clear_siginfo(&sig_i); 711 sig_i.si_signo = info->notify.sigev_signo; 712 sig_i.si_errno = 0; 713 sig_i.si_code = SI_MESGQ; 714 sig_i.si_value = info->notify.sigev_value; 715 /* map current pid/uid into info->owner's namespaces */ 716 rcu_read_lock(); 717 sig_i.si_pid = task_tgid_nr_ns(current, 718 ns_of_pid(info->notify_owner)); 719 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid()); 720 rcu_read_unlock(); 721 722 kill_pid_info(info->notify.sigev_signo, 723 &sig_i, info->notify_owner); 724 break; 725 case SIGEV_THREAD: 726 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 727 netlink_sendskb(info->notify_sock, info->notify_cookie); 728 break; 729 } 730 /* after notification unregisters process */ 731 put_pid(info->notify_owner); 732 put_user_ns(info->notify_user_ns); 733 info->notify_owner = NULL; 734 info->notify_user_ns = NULL; 735 } 736 wake_up(&info->wait_q); 737 } 738 739 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 740 struct timespec64 *ts) 741 { 742 if (get_timespec64(ts, u_abs_timeout)) 743 return -EFAULT; 744 if (!timespec64_valid(ts)) 745 return -EINVAL; 746 return 0; 747 } 748 749 static void remove_notification(struct mqueue_inode_info *info) 750 { 751 if (info->notify_owner != NULL && 752 info->notify.sigev_notify == SIGEV_THREAD) { 753 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 754 netlink_sendskb(info->notify_sock, info->notify_cookie); 755 } 756 put_pid(info->notify_owner); 757 put_user_ns(info->notify_user_ns); 758 info->notify_owner = NULL; 759 info->notify_user_ns = NULL; 760 } 761 762 static int prepare_open(struct dentry *dentry, int oflag, int ro, 763 umode_t mode, struct filename *name, 764 struct mq_attr *attr) 765 { 766 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 767 MAY_READ | MAY_WRITE }; 768 int acc; 769 770 if (d_really_is_negative(dentry)) { 771 if (!(oflag & O_CREAT)) 772 return -ENOENT; 773 if (ro) 774 return ro; 775 audit_inode_parent_hidden(name, dentry->d_parent); 776 return vfs_mkobj(dentry, mode & ~current_umask(), 777 mqueue_create_attr, attr); 778 } 779 /* it already existed */ 780 audit_inode(name, dentry, 0); 781 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 782 return -EEXIST; 783 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 784 return -EINVAL; 785 acc = oflag2acc[oflag & O_ACCMODE]; 786 return inode_permission(d_inode(dentry), acc); 787 } 788 789 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 790 struct mq_attr *attr) 791 { 792 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 793 struct dentry *root = mnt->mnt_root; 794 struct filename *name; 795 struct path path; 796 int fd, error; 797 int ro; 798 799 audit_mq_open(oflag, mode, attr); 800 801 if (IS_ERR(name = getname(u_name))) 802 return PTR_ERR(name); 803 804 fd = get_unused_fd_flags(O_CLOEXEC); 805 if (fd < 0) 806 goto out_putname; 807 808 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 809 inode_lock(d_inode(root)); 810 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 811 if (IS_ERR(path.dentry)) { 812 error = PTR_ERR(path.dentry); 813 goto out_putfd; 814 } 815 path.mnt = mntget(mnt); 816 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 817 if (!error) { 818 struct file *file = dentry_open(&path, oflag, current_cred()); 819 if (!IS_ERR(file)) 820 fd_install(fd, file); 821 else 822 error = PTR_ERR(file); 823 } 824 path_put(&path); 825 out_putfd: 826 if (error) { 827 put_unused_fd(fd); 828 fd = error; 829 } 830 inode_unlock(d_inode(root)); 831 if (!ro) 832 mnt_drop_write(mnt); 833 out_putname: 834 putname(name); 835 return fd; 836 } 837 838 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 