1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 /* 67 * Locking: 68 * 69 * Accesses to a message queue are synchronized by acquiring info->lock. 70 * 71 * There are two notable exceptions: 72 * - The actual wakeup of a sleeping task is performed using the wake_q 73 * framework. info->lock is already released when wake_up_q is called. 74 * - The exit codepaths after sleeping check ext_wait_queue->state without 75 * any locks. If it is STATE_READY, then the syscall is completed without 76 * acquiring info->lock. 77 * 78 * MQ_BARRIER: 79 * To achieve proper release/acquire memory barrier pairing, the state is set to 80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 82 * 83 * This prevents the following races: 84 * 85 * 1) With the simple wake_q_add(), the task could be gone already before 86 * the increase of the reference happens 87 * Thread A 88 * Thread B 89 * WRITE_ONCE(wait.state, STATE_NONE); 90 * schedule_hrtimeout() 91 * wake_q_add(A) 92 * if (cmpxchg()) // success 93 * ->state = STATE_READY (reordered) 94 * <timeout returns> 95 * if (wait.state == STATE_READY) return; 96 * sysret to user space 97 * sys_exit() 98 * get_task_struct() // UaF 99 * 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 101 * the smp_store_release() that does ->state = STATE_READY. 102 * 103 * 2) Without proper _release/_acquire barriers, the woken up task 104 * could read stale data 105 * 106 * Thread A 107 * Thread B 108 * do_mq_timedreceive 109 * WRITE_ONCE(wait.state, STATE_NONE); 110 * schedule_hrtimeout() 111 * state = STATE_READY; 112 * <timeout returns> 113 * if (wait.state == STATE_READY) return; 114 * msg_ptr = wait.msg; // Access to stale data! 115 * receiver->msg = message; (reordered) 116 * 117 * Solution: use _release and _acquire barriers. 118 * 119 * 3) There is intentionally no barrier when setting current->state 120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 121 * release memory barrier, and the wakeup is triggered when holding 122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 123 * acquire memory barrier. 124 */ 125 126 struct ext_wait_queue { /* queue of sleeping tasks */ 127 struct task_struct *task; 128 struct list_head list; 129 struct msg_msg *msg; /* ptr of loaded message */ 130 int state; /* one of STATE_* values */ 131 }; 132 133 struct mqueue_inode_info { 134 spinlock_t lock; 135 struct inode vfs_inode; 136 wait_queue_head_t wait_q; 137 138 struct rb_root msg_tree; 139 struct rb_node *msg_tree_rightmost; 140 struct posix_msg_tree_node *node_cache; 141 struct mq_attr attr; 142 143 struct sigevent notify; 144 struct pid *notify_owner; 145 u32 notify_self_exec_id; 146 struct user_namespace *notify_user_ns; 147 struct user_struct *user; /* user who created, for accounting */ 148 struct sock *notify_sock; 149 struct sk_buff *notify_cookie; 150 151 /* for tasks waiting for free space and messages, respectively */ 152 struct ext_wait_queue e_wait_q[2]; 153 154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 155 }; 156 157 static struct file_system_type mqueue_fs_type; 158 static const struct inode_operations mqueue_dir_inode_operations; 159 static const struct file_operations mqueue_file_operations; 160 static const struct super_operations mqueue_super_ops; 161 static const struct fs_context_operations mqueue_fs_context_ops; 162 static void remove_notification(struct mqueue_inode_info *info); 163 164 static struct kmem_cache *mqueue_inode_cachep; 165 166 static struct ctl_table_header *mq_sysctl_table; 167 168 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 169 { 170 return container_of(inode, struct mqueue_inode_info, vfs_inode); 171 } 172 173 /* 174 * This routine should be called with the mq_lock held. 175 */ 176 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 177 { 178 return get_ipc_ns(inode->i_sb->s_fs_info); 179 } 180 181 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 182 { 183 struct ipc_namespace *ns; 184 185 spin_lock(&mq_lock); 186 ns = __get_ns_from_inode(inode); 187 spin_unlock(&mq_lock); 188 return ns; 189 } 190 191 /* Auxiliary functions to manipulate messages' list */ 192 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 193 { 194 struct rb_node **p, *parent = NULL; 195 struct posix_msg_tree_node *leaf; 196 bool rightmost = true; 197 198 p = &info->msg_tree.rb_node; 199 while (*p) { 200 parent = *p; 201 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 202 203 if (likely(leaf->priority == msg->m_type)) 204 goto insert_msg; 205 else if (msg->m_type < leaf->priority) { 206 p = &(*p)->rb_left; 207 rightmost = false; 208 } else 209 p = &(*p)->rb_right; 210 } 211 if (info->node_cache) { 212 leaf = info->node_cache; 213 info->node_cache = NULL; 214 } else { 215 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 216 if (!leaf) 217 return -ENOMEM; 218 INIT_LIST_HEAD(&leaf->msg_list); 219 } 220 leaf->priority = msg->m_type; 221 222 if (rightmost) 223 info->msg_tree_rightmost = &leaf->rb_node; 224 225 rb_link_node(&leaf->rb_node, parent, p); 226 rb_insert_color(&leaf->rb_node, &info->msg_tree); 227 insert_msg: 228 info->attr.mq_curmsgs++; 229 info->qsize += msg->m_ts; 230 list_add_tail(&msg->m_list, &leaf->msg_list); 231 return 0; 232 } 233 234 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 235 struct mqueue_inode_info *info) 236 { 237 struct rb_node *node = &leaf->rb_node; 238 239 if (info->msg_tree_rightmost == node) 240 info->msg_tree_rightmost = rb_prev(node); 241 242 rb_erase(node, &info->msg_tree); 243 if (info->node_cache) 244 kfree(leaf); 245 else 246 info->node_cache = leaf; 247 } 248 249 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 250 { 251 struct rb_node *parent = NULL; 252 struct posix_msg_tree_node *leaf; 253 struct msg_msg *msg; 254 255 try_again: 256 /* 257 * During insert, low priorities go to the left and high to the 258 * right. On receive, we want the highest priorities first, so 259 * walk all the way to the right. 