xref: /linux/ipc/mqueue.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  * 			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 
39 #include <net/sock.h>
40 #include "util.h"
41 
42 #define MQUEUE_MAGIC	0x19800202
43 #define DIRENT_SIZE	20
44 #define FILENT_SIZE	80
45 
46 #define SEND		0
47 #define RECV		1
48 
49 #define STATE_NONE	0
50 #define STATE_PENDING	1
51 #define STATE_READY	2
52 
53 struct posix_msg_tree_node {
54 	struct rb_node		rb_node;
55 	struct list_head	msg_list;
56 	int			priority;
57 };
58 
59 struct ext_wait_queue {		/* queue of sleeping tasks */
60 	struct task_struct *task;
61 	struct list_head list;
62 	struct msg_msg *msg;	/* ptr of loaded message */
63 	int state;		/* one of STATE_* values */
64 };
65 
66 struct mqueue_inode_info {
67 	spinlock_t lock;
68 	struct inode vfs_inode;
69 	wait_queue_head_t wait_q;
70 
71 	struct rb_root msg_tree;
72 	struct posix_msg_tree_node *node_cache;
73 	struct mq_attr attr;
74 
75 	struct sigevent notify;
76 	struct pid* notify_owner;
77 	struct user_namespace *notify_user_ns;
78 	struct user_struct *user;	/* user who created, for accounting */
79 	struct sock *notify_sock;
80 	struct sk_buff *notify_cookie;
81 
82 	/* for tasks waiting for free space and messages, respectively */
83 	struct ext_wait_queue e_wait_q[2];
84 
85 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86 };
87 
88 static const struct inode_operations mqueue_dir_inode_operations;
89 static const struct file_operations mqueue_file_operations;
90 static const struct super_operations mqueue_super_ops;
91 static void remove_notification(struct mqueue_inode_info *info);
92 
93 static struct kmem_cache *mqueue_inode_cachep;
94 
95 static struct ctl_table_header * mq_sysctl_table;
96 
97 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98 {
99 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
100 }
101 
102 /*
103  * This routine should be called with the mq_lock held.
104  */
105 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106 {
107 	return get_ipc_ns(inode->i_sb->s_fs_info);
108 }
109 
110 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111 {
112 	struct ipc_namespace *ns;
113 
114 	spin_lock(&mq_lock);
115 	ns = __get_ns_from_inode(inode);
116 	spin_unlock(&mq_lock);
117 	return ns;
118 }
119 
120 /* Auxiliary functions to manipulate messages' list */
121 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122 {
123 	struct rb_node **p, *parent = NULL;
124 	struct posix_msg_tree_node *leaf;
125 
126 	p = &info->msg_tree.rb_node;
127 	while (*p) {
128 		parent = *p;
129 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130 
131 		if (likely(leaf->priority == msg->m_type))
132 			goto insert_msg;
133 		else if (msg->m_type < leaf->priority)
134 			p = &(*p)->rb_left;
135 		else
136 			p = &(*p)->rb_right;
137 	}
138 	if (info->node_cache) {
139 		leaf = info->node_cache;
140 		info->node_cache = NULL;
141 	} else {
142 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143 		if (!leaf)
144 			return -ENOMEM;
145 		rb_init_node(&leaf->rb_node);
146 		INIT_LIST_HEAD(&leaf->msg_list);
147 		info->qsize += sizeof(*leaf);
148 	}
149 	leaf->priority = msg->m_type;
150 	rb_link_node(&leaf->rb_node, parent, p);
151 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 	info->attr.mq_curmsgs++;
154 	info->qsize += msg->m_ts;
155 	list_add_tail(&msg->m_list, &leaf->msg_list);
156 	return 0;
157 }
158 
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 	struct rb_node **p, *parent = NULL;
162 	struct posix_msg_tree_node *leaf;
163 	struct msg_msg *msg;
164 
165 try_again:
166 	p = &info->msg_tree.rb_node;
167 	while (*p) {
168 		parent = *p;
169 		/*
170 		 * During insert, low priorities go to the left and high to the
171 		 * right.  On receive, we want the highest priorities first, so
172 		 * walk all the way to the right.