839 struct mq_attr __user *, u_attr) 840 { 841 struct mq_attr attr; 842 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 843 return -EFAULT; 844 845 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 846 } 847 848 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 849 { 850 int err; 851 struct filename *name; 852 struct dentry *dentry; 853 struct inode *inode = NULL; 854 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 855 struct vfsmount *mnt = ipc_ns->mq_mnt; 856 857 name = getname(u_name); 858 if (IS_ERR(name)) 859 return PTR_ERR(name); 860 861 audit_inode_parent_hidden(name, mnt->mnt_root); 862 err = mnt_want_write(mnt); 863 if (err) 864 goto out_name; 865 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 866 dentry = lookup_one_len(name->name, mnt->mnt_root, 867 strlen(name->name)); 868 if (IS_ERR(dentry)) { 869 err = PTR_ERR(dentry); 870 goto out_unlock; 871 } 872 873 inode = d_inode(dentry); 874 if (!inode) { 875 err = -ENOENT; 876 } else { 877 ihold(inode); 878 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL); 879 } 880 dput(dentry); 881 882 out_unlock: 883 inode_unlock(d_inode(mnt->mnt_root)); 884 if (inode) 885 iput(inode); 886 mnt_drop_write(mnt); 887 out_name: 888 putname(name); 889 890 return err; 891 } 892 893 /* Pipelined send and receive functions. 894 * 895 * If a receiver finds no waiting message, then it registers itself in the 896 * list of waiting receivers. A sender checks that list before adding the new 897 * message into the message array. If there is a waiting receiver, then it 898 * bypasses the message array and directly hands the message over to the 899 * receiver. The receiver accepts the message and returns without grabbing the 900 * queue spinlock: 901 * 902 * - Set pointer to message. 903 * - Queue the receiver task for later wakeup (without the info->lock). 904 * - Update its state to STATE_READY. Now the receiver can continue. 905 * - Wake up the process after the lock is dropped. Should the process wake up 906 * before this wakeup (due to a timeout or a signal) it will either see 907 * STATE_READY and continue or acquire the lock to check the state again. 908 * 909 * The same algorithm is used for senders. 910 */ 911 912 /* pipelined_send() - send a message directly to the task waiting in 913 * sys_mq_timedreceive() (without inserting message into a queue). 914 */ 915 static inline void pipelined_send(struct wake_q_head *wake_q, 916 struct mqueue_inode_info *info, 917 struct msg_msg *message, 918 struct ext_wait_queue *receiver) 919 { 920 receiver->msg = message; 921 list_del(&receiver->list); 922 wake_q_add(wake_q, receiver->task); 923 /* 924 * Rely on the implicit cmpxchg barrier from wake_q_add such 925 * that we can ensure that updating receiver->state is the last 926 * write operation: As once set, the receiver can continue, 927 * and if we don't have the reference count from the wake_q, 928 * yet, at that point we can later have a use-after-free 929 * condition and bogus wakeup. 930 */ 931 receiver->state = STATE_READY; 932 } 933 934 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 935 * gets its message and put to the queue (we have one free place for sure). */ 936 static inline void pipelined_receive(struct wake_q_head *wake_q, 937 struct mqueue_inode_info *info) 938 { 939 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 940 941 if (!sender) { 942 /* for poll */ 943 wake_up_interruptible(&info->wait_q); 944 return; 945 } 946 if (msg_insert(sender->msg, info)) 947 return; 948 949 list_del(&sender->list); 950 wake_q_add(wake_q, sender->task); 951 sender->state = STATE_READY; 952 } 953 954 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 955 size_t msg_len, unsigned int msg_prio, 956 struct timespec64 *ts) 957 { 958 struct fd f; 959 struct inode *inode; 960 struct ext_wait_queue wait; 961 struct ext_wait_queue *receiver; 962 struct msg_msg *msg_ptr; 963 struct mqueue_inode_info *info; 964 ktime_t expires, *timeout = NULL; 965 struct posix_msg_tree_node *new_leaf = NULL; 966 int ret = 0; 967 DEFINE_WAKE_Q(wake_q); 968 969 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 970 return -EINVAL; 971 972 if (ts) { 973 expires = timespec64_to_ktime(*ts); 974 timeout = &expires; 975 } 976 977 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 978 979 f = fdget(mqdes); 980 if (unlikely(!f.file)) { 981 ret = -EBADF; 982 goto out; 983 } 984 985 inode = file_inode(f.file); 986 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 987 ret = -EBADF; 988 goto out_fput; 989 } 990 info = MQUEUE_I(inode); 991 audit_file(f.file); 992 993 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 994 ret = -EBADF; 995 goto out_fput; 996 } 997 998 if (unlikely(msg_len > info->attr.mq_msgsize)) { 999 ret = -EMSGSIZE; 1000 goto out_fput; 1001 } 1002 1003 /* First try to allocate memory, before doing anything with 1004 * existing queues. */ 1005 msg_ptr = load_msg(u_msg_ptr, msg_len); 1006 if (IS_ERR(msg_ptr)) { 1007 ret = PTR_ERR(msg_ptr); 1008 goto out_fput; 1009 } 1010 msg_ptr->m_ts = msg_len; 1011 msg_ptr->m_type = msg_prio; 1012 1013 /* 1014 * msg_insert really wants us to have a valid, spare node struct so 1015 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1016 * fall back to that if necessary. 1017 */ 1018 if (!info->node_cache) 1019 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1020 1021 spin_lock(&info->lock); 1022 1023 if (!info->node_cache && new_leaf) { 1024 /* Save our speculative allocation into the cache */ 1025 INIT_LIST_HEAD(&new_leaf->msg_list); 1026 info->node_cache = new_leaf; 1027 new_leaf = NULL; 1028 } else { 1029 kfree(new_leaf); 1030 } 1031 1032 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1033 if (f.file->f_flags & O_NONBLOCK) { 1034 ret = -EAGAIN; 1035 } else { 1036 wait.task = current; 1037 wait.msg = (void *) msg_ptr; 1038 wait.state = STATE_NONE; 1039 ret = wq_sleep(info, SEND, timeout, &wait); 1040 /* 1041 * wq_sleep must be called with info->lock held, and 1042 * returns with the lock released 1043 */ 1044 goto out_free; 1045 } 1046 } else { 1047 receiver = wq_get_first_waiter(info, RECV); 1048 if (receiver) { 1049 pipelined_send(&wake_q, info, msg_ptr, receiver); 1050 } else { 1051 /* adds message to the queue */ 1052 ret = msg_insert(msg_ptr, info); 1053 if (ret) 1054 goto out_unlock; 1055 __do_notify(info); 1056 } 1057 inode->i_atime = inode->i_mtime = inode->i_ctime = 1058 current_time(inode); 1059 } 1060 out_unlock: 1061 spin_unlock(&info->lock); 1062 wake_up_q(&wake_q); 1063 out_free: 1064 if (ret) 1065 free_msg(msg_ptr); 1066 out_fput: 1067 fdput(f); 1068 out: 1069 return ret; 1070 } 1071 1072 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1073 size_t msg_len, unsigned int __user *u_msg_prio, 1074 struct timespec64 *ts) 1075 { 1076 ssize_t ret; 1077 struct msg_msg *msg_ptr; 1078 struct fd f; 1079 struct inode *inode; 1080 struct mqueue_inode_info *info; 1081 struct ext_wait_queue wait; 1082 ktime_t expires, *timeout = NULL; 1083 struct posix_msg_tree_node *new_leaf = NULL; 1084 1085 if (ts) { 1086 expires = timespec64_to_ktime(*ts); 1087 timeout = &expires; 1088 } 1089 1090 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1091 1092 f = fdget(mqdes); 1093 if (unlikely(!f.file)) { 1094 ret = -EBADF; 1095 goto out; 1096 } 1097 1098 inode = file_inode(f.file); 1099 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1100 ret = -EBADF; 1101 goto out_fput; 1102 } 1103 info = MQUEUE_I(inode); 1104 audit_file(f.file); 1105 1106 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1107 ret = -EBADF; 1108 goto out_fput; 1109 } 1110 1111 /* checks if buffer is big enough */ 1112 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1113 ret = -EMSGSIZE; 1114 goto out_fput; 1115 } 1116 1117 /* 1118 * msg_insert really wants us to have a valid, spare node struct so 1119 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1120 * fall back to that if necessary. 1121 */ 1122 if (!info->node_cache) 1123 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1124 1125 spin_lock(&info->lock); 1126 1127 if (!info->node_cache && new_leaf) { 1128 /* Save our speculative allocation into the cache */ 1129 INIT_LIST_HEAD(&new_leaf->msg_list); 1130 info->node_cache = new_leaf; 1131 } else { 1132 kfree(new_leaf); 1133 } 1134 1135 if (info->attr.mq_curmsgs == 0) { 1136 if (f.file->f_flags & O_NONBLOCK) { 1137 spin_unlock(&info->lock); 1138 ret = -EAGAIN; 1139 } else { 1140 wait.task = current; 1141 wait.state = STATE_NONE; 1142 ret = wq_sleep(info, RECV, timeout, &wait); 1143 msg_ptr = wait.msg; 1144 } 1145 } else { 1146 DEFINE_WAKE_Q(wake_q); 1147 1148 msg_ptr = msg_get(info); 1149 1150 inode->i_atime = inode->i_mtime = inode->i_ctime = 1151 current_time(inode); 1152 1153 /* There is now free space in queue. */ 1154 pipelined_receive(&wake_q, info); 1155 spin_unlock(&info->lock); 1156 wake_up_q(&wake_q); 1157 ret = 0; 1158 } 1159 if (ret == 0) { 1160 ret = msg_ptr->m_ts; 1161 1162 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1163 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1164 ret = -EFAULT; 1165 } 1166 free_msg(msg_ptr); 1167 } 1168 out_fput: 1169 fdput(f); 1170 out: 1171 return ret; 1172 } 1173 1174 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1175 size_t, msg_len, unsigned int, msg_prio, 1176 const struct __kernel_timespec __user *, u_abs_timeout) 1177 { 1178 struct timespec64 ts, *p = NULL; 1179 if (u_abs_timeout) { 1180 int res = prepare_timeout(u_abs_timeout, &ts); 1181 if (res) 1182 return res; 1183 p = &ts; 1184 } 1185 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1186 } 1187 1188 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1189 size_t, msg_len, unsigned int __user *, u_msg_prio, 1190 const struct __kernel_timespec __user *, u_abs_timeout) 1191 { 1192 struct timespec64 ts, *p = NULL; 1193 if (u_abs_timeout) { 1194 int res = prepare_timeout(u_abs_timeout, &ts); 1195 if (res) 1196 return res; 1197 p = &ts; 1198 } 1199 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1200 } 1201 1202 /* 1203 * Notes: the case when user wants us to deregister (with NULL as pointer) 1204 * and he isn't currently owner of notification, will be silently discarded. 1205 * It isn't explicitly defined in the POSIX. 1206 */ 1207 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1208 { 1209 int ret; 1210 struct fd f; 1211 struct sock *sock; 1212 struct inode *inode; 1213 struct mqueue_inode_info *info; 1214 struct sk_buff *nc; 1215 1216 audit_mq_notify(mqdes, notification); 1217 1218 nc = NULL; 1219 sock = NULL; 1220 if (notification != NULL) { 1221 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1222 notification->sigev_notify != SIGEV_SIGNAL && 1223 notification->sigev_notify != SIGEV_THREAD)) 1224 return -EINVAL; 1225 if (notification->sigev_notify == SIGEV_SIGNAL && 1226 !valid_signal(notification->sigev_signo)) { 