260 */ 261 parent = info->msg_tree_rightmost; 262 if (!parent) { 263 if (info->attr.mq_curmsgs) { 264 pr_warn_once("Inconsistency in POSIX message queue, " 265 "no tree element, but supposedly messages " 266 "should exist!\n"); 267 info->attr.mq_curmsgs = 0; 268 } 269 return NULL; 270 } 271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 272 if (unlikely(list_empty(&leaf->msg_list))) { 273 pr_warn_once("Inconsistency in POSIX message queue, " 274 "empty leaf node but we haven't implemented " 275 "lazy leaf delete!\n"); 276 msg_tree_erase(leaf, info); 277 goto try_again; 278 } else { 279 msg = list_first_entry(&leaf->msg_list, 280 struct msg_msg, m_list); 281 list_del(&msg->m_list); 282 if (list_empty(&leaf->msg_list)) { 283 msg_tree_erase(leaf, info); 284 } 285 } 286 info->attr.mq_curmsgs--; 287 info->qsize -= msg->m_ts; 288 return msg; 289 } 290 291 static struct inode *mqueue_get_inode(struct super_block *sb, 292 struct ipc_namespace *ipc_ns, umode_t mode, 293 struct mq_attr *attr) 294 { 295 struct user_struct *u = current_user(); 296 struct inode *inode; 297 int ret = -ENOMEM; 298 299 inode = new_inode(sb); 300 if (!inode) 301 goto err; 302 303 inode->i_ino = get_next_ino(); 304 inode->i_mode = mode; 305 inode->i_uid = current_fsuid(); 306 inode->i_gid = current_fsgid(); 307 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 308 309 if (S_ISREG(mode)) { 310 struct mqueue_inode_info *info; 311 unsigned long mq_bytes, mq_treesize; 312 313 inode->i_fop = &mqueue_file_operations; 314 inode->i_size = FILENT_SIZE; 315 /* mqueue specific info */ 316 info = MQUEUE_I(inode); 317 spin_lock_init(&info->lock); 318 init_waitqueue_head(&info->wait_q); 319 INIT_LIST_HEAD(&info->e_wait_q[0].list); 320 INIT_LIST_HEAD(&info->e_wait_q[1].list); 321 info->notify_owner = NULL; 322 info->notify_user_ns = NULL; 323 info->qsize = 0; 324 info->user = NULL; /* set when all is ok */ 325 info->msg_tree = RB_ROOT; 326 info->msg_tree_rightmost = NULL; 327 info->node_cache = NULL; 328 memset(&info->attr, 0, sizeof(info->attr)); 329 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 330 ipc_ns->mq_msg_default); 331 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 332 ipc_ns->mq_msgsize_default); 333 if (attr) { 334 info->attr.mq_maxmsg = attr->mq_maxmsg; 335 info->attr.mq_msgsize = attr->mq_msgsize; 336 } 337 /* 338 * We used to allocate a static array of pointers and account 339 * the size of that array as well as one msg_msg struct per 340 * possible message into the queue size. That's no longer 341 * accurate as the queue is now an rbtree and will grow and 342 * shrink depending on usage patterns. We can, however, still 343 * account one msg_msg struct per message, but the nodes are 344 * allocated depending on priority usage, and most programs 345 * only use one, or a handful, of priorities. However, since 346 * this is pinned memory, we need to assume worst case, so 347 * that means the min(mq_maxmsg, max_priorities) * struct 348 * posix_msg_tree_node. 349 */ 350 351 ret = -EINVAL; 352 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 353 goto out_inode; 354 if (capable(CAP_SYS_RESOURCE)) { 355 if (info->attr.mq_maxmsg > HARD_MSGMAX || 356 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 357 goto out_inode; 358 } else { 359 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 360 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 361 goto out_inode; 362 } 363 ret = -EOVERFLOW; 364 /* check for overflow */ 365 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 366 goto out_inode; 367 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 368 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 369 sizeof(struct posix_msg_tree_node); 370 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 371 if (mq_bytes + mq_treesize < mq_bytes) 372 goto out_inode; 373 mq_bytes += mq_treesize; 374 spin_lock(&mq_lock); 375 if (u->mq_bytes + mq_bytes < u->mq_bytes || 376 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 377 spin_unlock(&mq_lock); 378 /* mqueue_evict_inode() releases info->messages */ 379 ret = -EMFILE; 380 goto out_inode; 381 } 382 u->mq_bytes += mq_bytes; 383 spin_unlock(&mq_lock); 384 385 /* all is ok */ 386 info->user = get_uid(u); 387 } else if (S_ISDIR(mode)) { 388 inc_nlink(inode); 389 /* Some things misbehave if size == 0 on a directory */ 390 inode->i_size = 2 * DIRENT_SIZE; 391 inode->i_op = &mqueue_dir_inode_operations; 392 inode->i_fop = &simple_dir_operations; 393 } 394 395 return inode; 396 out_inode: 397 iput(inode); 398 err: 399 return ERR_PTR(ret); 400 } 401 402 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 403 { 404 struct inode *inode; 405 struct ipc_namespace *ns = sb->s_fs_info; 406 407 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 408 sb->s_blocksize = PAGE_SIZE; 409 sb->s_blocksize_bits = PAGE_SHIFT; 410 sb->s_magic = MQUEUE_MAGIC; 411 sb->s_op = &mqueue_super_ops; 412 413 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 414 if (IS_ERR(inode)) 415 return PTR_ERR(inode); 416 417 sb->s_root = d_make_root(inode); 418 if (!sb->s_root) 419 return -ENOMEM; 420 return 0; 421 } 422 423 static int mqueue_get_tree(struct fs_context *fc) 424 { 425 struct mqueue_fs_context *ctx = fc->fs_private; 426 427 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 428 } 429 430 static void mqueue_fs_context_free(struct fs_context *fc) 431 { 432 struct mqueue_fs_context *ctx = fc->fs_private; 433 434 put_ipc_ns(ctx->ipc_ns); 435 kfree(ctx); 436 } 437 438 static int mqueue_init_fs_context(struct fs_context *fc) 439 { 440 struct mqueue_fs_context *ctx; 441 442 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 443 if (!ctx) 444 return -ENOMEM; 445 446 