173 		 */
174 		p = &(*p)->rb_right;
175 	}
176 	if (!parent) {
177 		if (info->attr.mq_curmsgs) {
178 			pr_warn_once("Inconsistency in POSIX message queue, "
179 				     "no tree element, but supposedly messages "
180 				     "should exist!\n");
181 			info->attr.mq_curmsgs = 0;
182 		}
183 		return NULL;
184 	}
185 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 	if (unlikely(list_empty(&leaf->msg_list))) {
187 		pr_warn_once("Inconsistency in POSIX message queue, "
188 			     "empty leaf node but we haven't implemented "
189 			     "lazy leaf delete!\n");
190 		rb_erase(&leaf->rb_node, &info->msg_tree);
191 		if (info->node_cache) {
192 			info->qsize -= sizeof(*leaf);
193 			kfree(leaf);
194 		} else {
195 			info->node_cache = leaf;
196 		}
197 		goto try_again;
198 	} else {
199 		msg = list_first_entry(&leaf->msg_list,
200 				       struct msg_msg, m_list);
201 		list_del(&msg->m_list);
202 		if (list_empty(&leaf->msg_list)) {
203 			rb_erase(&leaf->rb_node, &info->msg_tree);
204 			if (info->node_cache) {
205 				info->qsize -= sizeof(*leaf);
206 				kfree(leaf);
207 			} else {
208 				info->node_cache = leaf;
209 			}
210 		}
211 	}
212 	info->attr.mq_curmsgs--;
213 	info->qsize -= msg->m_ts;
214 	return msg;
215 }
216 
217 static struct inode *mqueue_get_inode(struct super_block *sb,
218 		struct ipc_namespace *ipc_ns, umode_t mode,
219 		struct mq_attr *attr)
220 {
221 	struct user_struct *u = current_user();
222 	struct inode *inode;
223 	int ret = -ENOMEM;
224 
225 	inode = new_inode(sb);
226 	if (!inode)
227 		goto err;
228 
229 	inode->i_ino = get_next_ino();
230 	inode->i_mode = mode;
231 	inode->i_uid = current_fsuid();
232 	inode->i_gid = current_fsgid();
233 	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
234 
235 	if (S_ISREG(mode)) {
236 		struct mqueue_inode_info *info;
237 		unsigned long mq_bytes, mq_treesize;
238 
239 		inode->i_fop = &mqueue_file_operations;
240 		inode->i_size = FILENT_SIZE;
241 		/* mqueue specific info */
242 		info = MQUEUE_I(inode);
243 		spin_lock_init(&info->lock);
244 		init_waitqueue_head(&info->wait_q);
245 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
246 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
247 		info->notify_owner = NULL;
248 		info->notify_user_ns = NULL;
249 		info->qsize = 0;
250 		info->user = NULL;	/* set when all is ok */
251 		info->msg_tree = RB_ROOT;
252 		info->node_cache = NULL;
253 		memset(&info->attr, 0, sizeof(info->attr));
254 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
255 					   ipc_ns->mq_msg_default);
256 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
257 					    ipc_ns->mq_msgsize_default);
258 		if (attr) {
259 			info->attr.mq_maxmsg = attr->mq_maxmsg;
260 			info->attr.mq_msgsize = attr->mq_msgsize;
261 		}
262 		/*
263 		 * We used to allocate a static array of pointers and account
264 		 * the size of that array as well as one msg_msg struct per
265 		 * possible message into the queue size. That's no longer
266 		 * accurate as the queue is now an rbtree and will grow and
267 		 * shrink depending on usage patterns.  We can, however, still
268 		 * account one msg_msg struct per message, but the nodes are
269 		 * allocated depending on priority usage, and most programs
270 		 * only use one, or a handful, of priorities.  However, since
271 		 * this is pinned memory, we need to assume worst case, so
272 		 * that means the min(mq_maxmsg, max_priorities) * struct
273 		 * posix_msg_tree_node.
274 		 */
275 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
276 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
277 			sizeof(struct posix_msg_tree_node);
278 
279 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
280 					  info->attr.mq_msgsize);
281 
282 		spin_lock(&mq_lock);
283 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
284 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
285 			spin_unlock(&mq_lock);
286 			/* mqueue_evict_inode() releases info->messages */
287 			ret = -EMFILE;
288 			goto out_inode;
289 		}
290 		u->mq_bytes += mq_bytes;
291 		spin_unlock(&mq_lock);
292 
293 		/* all is ok */
294 		info->user = get_uid(u);
295 	} else if (S_ISDIR(mode)) {
296 		inc_nlink(inode);
297 		/* Some things misbehave if size == 0 on a directory */
298 		inode->i_size = 2 * DIRENT_SIZE;
299 		inode->i_op = &mqueue_dir_inode_operations;
300 		inode->i_fop = &simple_dir_operations;
301 	}
302 
303 	return inode;
304 out_inode:
305 	iput(inode);
306 err:
307 	return ERR_PTR(ret);
308 }
309 
310 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
311 {
312 	struct inode *inode;
313 	struct ipc_namespace *ns = data;
314 
315 	sb->s_blocksize = PAGE_CACHE_SIZE;
316 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
317 	sb->s_magic = MQUEUE_MAGIC;
318 	sb->s_op = &mqueue_super_ops;
319 
320 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
321 	if (IS_ERR(inode))
322 		return PTR_ERR(inode);
323 
324 	sb->s_root = d_make_root(inode);
325 	if (!sb->s_root)
326 		return -ENOMEM;
327 	return 0;
328 }
329 
330 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
331 			 int flags, const char *dev_name,
332 			 void *data)
333 {
334 	if (!(flags & MS_KERNMOUNT))
335 		data = current->nsproxy->ipc_ns;
336 	return mount_ns(fs_type, flags, data, mqueue_fill_super);
337 }
338 
339 static void init_once(void *foo)
340 {
341 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
342 
343 	inode_init_once(&p->vfs_inode);
344 }
345 
346 static struct inode *mqueue_alloc_inode(struct super_block *sb)
347 {
348 	struct mqueue_inode_info *ei;
349 
350 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
351 	if (!ei)
352 		return NULL;
353 	return &ei->vfs_inode;
354 }
355 
356 static void mqueue_i_callback(struct rcu_head *head)
357 {
358 	struct inode *inode = container_of(head, struct inode, i_rcu);
359 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
360 }
361 
362 static void mqueue_destroy_inode(struct inode *inode)
363 {
364 	call_rcu(&inode->i_rcu, mqueue_i_callback);
365 }
366 
367 static void mqueue_evict_inode(struct inode *inode)
368 {
369 	struct mqueue_inode_info *info;
370 	struct user_struct *user;
371 	unsigned long mq_bytes, mq_treesize;
372 	struct ipc_namespace *ipc_ns;
373 	struct msg_msg *msg;
374 
375 	clear_inode(inode);
376 
377 	if (S_ISDIR(inode->i_mode))
378 		return;
379 
380 	ipc_ns = get_ns_from_inode(inode);
381 	info = MQUEUE_I(inode);
382 	spin_lock(&info->lock);
383 	while ((msg = msg_get(info)) != NULL)
384 		free_msg(msg);
385 	kfree(info->node_cache);
386 	spin_unlock(&info->lock);
387 
388 	/* Total amount of bytes accounted for the mqueue */
389 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
390 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
391 		sizeof(struct posix_msg_tree_node);
392 
393 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
394 				  info->attr.mq_msgsize);
395 
396 	user = info->user;
397 	if (user) {
398 		spin_lock(&mq_lock);
399 		user->mq_bytes -= mq_bytes;
400 		/*
401 		 * get_ns_from_inode() ensures that the
402 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
403 		 * to which we now hold a reference, or it is NULL.