1227 return -EINVAL; 1228 } 1229 if (notification->sigev_notify == SIGEV_THREAD) { 1230 long timeo; 1231 1232 /* create the notify skb */ 1233 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1234 if (!nc) { 1235 ret = -ENOMEM; 1236 goto out; 1237 } 1238 if (copy_from_user(nc->data, 1239 notification->sigev_value.sival_ptr, 1240 NOTIFY_COOKIE_LEN)) { 1241 ret = -EFAULT; 1242 goto out; 1243 } 1244 1245 /* TODO: add a header? */ 1246 skb_put(nc, NOTIFY_COOKIE_LEN); 1247 /* and attach it to the socket */ 1248 retry: 1249 f = fdget(notification->sigev_signo); 1250 if (!f.file) { 1251 ret = -EBADF; 1252 goto out; 1253 } 1254 sock = netlink_getsockbyfilp(f.file); 1255 fdput(f); 1256 if (IS_ERR(sock)) { 1257 ret = PTR_ERR(sock); 1258 sock = NULL; 1259 goto out; 1260 } 1261 1262 timeo = MAX_SCHEDULE_TIMEOUT; 1263 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1264 if (ret == 1) { 1265 sock = NULL; 1266 goto retry; 1267 } 1268 if (ret) { 1269 sock = NULL; 1270 nc = NULL; 1271 goto out; 1272 } 1273 } 1274 } 1275 1276 f = fdget(mqdes); 1277 if (!f.file) { 1278 ret = -EBADF; 1279 goto out; 1280 } 1281 1282 inode = file_inode(f.file); 1283 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1284 ret = -EBADF; 1285 goto out_fput; 1286 } 1287 info = MQUEUE_I(inode); 1288 1289 ret = 0; 1290 spin_lock(&info->lock); 1291 if (notification == NULL) { 1292 if (info->notify_owner == task_tgid(current)) { 1293 remove_notification(info); 1294 inode->i_atime = inode->i_ctime = current_time(inode); 1295 } 1296 } else if (info->notify_owner != NULL) { 1297 ret = -EBUSY; 1298 } else { 1299 switch (notification->sigev_notify) { 1300 case SIGEV_NONE: 1301 info->notify.sigev_notify = SIGEV_NONE; 1302 break; 1303 case SIGEV_THREAD: 1304 info->notify_sock = sock; 1305 info->notify_cookie = nc; 1306 sock = NULL; 1307 nc = NULL; 1308 info->notify.sigev_notify = SIGEV_THREAD; 1309 break; 1310 case SIGEV_SIGNAL: 1311 info->notify.sigev_signo = notification->sigev_signo; 1312 info->notify.sigev_value = notification->sigev_value; 1313 info->notify.sigev_notify = SIGEV_SIGNAL; 1314 break; 1315 } 1316 1317 info->notify_owner = get_pid(task_tgid(current)); 1318 info->notify_user_ns = get_user_ns(current_user_ns()); 1319 inode->i_atime = inode->i_ctime = current_time(inode); 1320 } 1321 spin_unlock(&info->lock); 1322 out_fput: 1323 fdput(f); 1324 out: 1325 if (sock) 1326 netlink_detachskb(sock, nc); 1327 else if (nc) 1328 dev_kfree_skb(nc); 1329 1330 return ret; 1331 } 1332 1333 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1334 const struct sigevent __user *, u_notification) 1335 { 1336 struct sigevent n, *p = NULL; 1337 if (u_notification) { 1338 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1339 return -EFAULT; 1340 p = &n; 1341 } 1342 return do_mq_notify(mqdes, p); 1343 } 1344 1345 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1346 { 1347 struct fd f; 1348 struct inode *inode; 1349 struct mqueue_inode_info *info; 1350 1351 if (new && (new->mq_flags & (~O_NONBLOCK))) 1352 return -EINVAL; 1353 1354 f = fdget(mqdes); 1355 if (!f.file) 1356 return -EBADF; 1357 1358 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1359 fdput(f); 1360 return -EBADF; 1361 } 1362 1363 inode = file_inode(f.file); 1364 info = MQUEUE_I(inode); 1365 1366 spin_lock(&info->lock); 1367 1368 if (old) { 1369 *old = info->attr; 1370 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1371 } 1372 if (new) { 1373 audit_mq_getsetattr(mqdes, new); 1374 spin_lock(&f.file->f_lock); 1375 if (new->mq_flags & O_NONBLOCK) 1376 f.file->f_flags |= O_NONBLOCK; 1377 else 1378 f.file->f_flags &= ~O_NONBLOCK; 1379 spin_unlock(&f.file->f_lock); 1380 1381 inode->i_atime = inode->i_ctime = current_time(inode); 1382 } 1383 1384 spin_unlock(&info->lock); 1385 fdput(f); 1386 return 0; 1387 } 1388 1389 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1390 const struct mq_attr __user *, u_mqstat, 1391 struct mq_attr __user *, u_omqstat) 1392 { 1393 int ret; 1394 struct mq_attr mqstat, omqstat; 1395 struct mq_attr *new = NULL, *old = NULL; 1396 1397 if (u_mqstat) { 1398 new = &mqstat; 1399 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1400 return -EFAULT; 1401 } 1402 if (u_omqstat) 1403 old = &omqstat; 1404 1405 ret = do_mq_getsetattr(mqdes, new, old); 1406 if (ret || !old) 1407 return ret; 1408 1409 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1410 return -EFAULT; 1411 return 0; 1412 } 1413 1414 #ifdef CONFIG_COMPAT 1415 1416 struct compat_mq_attr { 1417 compat_long_t mq_flags; /* message queue flags */ 1418 compat_long_t mq_maxmsg; /* maximum number of messages */ 1419 compat_long_t mq_msgsize; /* maximum message size */ 1420 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1421 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1422 }; 1423 1424 static inline int get_compat_mq_attr(struct mq_attr *attr, 1425 const struct compat_mq_attr __user *uattr) 1426 { 1427 struct compat_mq_attr v; 1428 1429 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1430 return -EFAULT; 1431 1432 memset(attr, 0, sizeof(*attr)); 1433 attr->mq_flags = v.mq_flags; 1434 attr->mq_maxmsg = v.mq_maxmsg; 1435 attr->mq_msgsize = v.mq_msgsize; 1436 attr->mq_curmsgs = v.mq_curmsgs; 1437 return 0; 1438 } 1439 1440 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1441 struct compat_mq_attr __user *uattr) 1442 { 1443 struct compat_mq_attr v; 1444 1445 memset(&v, 0, sizeof(v)); 1446 v.mq_flags = attr->mq_flags; 1447 v.mq_maxmsg = attr->mq_maxmsg; 1448 v.mq_msgsize = attr->mq_msgsize; 1449 v.mq_curmsgs = attr->mq_curmsgs; 1450 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1451 return -EFAULT; 1452 return 0; 1453 } 1454 1455 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1456 int, oflag, compat_mode_t, mode, 1457 struct compat_mq_attr __user *, u_attr) 1458 { 1459 struct mq_attr attr, *p = NULL; 1460 if (u_attr && oflag & O_CREAT) { 1461 p = &attr; 1462 if (get_compat_mq_attr(&attr, u_attr)) 1463 return -EFAULT; 1464 } 1465 return do_mq_open(u_name, oflag, mode, p); 1466 } 1467 1468 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1469 const struct compat_sigevent __user *, u_notification) 1470 { 1471 struct sigevent n, *p = NULL; 1472 if (u_notification) { 1473 if (get_compat_sigevent(&n, u_notification)) 1474 return -EFAULT; 1475 if (n.sigev_notify == SIGEV_THREAD) 1476 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1477 p = &n; 1478 } 1479 return do_mq_notify(mqdes, p); 1480 } 1481 1482 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1483 const struct compat_mq_attr __user *, u_mqstat, 1484 struct compat_mq_attr __user *, u_omqstat) 1485 { 1486 int ret; 1487 struct mq_attr mqstat, omqstat; 1488 struct mq_attr *new = NULL, *old = NULL; 1489 1490 if (u_mqstat) { 1491 new = &mqstat; 1492 if (get_compat_mq_attr(new, u_mqstat)) 1493 return -EFAULT; 1494 } 1495 if (u_omqstat) 1496 old = &omqstat; 1497 1498 ret = do_mq_getsetattr(mqdes, new, old); 1499 if (ret || !old) 1500 return ret; 1501 1502 if (put_compat_mq_attr(old, u_omqstat)) 1503 return -EFAULT; 1504 return 0; 1505 } 1506 #endif 1507 1508 #ifdef CONFIG_COMPAT_32BIT_TIME 1509 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1510 struct timespec64 *ts) 1511 { 1512 if (get_old_timespec32(ts, p)) 1513 return -EFAULT; 1514 if (!timespec64_valid(ts)) 1515 return -EINVAL; 1516 return 0; 1517 } 1518 1519 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1520 const char __user *, u_msg_ptr, 1521 unsigned int, msg_len, unsigned int, msg_prio, 1522 const struct old_timespec32 __user *, u_abs_timeout) 1523 { 1524 struct timespec64 ts, *p = NULL; 1525 if (u_abs_timeout) { 1526 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1527 if (res) 1528 return res; 1529 p = &ts; 1530 } 1531 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1532 } 1533 1534 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1535 char __user *, u_msg_ptr, 1536 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1537 const struct old_timespec32 __user *, u_abs_timeout) 1538 { 1539 struct timespec64 ts, *p = NULL; 1540 if (u_abs_timeout) { 1541 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1542 if (res) 1543 return res; 1544 p = &ts; 1545 } 1546 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1547 } 1548 #endif 1549 1550 static const struct inode_operations mqueue_dir_inode_operations = { 1551 .lookup = simple_lookup, 1552 .create = mqueue_create, 1553 .unlink = mqueue_unlink, 1554 }; 1555 1556 static const struct file_operations mqueue_file_operations = { 1557 .flush = mqueue_flush_file, 1558 .poll = mqueue_poll_file, 1559 .read = mqueue_read_file, 1560 .llseek = default_llseek, 1561 }; 1562 1563 static const struct super_operations mqueue_super_ops = { 1564 .alloc_inode = mqueue_alloc_inode, 1565 .destroy_inode = mqueue_destroy_inode, 1566 .evict_inode = mqueue_evict_inode, 1567 .statfs = simple_statfs, 1568 }; 1569 1570 static const struct fs_context_operations mqueue_fs_context_ops = { 1571 .free = mqueue_fs_context_free, 1572 .get_tree = mqueue_get_tree, 1573 }; 1574 1575 static struct file_system_type mqueue_fs_type = { 1576 .name = "mqueue", 1577 .init_fs_context = mqueue_init_fs_context, 1578 .kill_sb = kill_litter_super, 1579 .fs_flags = FS_USERNS_MOUNT, 1580 }; 1581 1582 int mq_init_ns(struct ipc_namespace *ns) 1583 { 1584 struct vfsmount *m; 1585 1586 ns->mq_queues_count = 0; 1587 ns->mq_queues_max = DFLT_QUEUESMAX; 1588 ns->mq_msg_max = DFLT_MSGMAX; 1589 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1590 ns->mq_msg_default = DFLT_MSG; 1591 ns->mq_msgsize_default = DFLT_MSGSIZE; 1592 1593 m = mq_create_mount(ns); 1594 if (IS_ERR(m)) 1595 return PTR_ERR(m); 1596 ns->mq_mnt = m; 1597 return 0; 1598 } 1599 1600 void mq_clear_sbinfo(struct ipc_namespace *ns) 1601 { 1602 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1603 } 1604 1605 void mq_put_mnt(struct ipc_namespace *ns) 1606 { 1607 kern_unmount(ns->mq_mnt); 1608 } 1609 1610 static int __init init_mqueue_fs(void) 1611 { 1612 int error; 1613 1614 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1615 sizeof(struct mqueue_inode_info), 0, 1616 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1617 if (mqueue_inode_cachep == NULL) 1618 return -ENOMEM; 1619 1620 /* ignore failures - they are not fatal */ 1621 mq_sysctl_table = mq_register_sysctl_table(); 1622 1623 error = register_filesystem(&mqueue_fs_type); 1624 if (error) 1625 goto out_sysctl; 1626 1627 spin_lock_init(&mq_lock); 1628 1629 error = mq_init_ns(&init_ipc_ns); 1630 if (error) 1631 goto out_filesystem; 1632 1633 return 0; 1634 1635 out_filesystem: 1636 unregister_filesystem(&mqueue_fs_type); 1637 out_sysctl: 1638 if (mq_sysctl_table) 1639 unregister_sysctl_table(mq_sysctl_table); 1640 kmem_cache_destroy(mqueue_inode_cachep); 1641 return error; 1642 } 1643 1644 device_initcall(init_mqueue_fs); 1645