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 447 put_user_ns(fc->user_ns); 448 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 449 fc->fs_private = ctx; 450 fc->ops = &mqueue_fs_context_ops; 451 return 0; 452 } 453 454 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 455 { 456 struct mqueue_fs_context *ctx; 457 struct fs_context *fc; 458 struct vfsmount *mnt; 459 460 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 461 if (IS_ERR(fc)) 462 return ERR_CAST(fc); 463 464 ctx = fc->fs_private; 465 put_ipc_ns(ctx->ipc_ns); 466 ctx->ipc_ns = get_ipc_ns(ns); 467 put_user_ns(fc->user_ns); 468 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 469 470 mnt = fc_mount(fc); 471 put_fs_context(fc); 472 return mnt; 473 } 474 475 static void init_once(void *foo) 476 { 477 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 478 479 inode_init_once(&p->vfs_inode); 480 } 481 482 static struct inode *mqueue_alloc_inode(struct super_block *sb) 483 { 484 struct mqueue_inode_info *ei; 485 486 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 487 if (!ei) 488 return NULL; 489 return &ei->vfs_inode; 490 } 491 492 static void mqueue_free_inode(struct inode *inode) 493 { 494 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 495 } 496 497 static void mqueue_evict_inode(struct inode *inode) 498 { 499 struct mqueue_inode_info *info; 500 struct user_struct *user; 501 struct ipc_namespace *ipc_ns; 502 struct msg_msg *msg, *nmsg; 503 LIST_HEAD(tmp_msg); 504 505 clear_inode(inode); 506 507 if (S_ISDIR(inode->i_mode)) 508 return; 509 510 ipc_ns = get_ns_from_inode(inode); 511 info = MQUEUE_I(inode); 512 spin_lock(&info->lock); 513 while ((msg = msg_get(info)) != NULL) 514 list_add_tail(&msg->m_list, &tmp_msg); 515 kfree(info->node_cache); 516 spin_unlock(&info->lock); 517 518 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 519 list_del(&msg->m_list); 520 free_msg(msg); 521 } 522 523 user = info->user; 524 if (user) { 525 unsigned long mq_bytes, mq_treesize; 526 527 /* Total amount of bytes accounted for the mqueue */ 528 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 529 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 530 sizeof(struct posix_msg_tree_node); 531 532 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 533 info->attr.mq_msgsize); 534 535 spin_lock(&mq_lock); 536 user->mq_bytes -= mq_bytes; 537 /* 538 * get_ns_from_inode() ensures that the 539 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 540 * to which we now hold a reference, or it is NULL. 541 * We can't put it here under mq_lock, though. 542 */ 543 if (ipc_ns) 544 ipc_ns->mq_queues_count--; 545 spin_unlock(&mq_lock); 546 free_uid(user); 547 } 548 if (ipc_ns) 549 put_ipc_ns(ipc_ns); 550 } 551 552 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 553 { 554 struct inode *dir = dentry->d_parent->d_inode; 555 struct inode *inode; 556 struct mq_attr *attr = arg; 557 int error; 558 struct ipc_namespace *ipc_ns; 559 560 spin_lock(&mq_lock); 561 ipc_ns = __get_ns_from_inode(dir); 562 if (!ipc_ns) { 563 error = -EACCES; 564 goto out_unlock; 565 } 566 567 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 568 !capable(CAP_SYS_RESOURCE)) { 569 error = -ENOSPC; 570 goto out_unlock; 571 } 572 ipc_ns->mq_queues_count++; 573 spin_unlock(&mq_lock); 574 575 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 576 if (IS_ERR(inode)) { 577 error = PTR_ERR(inode); 578 spin_lock(&mq_lock); 579 ipc_ns->mq_queues_count--; 580 goto out_unlock; 581 } 582 583 put_ipc_ns(ipc_ns); 584 dir->i_size += DIRENT_SIZE; 585 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 586 587 d_instantiate(dentry, inode); 588 dget(dentry); 589 return 0; 590 out_unlock: 591 spin_unlock(&mq_lock); 592 if (ipc_ns) 593 put_ipc_ns(ipc_ns); 594 return error; 595 } 596 597 static int mqueue_create(struct inode *dir, struct dentry *dentry, 598 umode_t mode, bool excl) 599 { 600 return mqueue_create_attr(dentry, mode, NULL); 601 } 602 603 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 604 { 605 struct inode *inode = d_inode(dentry); 606 607 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 608 dir->i_size -= DIRENT_SIZE; 609 drop_nlink(inode); 610 dput(dentry); 611 return 0; 612 } 613 614 /* 615 * This is routine for system read from queue file. 616 * To avoid mess with doing here some sort of mq_receive we allow 617 * to read only queue size & notification info (the only values 618 * that are interesting from user point of view and aren't accessible 619 * through std routines) 620 */ 621 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 622 size_t count, loff_t *off) 623 { 624 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 625 char buffer[FILENT_SIZE]; 626 ssize_t ret; 627 628 spin_lock(&info->lock); 629 snprintf(buffer, sizeof(buffer), 630 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 631 info->qsize, 632 info->notify_owner ? info->notify.sigev_notify : 0, 633 (info->notify_owner && 634 info->notify.sigev_notify == SIGEV_SIGNAL) ? 