404 		 * We can't put it here under mq_lock, though.
405 		 */
406 		if (ipc_ns)
407 			ipc_ns->mq_queues_count--;
408 		spin_unlock(&mq_lock);
409 		free_uid(user);
410 	}
411 	if (ipc_ns)
412 		put_ipc_ns(ipc_ns);
413 }
414 
415 static int mqueue_create(struct inode *dir, struct dentry *dentry,
416 				umode_t mode, bool excl)
417 {
418 	struct inode *inode;
419 	struct mq_attr *attr = dentry->d_fsdata;
420 	int error;
421 	struct ipc_namespace *ipc_ns;
422 
423 	spin_lock(&mq_lock);
424 	ipc_ns = __get_ns_from_inode(dir);
425 	if (!ipc_ns) {
426 		error = -EACCES;
427 		goto out_unlock;
428 	}
429 	if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
430 	    (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
431 	     !capable(CAP_SYS_RESOURCE))) {
432 		error = -ENOSPC;
433 		goto out_unlock;
434 	}
435 	ipc_ns->mq_queues_count++;
436 	spin_unlock(&mq_lock);
437 
438 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
439 	if (IS_ERR(inode)) {
440 		error = PTR_ERR(inode);
441 		spin_lock(&mq_lock);
442 		ipc_ns->mq_queues_count--;
443 		goto out_unlock;
444 	}
445 
446 	put_ipc_ns(ipc_ns);
447 	dir->i_size += DIRENT_SIZE;
448 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
449 
450 	d_instantiate(dentry, inode);
451 	dget(dentry);
452 	return 0;
453 out_unlock:
454 	spin_unlock(&mq_lock);
455 	if (ipc_ns)
456 		put_ipc_ns(ipc_ns);
457 	return error;
458 }
459 
460 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
461 {
462   	struct inode *inode = dentry->d_inode;
463 
464 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
465 	dir->i_size -= DIRENT_SIZE;
466   	drop_nlink(inode);
467   	dput(dentry);
468   	return 0;
469 }
470 
471 /*
472 *	This is routine for system read from queue file.
473 *	To avoid mess with doing here some sort of mq_receive we allow
474 *	to read only queue size & notification info (the only values
475 *	that are interesting from user point of view and aren't accessible
476 *	through std routines)
477 */
478 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
479 				size_t count, loff_t *off)
480 {
481 	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
482 	char buffer[FILENT_SIZE];
483 	ssize_t ret;
484 
485 	spin_lock(&info->lock);
486 	snprintf(buffer, sizeof(buffer),
487 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
488 			info->qsize,
489 			info->notify_owner ? info->notify.sigev_notify : 0,
490 			(info->notify_owner &&
491 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
492 				info->notify.sigev_signo : 0,
493 			pid_vnr(info->notify_owner));
494 	spin_unlock(&info->lock);
495 	buffer[sizeof(buffer)-1] = '\0';
496 
497 	ret = simple_read_from_buffer(u_data, count, off, buffer,
498 				strlen(buffer));
499 	if (ret <= 0)
500 		return ret;
501 
502 	filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
503 	return ret;
504 }
505 
506 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
507 {
508 	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
509 
510 	spin_lock(&info->lock);
511 	if (task_tgid(current) == info->notify_owner)
512 		remove_notification(info);
513 
514 	spin_unlock(&info->lock);
515 	return 0;
516 }
517 
518 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
519 {
520 	struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
521 	int retval = 0;
522 
523 	poll_wait(filp, &info->wait_q, poll_tab);
524 
525 	spin_lock(&info->lock);
526 	if (info->attr.mq_curmsgs)
527 		retval = POLLIN | POLLRDNORM;
528 
529 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
530 		retval |= POLLOUT | POLLWRNORM;
531 	spin_unlock(&info->lock);
532 
533 	return retval;
534 }
535 
536 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
537 static void wq_add(struct mqueue_inode_info *info, int sr,
538 			struct ext_wait_queue *ewp)
539 {
540 	struct ext_wait_queue *walk;
541 
542 	ewp->task = current;
543 
544 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
545 		if (walk->task->static_prio <= current->static_prio) {
546 			list_add_tail(&ewp->list, &walk->list);
547 			return;
548 		}
549 	}
550 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
551 }
552 
553 /*
554  * Puts current task to sleep. Caller must hold queue lock. After return
555  * lock isn't held.