635 info->notify.sigev_signo : 0, 636 pid_vnr(info->notify_owner)); 637 spin_unlock(&info->lock); 638 buffer[sizeof(buffer)-1] = '\0'; 639 640 ret = simple_read_from_buffer(u_data, count, off, buffer, 641 strlen(buffer)); 642 if (ret <= 0) 643 return ret; 644 645 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 646 return ret; 647 } 648 649 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 650 { 651 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 652 653 spin_lock(&info->lock); 654 if (task_tgid(current) == info->notify_owner) 655 remove_notification(info); 656 657 spin_unlock(&info->lock); 658 return 0; 659 } 660 661 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 662 { 663 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 664 __poll_t retval = 0; 665 666 poll_wait(filp, &info->wait_q, poll_tab); 667 668 spin_lock(&info->lock); 669 if (info->attr.mq_curmsgs) 670 retval = EPOLLIN | EPOLLRDNORM; 671 672 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 673 retval |= EPOLLOUT | EPOLLWRNORM; 674 spin_unlock(&info->lock); 675 676 return retval; 677 } 678 679 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 680 static void wq_add(struct mqueue_inode_info *info, int sr, 681 struct ext_wait_queue *ewp) 682 { 683 struct ext_wait_queue *walk; 684 685 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 686 if (walk->task->prio <= current->prio) { 687 list_add_tail(&ewp->list, &walk->list); 688 return; 689 } 690 } 691 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 692 } 693 694 /* 695 * Puts current task to sleep. Caller must hold queue lock. After return 696 * lock isn't held. 697 * sr: SEND or RECV 698 */ 699 static int wq_sleep(struct mqueue_inode_info *info, int sr, 700 ktime_t *timeout, struct ext_wait_queue *ewp) 701 __releases(&info->lock) 702 { 703 int retval; 704 signed long time; 705 706 wq_add(info, sr, ewp); 707 708 for (;;) { 709 /* memory barrier not required, we hold info->lock */ 710 __set_current_state(TASK_INTERRUPTIBLE); 711 712 spin_unlock(&info->lock); 713 time = schedule_hrtimeout_range_clock(timeout, 0, 714 HRTIMER_MODE_ABS, CLOCK_REALTIME); 715 716 if (READ_ONCE(ewp->state) == STATE_READY) { 717 /* see MQ_BARRIER for purpose/pairing */ 718 smp_acquire__after_ctrl_dep(); 719 retval = 0; 720 goto out; 721 } 722 spin_lock(&info->lock); 723 724 /* we hold info->lock, so no memory barrier required */ 725 if (READ_ONCE(ewp->state) == STATE_READY) { 726 retval = 0; 727 goto out_unlock; 728 } 729 if (signal_pending(current)) { 730 retval = -ERESTARTSYS; 731 break; 732 } 733 if (time == 0) { 734 retval = -ETIMEDOUT; 735 break; 736 } 737 } 738 list_del(&ewp->list); 739 out_unlock: 740 spin_unlock(&info->lock); 741 out: 742 return retval; 743 } 744 745 /* 746 * Returns waiting task that should be serviced first or NULL if none exists 747 */ 748 static struct ext_wait_queue *wq_get_first_waiter( 749 struct mqueue_inode_info *info, int sr) 750 { 751 struct list_head *ptr; 752 753 ptr = info->e_wait_q[sr].list.prev; 754 if (ptr == &info->e_wait_q[sr].list) 755 return NULL; 756 return list_entry(ptr, struct ext_wait_queue, list); 757 } 758 759 760 static inline void set_cookie(struct sk_buff *skb, char code) 761 { 762 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 763 } 764 765 /* 766 * The next function is only to split too long sys_mq_timedsend 767 */ 768 static void __do_notify(struct mqueue_inode_info *info) 769 { 770 /* notification 771 * invoked when there is registered process and there isn't process 772 * waiting synchronously for message AND state of queue changed from 773 * empty to not empty. Here we are sure that no one is waiting 774 * synchronously. */ 775 if (info->notify_owner && 776 info->attr.mq_curmsgs == 1) { 777 switch (info->notify.sigev_notify) { 778 case SIGEV_NONE: 779 break; 780 case SIGEV_SIGNAL: { 781 struct kernel_siginfo sig_i; 782 struct task_struct *task; 783 784 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 785 if (!info->notify.sigev_signo) 786 break; 787 788 clear_siginfo(&sig_i); 789 sig_i.si_signo = info->notify.sigev_signo; 790 sig_i.si_errno = 0; 791 sig_i.si_code = SI_MESGQ; 792 sig_i.si_value = info->notify.sigev_value; 793 rcu_read_lock(); 794 /* map current pid/uid into info->owner's namespaces */ 795 sig_i.si_pid = task_tgid_nr_ns(current, 796 ns_of_pid(info->notify_owner)); 797 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 798 current_uid()); 799 /* 800 * We can't use kill_pid_info(), this signal should 801 * bypass check_kill_permission(). It is from kernel 802 * but si_fromuser() can't know this. 803 * We do check the self_exec_id, to avoid sending 804 * signals to programs that don't expect them. 805 */ 806 task = pid_task(info->notify_owner, PIDTYPE_TGID); 807 if (task && task->self_exec_id == 808 info->notify_self_exec_id) { 809 do_send_sig_info(info->notify.sigev_signo, 810 &sig_i, task, PIDTYPE_TGID); 811 } 812 rcu_read_unlock(); 813 break; 814 } 815 case SIGEV_THREAD: 816 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 817 netlink_sendskb(info->notify_sock, info->notify_cookie); 818 break; 819 } 820 /* after notification unregisters process */ 821 put_pid(info->notify_owner); 822 put_user_ns(info->notify_user_ns); 823 info->notify_owner = NULL; 824 info->notify_user_ns = NULL; 825 } 826 wake_up(&info->wait_q); 827 } 828 829 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 830 struct timespec64 *ts) 831 { 832 if (get_timespec64(ts, u_abs_timeout)) 833 return -EFAULT; 834 if (!timespec64_valid(ts)) 835 return -EINVAL; 836 return 0; 837 } 838 839 static void remove_notification(struct mqueue_inode_info *info) 840 { 841 if (info->notify_owner != NULL && 842 info->notify.sigev_notify == SIGEV_THREAD) { 843 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 844 netlink_sendskb(info->notify_sock, info->notify_cookie); 845 } 846 put_pid(info->notify_owner); 847 put_user_ns(info->notify_user_ns); 848 info->notify_owner = NULL; 849 info->notify_user_ns = NULL; 850 } 851 852 static int prepare_open(struct dentry *dentry, int oflag, int ro, 853 umode_t mode, struct filename *name, 854 struct mq_attr *attr) 855 { 856 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 857 MAY_READ | MAY_WRITE }; 858 int acc; 859 860 if (d_really_is_negative(dentry)) { 861 if (!(oflag & O_CREAT)) 862 return -ENOENT; 863 if (ro) 864 return ro; 865 audit_inode_parent_hidden(name, dentry->d_parent); 866 return vfs_mkobj(dentry, mode & ~current_umask(), 867 mqueue_create_attr, attr); 868 } 869 /* it already existed */ 870 audit_inode(name, dentry, 0); 871 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 872 return -EEXIST; 873 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 874 return -EINVAL; 875 acc = oflag2acc[oflag & O_ACCMODE]; 876 return inode_permission(d_inode(dentry), acc); 877 } 878 879 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 880 struct mq_attr *attr) 881 { 882 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 883 struct dentry *root = mnt->mnt_root; 884 struct filename *name; 885 struct path path; 886 int fd, error; 887 int ro; 888 889 audit_mq_open(oflag, mode, attr); 890 891 if (IS_ERR(name = getname(u_name))) 892 return PTR_ERR(name); 893 894 fd = get_unused_fd_flags(O_CLOEXEC); 895 if (fd < 0) 896 goto out_putname; 897 898 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 899 inode_lock(d_inode(root)); 900 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 901 if (IS_ERR(path.dentry)) { 902 error = PTR_ERR(path.dentry); 903 goto out_putfd; 904 } 905 path.mnt = mntget(mnt); 906 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 907 if (!error) { 908 struct file *file = dentry_open(&path, oflag, current_cred()); 909 if (!IS_ERR(file)) 910 fd_install(fd, file); 911 else 912 error = PTR_ERR(file); 913 } 914 path_put(&path); 915 out_putfd: 916 if (error) { 917 put_unused_fd(fd); 918 fd = error; 919 } 920 inode_unlock(d_inode(root)); 921 if (!ro) 922 mnt_drop_write(mnt); 923 out_putname: 924 putname(name); 925 return fd; 926 } 927 928 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 929 struct mq_attr __user *, u_attr) 930 { 931 struct mq_attr attr; 932 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 933 return -EFAULT; 934 935 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 936 } 937 938 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 939 { 940 int err; 941 struct filename *name; 942 struct dentry *dentry; 943 struct inode *inode = NULL; 944 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 945 struct vfsmount *mnt = ipc_ns->mq_mnt; 946 947 name = getname(u_name); 948 if (IS_ERR(name)) 949 return PTR_ERR(name); 950 951 audit_inode_parent_hidden(name, mnt->mnt_root); 952 err = mnt_want_write(mnt); 953 if (err) 954 goto out_name; 955 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 956 dentry = lookup_one_len(name->name, mnt->mnt_root, 957 strlen(name->name)); 958 if (IS_ERR(dentry)) { 959 err = PTR_ERR(dentry); 960 goto out_unlock; 961 } 962 963 inode = d_inode(dentry); 964 if (!inode) { 965 err = -ENOENT; 966 } else { 967 ihold(inode); 968 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL); 969 } 970 dput(dentry); 971 972 out_unlock: 973 inode_unlock(d_inode(mnt->mnt_root)); 974 if (inode) 975 iput(inode); 976 mnt_drop_write(mnt); 977 out_name: 978 putname(name); 979 980 return err; 981 } 982 983 /* Pipelined send and receive functions. 984 * 985 * If a receiver finds no waiting message, then it registers itself in the 986 * list of waiting receivers. A sender checks that list before adding the new 987 * message into the message array. If there is a waiting receiver, then it 988 * bypasses the message array and directly hands the message over to the 989 * receiver. The receiver accepts the message and returns without grabbing the 990 * queue spinlock: 991 * 992 * - Set pointer to message. 993 * - Queue the receiver task for later wakeup (without the info->lock). 994 * - Update its state to STATE_READY. Now the receiver can continue. 995 * - Wake up the process after the lock is dropped. Should the process wake up 996 * before this wakeup (due to a timeout or a signal) it will either see 997 * STATE_READY and continue or acquire the lock to check the state again. 998 * 999 * The same algorithm is used for senders. 1000 */ 1001 1002 static inline void __pipelined_op(struct wake_q_head *wake_q, 1003 struct mqueue_inode_info *info, 1004 struct ext_wait_queue *this) 1005 { 1006 list_del(&this->list); 1007 get_task_struct(this->task); 1008 1009 /* see MQ_BARRIER for purpose/pairing */ 1010 smp_store_release(&this->state, STATE_READY); 1011 wake_q_add_safe(wake_q, this->task); 1012 } 1013 1014 /* pipelined_send() - send a message directly to the task waiting in 1015 * sys_mq_timedreceive() (without inserting message into a queue). 1016 */ 1017 static inline void pipelined_send(struct wake_q_head *wake_q, 1018 struct mqueue_inode_info *info, 1019 struct msg_msg *message, 1020 struct ext_wait_queue *receiver) 1021 { 1022 receiver->msg = message; 1023 __pipelined_op(wake_q, info, receiver); 1024 } 1025 1026 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1027 * gets its message and put to the queue (we have one free place for sure). */ 1028 static inline void pipelined_receive(struct wake_q_head *wake_q, 1029 struct mqueue_inode_info *info) 1030 { 1031 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1032 1033 if (!sender) { 1034 /* for poll */ 1035 wake_up_interruptible(&info->wait_q); 1036 return; 1037 } 1038 if (msg_insert(sender->msg, info)) 1039 return; 1040 1041 __pipelined_op(wake_q, info, sender); 1042 } 1043 1044 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1045 size_t msg_len, unsigned int msg_prio, 1046 struct timespec64 *ts) 1047 { 1048 struct fd f; 1049 struct inode *inode; 1050 struct ext_wait_queue wait; 1051 struct ext_wait_queue *receiver; 1052 struct msg_msg *msg_ptr; 1053 struct mqueue_inode_info *info; 1054 ktime_t expires, *timeout = NULL; 1055 struct posix_msg_tree_node *new_leaf = NULL; 1056 int ret = 0; 1057 DEFINE_WAKE_Q(wake_q); 1058 1059 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1060 return -EINVAL; 1061 1062 if (ts) { 1063 expires = timespec64_to_ktime(*ts); 1064 timeout = &expires; 1065 } 1066 1067 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1068 1069 f = fdget(mqdes); 1070 if (unlikely(!f.file)) { 1071 ret = -EBADF; 1072 goto out; 1073 } 1074 1075 inode = file_inode(f.file); 1076 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1077 ret = -EBADF; 1078 goto out_fput; 1079 } 1080 info = MQUEUE_I(inode); 1081 audit_file(f.file); 1082 1083 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1084 ret = -EBADF; 1085 goto out_fput; 1086 } 1087 1088 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1089 ret = -EMSGSIZE; 1090 goto out_fput; 1091 } 1092 1093 /* First try to allocate memory, before doing anything with 1094 * existing queues. */ 1095 msg_ptr = load_msg(u_msg_ptr, msg_len); 1096 if (IS_ERR(msg_ptr)) { 1097 ret = PTR_ERR(msg_ptr); 1098 goto out_fput; 1099 } 1100 msg_ptr->m_ts = msg_len; 1101 msg_ptr->m_type = msg_prio; 1102 1103 /* 1104 * msg_insert really wants us to have a valid, spare node struct so 1105 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1106 * fall back to that if necessary. 