556  * sr: SEND or RECV
557  */
558 static int wq_sleep(struct mqueue_inode_info *info, int sr,
559 		    ktime_t *timeout, struct ext_wait_queue *ewp)
560 {
561 	int retval;
562 	signed long time;
563 
564 	wq_add(info, sr, ewp);
565 
566 	for (;;) {
567 		set_current_state(TASK_INTERRUPTIBLE);
568 
569 		spin_unlock(&info->lock);
570 		time = schedule_hrtimeout_range_clock(timeout, 0,
571 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
572 
573 		while (ewp->state == STATE_PENDING)
574 			cpu_relax();
575 
576 		if (ewp->state == STATE_READY) {
577 			retval = 0;
578 			goto out;
579 		}
580 		spin_lock(&info->lock);
581 		if (ewp->state == STATE_READY) {
582 			retval = 0;
583 			goto out_unlock;
584 		}
585 		if (signal_pending(current)) {
586 			retval = -ERESTARTSYS;
587 			break;
588 		}
589 		if (time == 0) {
590 			retval = -ETIMEDOUT;
591 			break;
592 		}
593 	}
594 	list_del(&ewp->list);
595 out_unlock:
596 	spin_unlock(&info->lock);
597 out:
598 	return retval;
599 }
600 
601 /*
602  * Returns waiting task that should be serviced first or NULL if none exists
603  */
604 static struct ext_wait_queue *wq_get_first_waiter(
605 		struct mqueue_inode_info *info, int sr)
606 {
607 	struct list_head *ptr;
608 
609 	ptr = info->e_wait_q[sr].list.prev;
610 	if (ptr == &info->e_wait_q[sr].list)
611 		return NULL;
612 	return list_entry(ptr, struct ext_wait_queue, list);
613 }
614 
615 
616 static inline void set_cookie(struct sk_buff *skb, char code)
617 {
618 	((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
619 }
620 
621 /*
622  * The next function is only to split too long sys_mq_timedsend
623  */
624 static void __do_notify(struct mqueue_inode_info *info)
625 {
626 	/* notification
627 	 * invoked when there is registered process and there isn't process
628 	 * waiting synchronously for message AND state of queue changed from
629 	 * empty to not empty. Here we are sure that no one is waiting
630 	 * synchronously. */
631 	if (info->notify_owner &&
632 	    info->attr.mq_curmsgs == 1) {
633 		struct siginfo sig_i;
634 		switch (info->notify.sigev_notify) {
635 		case SIGEV_NONE:
636 			break;
637 		case SIGEV_SIGNAL:
638 			/* sends signal */
639 
640 			sig_i.si_signo = info->notify.sigev_signo;
641 			sig_i.si_errno = 0;
642 			sig_i.si_code = SI_MESGQ;
643 			sig_i.si_value = info->notify.sigev_value;
644 			/* map current pid/uid into info->owner's namespaces */
645 			rcu_read_lock();
646 			sig_i.si_pid = task_tgid_nr_ns(current,
647 						ns_of_pid(info->notify_owner));
648 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
649 			rcu_read_unlock();
650 
651 			kill_pid_info(info->notify.sigev_signo,
652 				      &sig_i, info->notify_owner);
653 			break;
654 		case SIGEV_THREAD:
655 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
656 			netlink_sendskb(info->notify_sock, info->notify_cookie);
657 			break;
658 		}
659 		/* after notification unregisters process */
660 		put_pid(info->notify_owner);
661 		put_user_ns(info->notify_user_ns);
662 		info->notify_owner = NULL;
663 		info->notify_user_ns = NULL;
664 	}
665 	wake_up(&info->wait_q);
666 }
667 
668 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
669 			   ktime_t *expires, struct timespec *ts)
670 {
671 	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
672 		return -EFAULT;
673 	if (!timespec_valid(ts))
674 		return -EINVAL;
675 
676 	*expires = timespec_to_ktime(*ts);
677 	return 0;
678 }
679 
680 static void remove_notification(struct mqueue_inode_info *info)
681 {
682 	if (info->notify_owner != NULL &&
683 	    info->notify.sigev_notify == SIGEV_THREAD) {
684 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685 		netlink_sendskb(info->notify_sock, info->notify_cookie);
686 	}
687 	put_pid(info->notify_owner);
688 	put_user_ns(info->notify_user_ns);
689 	info->notify_owner = NULL;
690 	info->notify_user_ns = NULL;
691 }
692 
693 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
694 {
695 	int mq_treesize;
696 	unsigned long total_size;
697 
698 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
699 		return -EINVAL;
700 	if (capable(CAP_SYS_RESOURCE)) {
701 		if (attr->mq_maxmsg > HARD_MSGMAX ||
702 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
703 			return -EINVAL;
704 	} else {
705 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
706 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
707 			return -EINVAL;
708 	}
709 	/* check for overflow */
710 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
711 		return -EOVERFLOW;
712 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
713 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
714 		sizeof(struct posix_msg_tree_node);
715 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
716 	if (total_size + mq_treesize < total_size)
717 		return -EOVERFLOW;
718 	return 0;
719 }
720 
721 /*
722  * Invoked when creating a new queue via sys_mq_open
723  */
724 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
725 			struct path *path, int oflag, umode_t mode,
726 			struct mq_attr *attr)
727 {
728 	const struct cred *cred = current_cred();
729 	struct file *result;
730 	int ret;
731 
732 	if (attr) {
733 		ret = mq_attr_ok(ipc_ns, attr);
734 		if (ret)
735 			return ERR_PTR(ret);
736 		/* store for use during create */
737 		path->dentry->d_fsdata = attr;
738 	} else {
739 		struct mq_attr def_attr;
740 
741 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
742 					 ipc_ns->mq_msg_default);
743 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
744 					  ipc_ns->mq_msgsize_default);
745 		ret = mq_attr_ok(ipc_ns, &def_attr);
746 		if (ret)
747 			return ERR_PTR(ret);
748 	}
749 
750 	mode &= ~current_umask();
751 	ret = mnt_want_write(path->mnt);
752 	if (ret)
753 		return ERR_PTR(ret);
754 	ret = vfs_create(dir, path->dentry, mode, true);
755 	path->dentry->d_fsdata = NULL;
756 	if (!ret)
757 		result = dentry_open(path, oflag, cred);
758 	else
759 		result = ERR_PTR(ret);
760 	/*
761 	 * dentry_open() took a persistent mnt_want_write(),
762 	 * so we can now drop this one.