1107 */ 1108 if (!info->node_cache) 1109 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1110 1111 spin_lock(&info->lock); 1112 1113 if (!info->node_cache && new_leaf) { 1114 /* Save our speculative allocation into the cache */ 1115 INIT_LIST_HEAD(&new_leaf->msg_list); 1116 info->node_cache = new_leaf; 1117 new_leaf = NULL; 1118 } else { 1119 kfree(new_leaf); 1120 } 1121 1122 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1123 if (f.file->f_flags & O_NONBLOCK) { 1124 ret = -EAGAIN; 1125 } else { 1126 wait.task = current; 1127 wait.msg = (void *) msg_ptr; 1128 1129 /* memory barrier not required, we hold info->lock */ 1130 WRITE_ONCE(wait.state, STATE_NONE); 1131 ret = wq_sleep(info, SEND, timeout, &wait); 1132 /* 1133 * wq_sleep must be called with info->lock held, and 1134 * returns with the lock released 1135 */ 1136 goto out_free; 1137 } 1138 } else { 1139 receiver = wq_get_first_waiter(info, RECV); 1140 if (receiver) { 1141 pipelined_send(&wake_q, info, msg_ptr, receiver); 1142 } else { 1143 /* adds message to the queue */ 1144 ret = msg_insert(msg_ptr, info); 1145 if (ret) 1146 goto out_unlock; 1147 __do_notify(info); 1148 } 1149 inode->i_atime = inode->i_mtime = inode->i_ctime = 1150 current_time(inode); 1151 } 1152 out_unlock: 1153 spin_unlock(&info->lock); 1154 wake_up_q(&wake_q); 1155 out_free: 1156 if (ret) 1157 free_msg(msg_ptr); 1158 out_fput: 1159 fdput(f); 1160 out: 1161 return ret; 1162 } 1163 1164 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1165 size_t msg_len, unsigned int __user *u_msg_prio, 1166 struct timespec64 *ts) 1167 { 1168 ssize_t ret; 1169 struct msg_msg *msg_ptr; 1170 struct fd f; 1171 struct inode *inode; 1172 struct mqueue_inode_info *info; 1173 struct ext_wait_queue wait; 1174 ktime_t expires, *timeout = NULL; 1175 struct posix_msg_tree_node *new_leaf = NULL; 1176 1177 if (ts) { 1178 expires = timespec64_to_ktime(*ts); 1179 timeout = &expires; 1180 } 1181 1182 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1183 1184 f = fdget(mqdes); 1185 if (unlikely(!f.file)) { 1186 ret = -EBADF; 1187 goto out; 1188 } 1189 1190 inode = file_inode(f.file); 1191 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1192 ret = -EBADF; 1193 goto out_fput; 1194 } 1195 info = MQUEUE_I(inode); 1196 audit_file(f.file); 1197 1198 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1199 ret = -EBADF; 1200 goto out_fput; 1201 } 1202 1203 /* checks if buffer is big enough */ 1204 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1205 ret = -EMSGSIZE; 1206 goto out_fput; 1207 } 1208 1209 /* 1210 * msg_insert really wants us to have a valid, spare node struct so 1211 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1212 * fall back to that if necessary. 1213 */ 1214 if (!info->node_cache) 1215 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1216 1217 spin_lock(&info->lock); 1218 1219 if (!info->node_cache && new_leaf) { 1220 /* Save our speculative allocation into the cache */ 1221 INIT_LIST_HEAD(&new_leaf->msg_list); 1222 info->node_cache = new_leaf; 1223 } else { 1224 kfree(new_leaf); 1225 } 1226 1227 if (info->attr.mq_curmsgs == 0) { 1228 if (f.file->f_flags & O_NONBLOCK) { 1229 spin_unlock(&info->lock); 1230 ret = -EAGAIN; 1231 } else { 1232 wait.task = current; 1233 1234 /* memory barrier not required, we hold info->lock */ 1235 WRITE_ONCE(wait.state, STATE_NONE); 1236 ret = wq_sleep(info, RECV, timeout, &wait); 1237 msg_ptr = wait.msg; 1238 } 1239 } else { 1240 DEFINE_WAKE_Q(wake_q); 1241 1242 msg_ptr = msg_get(info); 1243 1244 inode->i_atime = inode->i_mtime = inode->i_ctime = 1245 current_time(inode); 1246 1247 /* There is now free space in queue. */ 1248 pipelined_receive(&wake_q, info); 1249 spin_unlock(&info->lock); 1250 wake_up_q(&wake_q); 1251 ret = 0; 1252 } 1253 if (ret == 0) { 1254 ret = msg_ptr->m_ts; 1255 1256 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1257 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1258 ret = -EFAULT; 1259 } 1260 free_msg(msg_ptr); 1261 } 1262 out_fput: 1263 fdput(f); 1264 out: 1265 return ret; 1266 } 1267 1268 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1269 size_t, msg_len, unsigned int, msg_prio, 1270 const struct __kernel_timespec __user *, u_abs_timeout) 1271 { 1272 struct timespec64 ts, *p = NULL; 1273 if (u_abs_timeout) { 1274 int res = prepare_timeout(u_abs_timeout, &ts); 1275 if (res) 1276 return res; 1277 p = &ts; 1278 } 1279 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1280 } 1281 1282 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1283 size_t, msg_len, unsigned int __user *, u_msg_prio, 1284 const struct __kernel_timespec __user *, u_abs_timeout) 1285 { 1286 struct timespec64 ts, *p = NULL; 1287 if (u_abs_timeout) { 1288 int res = prepare_timeout(u_abs_timeout, &ts); 1289 if (res) 1290 return res; 1291 p = &ts; 1292 } 1293 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1294 } 1295 1296 /* 1297 * Notes: the case when user wants us to deregister (with NULL as pointer) 1298 * and he isn't currently owner of notification, will be silently discarded. 1299 * It isn't explicitly defined in the POSIX. 1300 */ 1301 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1302 { 1303 int ret; 1304 struct fd f; 1305 struct sock *sock; 1306 struct inode *inode; 1307 struct mqueue_inode_info *info; 1308 struct sk_buff *nc; 1309 1310 audit_mq_notify(mqdes, notification); 1311 1312 nc = NULL; 1313 sock = NULL; 1314 if (notification != NULL) { 1315 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1316 notification->sigev_notify != SIGEV_SIGNAL && 1317 notification->sigev_notify != SIGEV_THREAD)) 1318 return -EINVAL; 1319 if (notification->sigev_notify == SIGEV_SIGNAL && 1320 !valid_signal(notification->sigev_signo)) { 1321 return -EINVAL; 1322 } 1323 if (notification->sigev_notify == SIGEV_THREAD) { 1324 long timeo; 1325 1326 /* create the notify skb */ 1327 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1328 if (!nc) 1329 return -ENOMEM; 1330 1331 if (copy_from_user(nc->data, 1332 notification->sigev_value.sival_ptr, 1333 NOTIFY_COOKIE_LEN)) { 1334 ret = -EFAULT; 1335 goto free_skb; 1336 } 1337 1338 /* TODO: add a header? */ 1339 skb_put(nc, NOTIFY_COOKIE_LEN); 1340 /* and attach it to the socket */ 1341 retry: 1342 f = fdget(notification->sigev_signo); 1343 if (!f.file) { 1344 ret = -EBADF; 1345 goto out; 1346 } 1347 sock = netlink_getsockbyfilp(f.file); 1348 fdput(f); 1349 if (IS_ERR(sock)) { 1350 ret = PTR_ERR(sock); 1351 goto free_skb; 1352 } 1353 1354 timeo = MAX_SCHEDULE_TIMEOUT; 1355 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1356 if (ret == 1) { 1357 sock = NULL; 1358 goto retry; 1359 } 1360 if (ret) 1361 return ret; 1362 } 1363 } 1364 1365 f = fdget(mqdes); 1366 if (!f.file) { 1367 ret = -EBADF; 1368 goto out; 1369 } 1370 1371 inode = file_inode(f.file); 1372 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1373 ret = -EBADF; 1374 goto out_fput; 1375 } 1376 info = MQUEUE_I(inode); 1377 1378 ret = 0; 1379 spin_lock(&info->lock); 1380 if (notification == NULL) { 1381 if (info->notify_owner == task_tgid(current)) { 1382 remove_notification(info); 1383 inode->i_atime = inode->i_ctime = current_time(inode); 1384 } 1385 } else if (info->notify_owner != NULL) { 1386 ret = -EBUSY; 1387 } else { 1388 switch (notification->sigev_notify) { 1389 case SIGEV_NONE: 1390 info->notify.sigev_notify = SIGEV_NONE; 1391 break; 1392 case SIGEV_THREAD: 1393 info->notify_sock = sock; 1394 info->notify_cookie = nc; 1395 sock = NULL; 1396 nc = NULL; 1397 info->notify.sigev_notify = SIGEV_THREAD; 1398 break; 1399 case SIGEV_SIGNAL: 1400 info->notify.sigev_signo = notification->sigev_signo; 1401 info->notify.sigev_value = notification->sigev_value; 1402 info->notify.sigev_notify = SIGEV_SIGNAL; 1403 info->notify_self_exec_id = current->self_exec_id; 1404 break; 1405 } 1406 1407 info->notify_owner = get_pid(task_tgid(current)); 1408 info->notify_user_ns = get_user_ns(current_user_ns()); 1409 inode->i_atime = inode->i_ctime = current_time(inode); 1410 } 1411 spin_unlock(&info->lock); 1412 out_fput: 1413 fdput(f); 1414 out: 1415 if (sock) 1416 netlink_detachskb(sock, nc); 1417 else 1418 free_skb: 1419 dev_kfree_skb(nc); 1420 1421 return ret; 1422 } 1423 1424 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1425 const struct sigevent __user *, u_notification) 1426 { 1427 struct sigevent n, *p = NULL; 1428 if (u_notification) { 1429 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1430 return -EFAULT; 1431 p = &n; 1432 } 1433 return do_mq_notify(mqdes, p); 1434 } 1435 1436 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1437 { 1438 struct fd f; 1439 struct inode *inode; 1440 struct mqueue_inode_info *info; 1441 1442 if (new && (new->mq_flags & (~O_NONBLOCK))) 1443 return -EINVAL; 1444 1445 f = fdget(mqdes); 1446 if (!f.file) 1447 return -EBADF; 1448 1449 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1450 fdput(f); 1451 return -EBADF; 1452 } 1453 1454 inode = file_inode(f.file); 1455 info = MQUEUE_I(inode); 1456 1457 spin_lock(&info->lock); 1458 1459 if (old) { 1460 *old = info->attr; 1461 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1462 } 1463 if (new) { 1464 audit_mq_getsetattr(mqdes, new); 1465 spin_lock(&f.file->f_lock); 1466 if (new->mq_flags & O_NONBLOCK) 1467 f.file->f_flags |= O_NONBLOCK; 1468 else 1469 f.file->f_flags &= ~O_NONBLOCK; 1470 spin_unlock(&f.file->f_lock); 1471 1472 inode->i_atime = inode->i_ctime = current_time(inode); 1473 } 1474 1475 spin_unlock(&info->lock); 1476 fdput(f); 1477 return 0; 1478 } 1479 1480 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1481 const struct mq_attr __user *, u_mqstat, 1482 struct mq_attr __user *, u_omqstat) 1483 { 1484 int ret; 1485 struct mq_attr mqstat, omqstat; 1486 struct mq_attr *new = NULL, *old = NULL; 1487 1488 if (u_mqstat) { 1489 new = &mqstat; 1490 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1491 return -EFAULT; 1492 } 1493 if (u_omqstat) 1494 old = &omqstat; 1495 1496 ret = do_mq_getsetattr(mqdes, new, old); 1497 if (ret || !old) 1498 return ret; 1499 1500 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1501 return -EFAULT; 1502 return 0; 1503 } 1504 1505 #ifdef CONFIG_COMPAT 1506 1507 struct compat_mq_attr { 1508 compat_long_t mq_flags; /* message queue flags */ 1509 compat_long_t mq_maxmsg; /* maximum number of messages */ 1510 compat_long_t mq_msgsize; /* maximum message size */ 1511 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1512 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1513 }; 1514 1515 static inline int get_compat_mq_attr(struct mq_attr *attr, 1516 const struct compat_mq_attr __user *uattr) 1517 { 1518 struct compat_mq_attr v; 1519 1520 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1521 return -EFAULT; 