763 	 */
764 	mnt_drop_write(path->mnt);
765 	return result;
766 }
767 
768 /* Opens existing queue */
769 static struct file *do_open(struct path *path, int oflag)
770 {
771 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
772 						  MAY_READ | MAY_WRITE };
773 	int acc;
774 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
775 		return ERR_PTR(-EINVAL);
776 	acc = oflag2acc[oflag & O_ACCMODE];
777 	if (inode_permission(path->dentry->d_inode, acc))
778 		return ERR_PTR(-EACCES);
779 	return dentry_open(path, oflag, current_cred());
780 }
781 
782 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
783 		struct mq_attr __user *, u_attr)
784 {
785 	struct path path;
786 	struct file *filp;
787 	char *name;
788 	struct mq_attr attr;
789 	int fd, error;
790 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
791 	struct dentry *root = ipc_ns->mq_mnt->mnt_root;
792 
793 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
794 		return -EFAULT;
795 
796 	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
797 
798 	if (IS_ERR(name = getname(u_name)))
799 		return PTR_ERR(name);
800 
801 	fd = get_unused_fd_flags(O_CLOEXEC);
802 	if (fd < 0)
803 		goto out_putname;
804 
805 	error = 0;
806 	mutex_lock(&root->d_inode->i_mutex);
807 	path.dentry = lookup_one_len(name, root, strlen(name));
808 	if (IS_ERR(path.dentry)) {
809 		error = PTR_ERR(path.dentry);
810 		goto out_putfd;
811 	}
812 	path.mnt = mntget(ipc_ns->mq_mnt);
813 
814 	if (oflag & O_CREAT) {
815 		if (path.dentry->d_inode) {	/* entry already exists */
816 			audit_inode(name, path.dentry);
817 			if (oflag & O_EXCL) {
818 				error = -EEXIST;
819 				goto out;
820 			}
821 			filp = do_open(&path, oflag);
822 		} else {
823 			filp = do_create(ipc_ns, root->d_inode,
824 						&path, oflag, mode,
825 						u_attr ? &attr : NULL);
826 		}
827 	} else {
828 		if (!path.dentry->d_inode) {
829 			error = -ENOENT;
830 			goto out;
831 		}
832 		audit_inode(name, path.dentry);
833 		filp = do_open(&path, oflag);
834 	}
835 
836 	if (!IS_ERR(filp))
837 		fd_install(fd, filp);
838 	else
839 		error = PTR_ERR(filp);
840 out:
841 	path_put(&path);
842 out_putfd:
843 	if (error) {
844 		put_unused_fd(fd);
845 		fd = error;
846 	}
847 	mutex_unlock(&root->d_inode->i_mutex);
848 out_putname:
849 	putname(name);
850 	return fd;
851 }
852 
853 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
854 {
855 	int err;
856 	char *name;
857 	struct dentry *dentry;
858 	struct inode *inode = NULL;
859 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
860 
861 	name = getname(u_name);
862 	if (IS_ERR(name))
863 		return PTR_ERR(name);
864 
865 	mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
866 			I_MUTEX_PARENT);
867 	dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
868 	if (IS_ERR(dentry)) {
869 		err = PTR_ERR(dentry);
870 		goto out_unlock;
871 	}
872 
873 	if (!dentry->d_inode) {
874 		err = -ENOENT;
875 		goto out_err;
876 	}
877 
878 	inode = dentry->d_inode;
879 	if (inode)
880 		ihold(inode);
881 	err = mnt_want_write(ipc_ns->mq_mnt);
882 	if (err)
883 		goto out_err;
884 	err = vfs_unlink(dentry->d_parent->d_inode, dentry);
885 	mnt_drop_write(ipc_ns->mq_mnt);
886 out_err:
887 	dput(dentry);
888 
889 out_unlock:
890 	mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
891 	putname(name);
892 	if (inode)
893 		iput(inode);
894 
895 	return err;
896 }
897 
898 /* Pipelined send and receive functions.
899  *
900  * If a receiver finds no waiting message, then it registers itself in the
901  * list of waiting receivers. A sender checks that list before adding the new
902  * message into the message array. If there is a waiting receiver, then it
903  * bypasses the message array and directly hands the message over to the
904  * receiver.
905  * The receiver accepts the message and returns without grabbing the queue
906  * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
907  * are necessary. The same algorithm is used for sysv semaphores, see
908  * ipc/sem.c for more details.
909  *
910  * The same algorithm is used for senders.
911  */
912 
913 /* pipelined_send() - send a message directly to the task waiting in
914  * sys_mq_timedreceive() (without inserting message into a queue).