1522 1523 memset(attr, 0, sizeof(*attr)); 1524 attr->mq_flags = v.mq_flags; 1525 attr->mq_maxmsg = v.mq_maxmsg; 1526 attr->mq_msgsize = v.mq_msgsize; 1527 attr->mq_curmsgs = v.mq_curmsgs; 1528 return 0; 1529 } 1530 1531 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1532 struct compat_mq_attr __user *uattr) 1533 { 1534 struct compat_mq_attr v; 1535 1536 memset(&v, 0, sizeof(v)); 1537 v.mq_flags = attr->mq_flags; 1538 v.mq_maxmsg = attr->mq_maxmsg; 1539 v.mq_msgsize = attr->mq_msgsize; 1540 v.mq_curmsgs = attr->mq_curmsgs; 1541 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1542 return -EFAULT; 1543 return 0; 1544 } 1545 1546 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1547 int, oflag, compat_mode_t, mode, 1548 struct compat_mq_attr __user *, u_attr) 1549 { 1550 struct mq_attr attr, *p = NULL; 1551 if (u_attr && oflag & O_CREAT) { 1552 p = &attr; 1553 if (get_compat_mq_attr(&attr, u_attr)) 1554 return -EFAULT; 1555 } 1556 return do_mq_open(u_name, oflag, mode, p); 1557 } 1558 1559 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1560 const struct compat_sigevent __user *, u_notification) 1561 { 1562 struct sigevent n, *p = NULL; 1563 if (u_notification) { 1564 if (get_compat_sigevent(&n, u_notification)) 1565 return -EFAULT; 1566 if (n.sigev_notify == SIGEV_THREAD) 1567 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1568 p = &n; 1569 } 1570 return do_mq_notify(mqdes, p); 1571 } 1572 1573 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1574 const struct compat_mq_attr __user *, u_mqstat, 1575 struct compat_mq_attr __user *, u_omqstat) 1576 { 1577 int ret; 1578 struct mq_attr mqstat, omqstat; 1579 struct mq_attr *new = NULL, *old = NULL; 1580 1581 if (u_mqstat) { 1582 new = &mqstat; 1583 if (get_compat_mq_attr(new, u_mqstat)) 1584 return -EFAULT; 1585 } 1586 if (u_omqstat) 1587 old = &omqstat; 1588 1589 ret = do_mq_getsetattr(mqdes, new, old); 1590 if (ret || !old) 1591 return ret; 1592 1593 if (put_compat_mq_attr(old, u_omqstat)) 1594 return -EFAULT; 1595 return 0; 1596 } 1597 #endif 1598 1599 #ifdef CONFIG_COMPAT_32BIT_TIME 1600 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1601 struct timespec64 *ts) 1602 { 1603 if (get_old_timespec32(ts, p)) 1604 return -EFAULT; 1605 if (!timespec64_valid(ts)) 1606 return -EINVAL; 1607 return 0; 1608 } 1609 1610 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1611 const char __user *, u_msg_ptr, 1612 unsigned int, msg_len, unsigned int, msg_prio, 1613 const struct old_timespec32 __user *, u_abs_timeout) 1614 { 1615 struct timespec64 ts, *p = NULL; 1616 if (u_abs_timeout) { 1617 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1618 if (res) 1619 return res; 1620 p = &ts; 1621 } 1622 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1623 } 1624 1625 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1626 char __user *, u_msg_ptr, 1627 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1628 const struct old_timespec32 __user *, u_abs_timeout) 1629 { 1630 struct timespec64 ts, *p = NULL; 1631 if (u_abs_timeout) { 1632 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1633 if (res) 1634 return res; 1635 p = &ts; 1636 } 1637 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1638 } 1639 #endif 1640 1641 static const struct inode_operations mqueue_dir_inode_operations = { 1642 .lookup = simple_lookup, 1643 .create = mqueue_create, 1644 .unlink = mqueue_unlink, 1645 }; 1646 1647 static const struct file_operations mqueue_file_operations = { 1648 .flush = mqueue_flush_file, 1649 .poll = mqueue_poll_file, 1650 .read = mqueue_read_file, 1651 .llseek = default_llseek, 1652 }; 1653 1654 static const struct super_operations mqueue_super_ops = { 1655 .alloc_inode = mqueue_alloc_inode, 1656 .free_inode = mqueue_free_inode, 1657 .evict_inode = mqueue_evict_inode, 1658 .statfs = simple_statfs, 1659 }; 1660 1661 static const struct fs_context_operations mqueue_fs_context_ops = { 1662 .free = mqueue_fs_context_free, 1663 .get_tree = mqueue_get_tree, 1664 }; 1665 1666 static struct file_system_type mqueue_fs_type = { 1667 .name = "mqueue", 1668 .init_fs_context = mqueue_init_fs_context, 1669 .kill_sb = kill_litter_super, 1670 .fs_flags = FS_USERNS_MOUNT, 1671 }; 1672 1673 int mq_init_ns(struct ipc_namespace *ns) 1674 { 1675 struct vfsmount *m; 1676 1677 ns->mq_queues_count = 0; 1678 ns->mq_queues_max = DFLT_QUEUESMAX; 1679 ns->mq_msg_max = DFLT_MSGMAX; 1680 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1681 ns->mq_msg_default = DFLT_MSG; 1682 ns->mq_msgsize_default = DFLT_MSGSIZE; 1683 1684 m = mq_create_mount(ns); 1685 if (IS_ERR(m)) 1686 return PTR_ERR(m); 1687 ns->mq_mnt = m; 1688 return 0; 1689 } 1690 1691 void mq_clear_sbinfo(struct ipc_namespace *ns) 1692 { 1693 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1694 } 1695 1696 void mq_put_mnt(struct ipc_namespace *ns) 1697 { 1698 kern_unmount(ns->mq_mnt); 1699 } 1700 1701 static int __init init_mqueue_fs(void) 1702 { 1703 int error; 1704 1705 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1706 sizeof(struct mqueue_inode_info), 0, 1707 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1708 if (mqueue_inode_cachep == NULL) 1709 return -ENOMEM; 1710 1711 /* ignore failures - they are not fatal */ 1712 mq_sysctl_table = mq_register_sysctl_table(); 1713 1714 error = register_filesystem(&mqueue_fs_type); 1715 if (error) 1716 goto out_sysctl; 1717 1718 spin_lock_init(&mq_lock); 1719 1720 error = mq_init_ns(&init_ipc_ns); 1721 if (error) 1722 goto out_filesystem; 1723 1724 return 0; 1725 1726 out_filesystem: 1727 unregister_filesystem(&mqueue_fs_type); 1728 out_sysctl: 1729 if (mq_sysctl_table) 1730 unregister_sysctl_table(mq_sysctl_table); 1731 kmem_cache_destroy(mqueue_inode_cachep); 1732 return error; 1733 } 1734 1735 device_initcall(init_mqueue_fs); 1736