915  */
916 static inline void pipelined_send(struct mqueue_inode_info *info,
917 				  struct msg_msg *message,
918 				  struct ext_wait_queue *receiver)
919 {
920 	receiver->msg = message;
921 	list_del(&receiver->list);
922 	receiver->state = STATE_PENDING;
923 	wake_up_process(receiver->task);
924 	smp_wmb();
925 	receiver->state = STATE_READY;
926 }
927 
928 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
929  * gets its message and put to the queue (we have one free place for sure). */
930 static inline void pipelined_receive(struct mqueue_inode_info *info)
931 {
932 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
933 
934 	if (!sender) {
935 		/* for poll */
936 		wake_up_interruptible(&info->wait_q);
937 		return;
938 	}
939 	if (msg_insert(sender->msg, info))
940 		return;
941 	list_del(&sender->list);
942 	sender->state = STATE_PENDING;
943 	wake_up_process(sender->task);
944 	smp_wmb();
945 	sender->state = STATE_READY;
946 }
947 
948 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
949 		size_t, msg_len, unsigned int, msg_prio,
950 		const struct timespec __user *, u_abs_timeout)
951 {
952 	struct file *filp;
953 	struct inode *inode;
954 	struct ext_wait_queue wait;
955 	struct ext_wait_queue *receiver;
956 	struct msg_msg *msg_ptr;
957 	struct mqueue_inode_info *info;
958 	ktime_t expires, *timeout = NULL;
959 	struct timespec ts;
960 	struct posix_msg_tree_node *new_leaf = NULL;
961 	int ret = 0;
962 
963 	if (u_abs_timeout) {
964 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
965 		if (res)
966 			return res;
967 		timeout = &expires;
968 	}
969 
970 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
971 		return -EINVAL;
972 
973 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
974 
975 	filp = fget(mqdes);
976 	if (unlikely(!filp)) {
977 		ret = -EBADF;
978 		goto out;
979 	}
980 
981 	inode = filp->f_path.dentry->d_inode;
982 	if (unlikely(filp->f_op != &mqueue_file_operations)) {
983 		ret = -EBADF;
984 		goto out_fput;
985 	}
986 	info = MQUEUE_I(inode);
987 	audit_inode(NULL, filp->f_path.dentry);
988 
989 	if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
990 		ret = -EBADF;
991 		goto out_fput;
992 	}
993 
994 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
995 		ret = -EMSGSIZE;
996 		goto out_fput;
997 	}
998 
999 	/* First try to allocate memory, before doing anything with
1000 	 * existing queues. */
1001 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1002 	if (IS_ERR(msg_ptr)) {
1003 		ret = PTR_ERR(msg_ptr);
1004 		goto out_fput;
1005 	}
1006 	msg_ptr->m_ts = msg_len;
1007 	msg_ptr->m_type = msg_prio;
1008 
1009 	/*
1010 	 * msg_insert really wants us to have a valid, spare node struct so
1011 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1012 	 * fall back to that if necessary.
1013 	 */
1014 	if (!info->node_cache)
1015 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1016 
1017 	spin_lock(&info->lock);
1018 
1019 	if (!info->node_cache && new_leaf) {
1020 		/* Save our speculative allocation into the cache */
1021 		rb_init_node(&new_leaf->rb_node);
1022 		INIT_LIST_HEAD(&new_leaf->msg_list);
1023 		info->node_cache = new_leaf;
1024 		info->qsize += sizeof(*new_leaf);
1025 		new_leaf = NULL;
1026 	} else {
1027 		kfree(new_leaf);
1028 	}
1029 
1030 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1031 		if (filp->f_flags & O_NONBLOCK) {
1032 			ret = -EAGAIN;
1033 		} else {
1034 			wait.task = current;
1035 			wait.msg = (void *) msg_ptr;
1036 			wait.state = STATE_NONE;
1037 			ret = wq_sleep(info, SEND, timeout, &wait);
1038 			/*
1039 			 * wq_sleep must be called with info->lock held, and
1040 			 * returns with the lock released
1041 			 */
1042 			goto out_free;
1043 		}
1044 	} else {
1045 		receiver = wq_get_first_waiter(info, RECV);
1046 		if (receiver) {
1047 			pipelined_send(info, msg_ptr, receiver);
1048 		} else {
1049 			/* adds message to the queue */
1050 			ret = msg_insert(msg_ptr, info);
1051 			if (ret)
1052 				goto out_unlock;
1053 			__do_notify(info);
1054 		}
1055 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1056 				CURRENT_TIME;
1057 	}
1058 out_unlock:
1059 	spin_unlock(&info->lock);
1060 out_free:
1061 	if (ret)
1062 		free_msg(msg_ptr);
1063 out_fput:
1064 	fput(filp);
1065 out:
1066 	return ret;
1067 }
1068 
1069 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1070 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1071 		const struct timespec __user *, u_abs_timeout)
1072 {
1073 	ssize_t ret;
1074 	struct msg_msg *msg_ptr;
1075 	struct file *filp;
1076 	struct inode *inode;
1077 	struct mqueue_inode_info *info;
1078 	struct ext_wait_queue wait;
1079 	ktime_t expires, *timeout = NULL;
1080 	struct timespec ts;
1081 	struct posix_msg_tree_node *new_leaf = NULL;
1082 
1083 	if (u_abs_timeout) {
1084 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1085 		if (res)
1086 			return res;
1087 		timeout = &expires;
1088 	}
1089 
1090 	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1091 
1092 	filp = fget(mqdes);
1093 	if (unlikely(!filp)) {
1094 		ret = -EBADF;
1095 		goto out;
1096 	}
1097 
1098 	inode = filp->f_path.dentry->d_inode;
1099 	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1100 		ret = -EBADF;
1101 		goto out_fput;
1102 	}
1103 	info = MQUEUE_I(inode);
1104 	audit_inode(NULL, filp->f_path.dentry);
1105 
1106 	if (unlikely(!(filp->f_mode & FMODE_READ))) {
1107 		ret = -EBADF;
1108 		goto out_fput;
1109 	}
1110 
1111 	/* checks if buffer is big enough */
1112 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1113 		ret = -EMSGSIZE;
1114 		goto out_fput;
1115 	}
1116 
1117 	/*
1118 	 * msg_insert really wants us to have a valid, spare node struct so
1119 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1120 	 * fall back to that if necessary.
1121 	 */
1122 	if (!info->node_cache)
1123 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1124 
1125 	spin_lock(&info->lock);
1126 
1127 	if (!info->node_cache && new_leaf) {
1128 		/* Save our speculative allocation into the cache */
1129 		rb_init_node(&new_leaf->rb_node);
1130 		INIT_LIST_HEAD(&new_leaf->msg_list);
1131 		info->node_cache = new_leaf;
1132 		info->qsize += sizeof(*new_leaf);
1133 	} else {
1134 		kfree(new_leaf);
1135 	}
1136 
1137 	if (info->attr.mq_curmsgs == 0) {
1138 		if (filp->f_flags & O_NONBLOCK) {
1139 			spin_unlock(&info->lock);
1140 			ret = -EAGAIN;
1141 		} else {
1142 			wait.task = current;
1143 			wait.state = STATE_NONE;
1144 			ret = wq_sleep(info, RECV, timeout, &wait);
1145 			msg_ptr = wait.msg;
1146 		}
1147 	} else {
1148 		msg_ptr = msg_get(info);
1149 
1150 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1151 				CURRENT_TIME;
1152 
1153 		/* There is now free space in queue. */
1154 		pipelined_receive(info);
1155 		spin_unlock(&info->lock);
1156 		ret = 0;
1157 	}
1158 	if (ret == 0) {
1159 		ret = msg_ptr->m_ts;
1160 
1161 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1162 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1163 			ret = -EFAULT;
1164 		}
1165 		free_msg(msg_ptr);
1166 	}
1167 out_fput:
1168 	fput(filp);
1169 out:
1170 	return ret;
1171 }
1172 
1173 /*
1174  * Notes: the case when user wants us to deregister (with NULL as pointer)
1175  * and he isn't currently owner of notification, will be silently discarded.
1176  * It isn't explicitly defined in the POSIX.
1177  */
1178 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1179 		const struct sigevent __user *, u_notification)
1180 {
1181 	int ret;
1182 	struct file *filp;
1183 	struct sock *sock;
1184 	struct inode *inode;
1185 	struct sigevent notification;
1186 	struct mqueue_inode_info *info;
1187 	struct sk_buff *nc;
1188 
1189 	if (u_notification) {
1190 		if (copy_from_user(&notification, u_notification,
1191 					sizeof(struct sigevent)))
1192 			return -EFAULT;
1193 	}
1194 
1195 	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1196 
1197 	nc = NULL;
1198 	sock = NULL;
1199 	if (u_notification != NULL) {
1200 		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1201 			     notification.sigev_notify != SIGEV_SIGNAL &&
1202 			     notification.sigev_notify != SIGEV_THREAD))
1203 			return -EINVAL;
1204 		if (notification.sigev_notify == SIGEV_SIGNAL &&
1205 			!valid_signal(notification.sigev_signo)) {
1206 			return -EINVAL;
1207 		}
1208 		if (notification.sigev_notify == SIGEV_THREAD) {
1209 			long timeo;
1210 
1211 			/* create the notify skb */
1212 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1213 			if (!nc) {
1214 				ret = -ENOMEM;
1215 				goto out;
1216 			}
1217 			if (copy_from_user(nc->data,
1218 					notification.sigev_value.sival_ptr,
1219 					NOTIFY_COOKIE_LEN)) {
1220 				ret = -EFAULT;
1221 				goto out;
1222 			}
1223 
1224 			/* TODO: add a header? */
1225 			skb_put(nc, NOTIFY_COOKIE_LEN);
1226 			/* and attach it to the socket */
1227 retry:
1228 			filp = fget(notification.sigev_signo);
1229 			if (!filp) {
1230 				ret = -EBADF;
1231 				goto out;
1232 			}
1233 			sock = netlink_getsockbyfilp(filp);
1234 			fput(filp);
1235 			if (IS_ERR(sock)) {
1236 				ret = PTR_ERR(sock);
1237 				sock = NULL;
1238 				goto out;
1239 			}
1240 
1241 			timeo = MAX_SCHEDULE_TIMEOUT;
1242 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1243 			if (ret == 1)
1244 				goto retry;
1245 			if (ret) {
1246 				sock = NULL;
1247 				nc = NULL;
1248 				goto out;
1249 			}
1250 		}
1251 	}
1252 
1253 	filp = fget(mqdes);
1254 	if (!filp) {
1255 		ret = -EBADF;
1256 		goto out;
1257 	}
1258 
1259 	inode = filp->f_path.dentry->d_inode;
1260 	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1261 		ret = -EBADF;
1262 		goto out_fput;
1263 	}
1264 	info = MQUEUE_I(inode);
1265 
1266 	ret = 0;
1267 	spin_lock(&info->lock);
1268 	if (u_notification == NULL) {
1269 		if (info->notify_owner == task_tgid(current)) {
1270 			remove_notification(info);
1271 			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1272 		}
1273 	} else if (info->notify_owner != NULL) {
1274 		ret = -EBUSY;
1275 	} else {
1276 		switch (notification.sigev_notify) {
1277 		case SIGEV_NONE:
1278 			info->notify.sigev_notify = SIGEV_NONE;
1279 			break;
1280 		case SIGEV_THREAD:
1281 			info->notify_sock = sock;
1282 			info->notify_cookie = nc;
1283 			sock = NULL;
1284 			nc = NULL;
1285 			info->notify.sigev_notify = SIGEV_THREAD;
1286 			break;
1287 		case SIGEV_SIGNAL:
1288 			info->notify.sigev_signo = notification.sigev_signo;
1289 			info->notify.sigev_value = notification.sigev_value;
1290 			info->notify.sigev_notify = SIGEV_SIGNAL;
1291 			break;
1292 		}
1293 
1294 		info->notify_owner = get_pid(task_tgid(current));
1295 		info->notify_user_ns = get_user_ns(current_user_ns());
1296 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1297 	}
1298 	spin_unlock(&info->lock);
1299 out_fput:
1300 	fput(filp);
1301 out:
1302 	if (sock) {
1303 		netlink_detachskb(sock, nc);
1304 	} else if (nc) {
1305 		dev_kfree_skb(nc);
1306 	}
1307 	return ret;
1308 }
1309 
1310 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1311 		const struct mq_attr __user *, u_mqstat,
1312 		struct mq_attr __user *, u_omqstat)
1313 {
1314 	int ret;
1315 	struct mq_attr mqstat, omqstat;
1316 	struct file *filp;
1317 	struct inode *inode;
1318 	struct mqueue_inode_info *info;
1319 
1320 	if (u_mqstat != NULL) {
1321 		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1322 			return -EFAULT;
1323 		if (mqstat.mq_flags & (~O_NONBLOCK))
1324 			return -EINVAL;
1325 	}
1326 
1327 	filp = fget(mqdes);
1328 	if (!filp) {
1329 		ret = -EBADF;
1330 		goto out;
1331 	}
1332 
1333 	inode = filp->f_path.dentry->d_inode;
1334 	if (unlikely(filp->f_op != &mqueue_file_operations)) {
1335 		ret = -EBADF;
1336 		goto out_fput;
1337 	}
1338 	info = MQUEUE_I(inode);
1339 
1340 	spin_lock(&info->lock);
1341 
1342 	omqstat = info->attr;
1343 	omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
1344 	if (u_mqstat) {
1345 		audit_mq_getsetattr(mqdes, &mqstat);
1346 		spin_lock(&filp->f_lock);
1347 		if (mqstat.mq_flags & O_NONBLOCK)
1348 			filp->f_flags |= O_NONBLOCK;
1349 		else
1350 			filp->f_flags &= ~O_NONBLOCK;
1351 		spin_unlock(&filp->f_lock);
1352 
1353 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1354 	}
1355 
1356 	spin_unlock(&info->lock);
1357 
1358 	ret = 0;
1359 	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1360 						sizeof(struct mq_attr)))
1361 		ret = -EFAULT;
1362 
1363 out_fput:
1364 	fput(filp);
1365 out:
1366 	return ret;
1367 }
1368 
1369 static const struct inode_operations mqueue_dir_inode_operations = {
1370 	.lookup = simple_lookup,
1371 	.create = mqueue_create,
1372 	.unlink = mqueue_unlink,
1373 };
1374 
1375 static const struct file_operations mqueue_file_operations = {
1376 	.flush = mqueue_flush_file,
1377 	.poll = mqueue_poll_file,
1378 	.read = mqueue_read_file,
1379 	.llseek = default_llseek,
1380 };
1381 
1382 static const struct super_operations mqueue_super_ops = {
1383 	.alloc_inode = mqueue_alloc_inode,
1384 	.destroy_inode = mqueue_destroy_inode,
1385 	.evict_inode = mqueue_evict_inode,
1386 	.statfs = simple_statfs,
1387 };
1388 
1389 static struct file_system_type mqueue_fs_type = {
1390 	.name = "mqueue",
1391 	.mount = mqueue_mount,
1392 	.kill_sb = kill_litter_super,
1393 };
1394 
1395 int mq_init_ns(struct ipc_namespace *ns)
1396 {
1397 	ns->mq_queues_count  = 0;
1398 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1399 	ns->mq_msg_max       = DFLT_MSGMAX;
1400 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1401 	ns->mq_msg_default   = DFLT_MSG;
1402 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1403 
1404 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1405 	if (IS_ERR(ns->mq_mnt)) {
1406 		int err = PTR_ERR(ns->mq_mnt);
1407 		ns->mq_mnt = NULL;
1408 		return err;
1409 	}
1410 	return 0;
1411 }
1412 
1413 void mq_clear_sbinfo(struct ipc_namespace *ns)
1414 {
1415 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1416 }
1417 
1418 void mq_put_mnt(struct ipc_namespace *ns)
1419 {
1420 	kern_unmount(ns->mq_mnt);
1421 }
1422 
1423 static int __init init_mqueue_fs(void)
1424 {
1425 	int error;
1426 
1427 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1428 				sizeof(struct mqueue_inode_info), 0,
1429 				SLAB_HWCACHE_ALIGN, init_once);
1430 	if (mqueue_inode_cachep == NULL)
1431 		return -ENOMEM;
1432 
1433 	/* ignore failures - they are not fatal */
1434 	mq_sysctl_table = mq_register_sysctl_table();
1435 
1436 	error = register_filesystem(&mqueue_fs_type);
1437 	if (error)
1438 		goto out_sysctl;
1439 
1440 	spin_lock_init(&mq_lock);
1441 
1442 	error = mq_init_ns(&init_ipc_ns);
1443 	if (error)
1444 		goto out_filesystem;
1445 
1446 	return 0;
1447 
1448 out_filesystem:
1449 	unregister_filesystem(&mqueue_fs_type);
1450 out_sysctl:
1451 	if (mq_sysctl_table)
1452 		unregister_sysctl_table(mq_sysctl_table);
1453 	kmem_cache_destroy(mqueue_inode_cachep);
1454 	return error;
1455 }
1456 
1457 __initcall(init_mqueue_fs);
1458