xref: /linux/ipc/mqueue.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 
39 #include <net/sock.h>
40 #include "util.h"
41 
42 #define MQUEUE_MAGIC	0x19800202
43 #define DIRENT_SIZE	20
44 #define FILENT_SIZE	80
45 
46 #define SEND		0
47 #define RECV		1
48 
49 #define STATE_NONE	0
50 #define STATE_READY	1
51 
52 struct posix_msg_tree_node {
53 	struct rb_node		rb_node;
54 	struct list_head	msg_list;
55 	int			priority;
56 };
57 
58 struct ext_wait_queue {		/* queue of sleeping tasks */
59 	struct task_struct *task;
60 	struct list_head list;
61 	struct msg_msg *msg;	/* ptr of loaded message */
62 	int state;		/* one of STATE_* values */
63 };
64 
65 struct mqueue_inode_info {
66 	spinlock_t lock;
67 	struct inode vfs_inode;
68 	wait_queue_head_t wait_q;
69 
70 	struct rb_root msg_tree;
71 	struct posix_msg_tree_node *node_cache;
72 	struct mq_attr attr;
73 
74 	struct sigevent notify;
75 	struct pid *notify_owner;
76 	struct user_namespace *notify_user_ns;
77 	struct user_struct *user;	/* user who created, for accounting */
78 	struct sock *notify_sock;
79 	struct sk_buff *notify_cookie;
80 
81 	/* for tasks waiting for free space and messages, respectively */
82 	struct ext_wait_queue e_wait_q[2];
83 
84 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
85 };
86 
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
91 
92 static struct kmem_cache *mqueue_inode_cachep;
93 
94 static struct ctl_table_header *mq_sysctl_table;
95 
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
97 {
98 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
99 }
100 
101 /*
102  * This routine should be called with the mq_lock held.
103  */
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
105 {
106 	return get_ipc_ns(inode->i_sb->s_fs_info);
107 }
108 
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
110 {
111 	struct ipc_namespace *ns;
112 
113 	spin_lock(&mq_lock);
114 	ns = __get_ns_from_inode(inode);
115 	spin_unlock(&mq_lock);
116 	return ns;
117 }
118 
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
121 {
122 	struct rb_node **p, *parent = NULL;
123 	struct posix_msg_tree_node *leaf;
124 
125 	p = &info->msg_tree.rb_node;
126 	while (*p) {
127 		parent = *p;
128 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
129 
130 		if (likely(leaf->priority == msg->m_type))
131 			goto insert_msg;
132 		else if (msg->m_type < leaf->priority)
133 			p = &(*p)->rb_left;
134 		else
135 			p = &(*p)->rb_right;
136 	}
137 	if (info->node_cache) {
138 		leaf = info->node_cache;
139 		info->node_cache = NULL;
140 	} else {
141 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
142 		if (!leaf)
143 			return -ENOMEM;
144 		INIT_LIST_HEAD(&leaf->msg_list);
145 		info->qsize += sizeof(*leaf);
146 	}
147 	leaf->priority = msg->m_type;
148 	rb_link_node(&leaf->rb_node, parent, p);
149 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
150 insert_msg:
151 	info->attr.mq_curmsgs++;
152 	info->qsize += msg->m_ts;
153 	list_add_tail(&msg->m_list, &leaf->msg_list);
154 	return 0;
155 }
156 
157 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
158 {
159 	struct rb_node **p, *parent = NULL;
160 	struct posix_msg_tree_node *leaf;
161 	struct msg_msg *msg;
162 
163 try_again:
164 	p = &info->msg_tree.rb_node;
165 	while (*p) {
166 		parent = *p;
167 		/*
168 		 * During insert, low priorities go to the left and high to the
169 		 * right.  On receive, we want the highest priorities first, so
170 		 * walk all the way to the right.
171 		 */
172 		p = &(*p)->rb_right;
173 	}
174 	if (!parent) {
175 		if (info->attr.mq_curmsgs) {
176 			pr_warn_once("Inconsistency in POSIX message queue, "
177 				     "no tree element, but supposedly messages "
178 				     "should exist!\n");
179 			info->attr.mq_curmsgs = 0;
180 		}
181 		return NULL;
182 	}
183 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
184 	if (unlikely(list_empty(&leaf->msg_list))) {
185 		pr_warn_once("Inconsistency in POSIX message queue, "
186 			     "empty leaf node but we haven't implemented "
187 			     "lazy leaf delete!\n");
188 		rb_erase(&leaf->rb_node, &info->msg_tree);
189 		if (info->node_cache) {
190 			info->qsize -= sizeof(*leaf);
191 			kfree(leaf);
192 		} else {
193 			info->node_cache = leaf;
194 		}
195 		goto try_again;
196 	} else {
197 		msg = list_first_entry(&leaf->msg_list,
198 				       struct msg_msg, m_list);
199 		list_del(&msg->m_list);
200 		if (list_empty(&leaf->msg_list)) {
201 			rb_erase(&leaf->rb_node, &info->msg_tree);
202 			if (info->node_cache) {
203 				info->qsize -= sizeof(*leaf);
204 				kfree(leaf);
205 			} else {
206 				info->node_cache = leaf;
207 			}
208 		}
209 	}
210 	info->attr.mq_curmsgs--;
211 	info->qsize -= msg->m_ts;
212 	return msg;
213 }
214 
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 		struct ipc_namespace *ipc_ns, umode_t mode,
217 		struct mq_attr *attr)
218 {
219 	struct user_struct *u = current_user();
220 	struct inode *inode;
221 	int ret = -ENOMEM;
222 
223 	inode = new_inode(sb);
224 	if (!inode)
225 		goto err;
226 
227 	inode->i_ino = get_next_ino();
228 	inode->i_mode = mode;
229 	inode->i_uid = current_fsuid();
230 	inode->i_gid = current_fsgid();
231 	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
232 
233 	if (S_ISREG(mode)) {
234 		struct mqueue_inode_info *info;
235 		unsigned long mq_bytes, mq_treesize;
236 
237 		inode->i_fop = &mqueue_file_operations;
238 		inode->i_size = FILENT_SIZE;
239 		/* mqueue specific info */
240 		info = MQUEUE_I(inode);
241 		spin_lock_init(&info->lock);
242 		init_waitqueue_head(&info->wait_q);
243 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 		info->notify_owner = NULL;
246 		info->notify_user_ns = NULL;
247 		info->qsize = 0;
248 		info->user = NULL;	/* set when all is ok */
249 		info->msg_tree = RB_ROOT;
250 		info->node_cache = NULL;
251 		memset(&info->attr, 0, sizeof(info->attr));
252 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 					   ipc_ns->mq_msg_default);
254 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 					    ipc_ns->mq_msgsize_default);
256 		if (attr) {
257 			info->attr.mq_maxmsg = attr->mq_maxmsg;
258 			info->attr.mq_msgsize = attr->mq_msgsize;
259 		}
260 		/*
261 		 * We used to allocate a static array of pointers and account
262 		 * the size of that array as well as one msg_msg struct per
263 		 * possible message into the queue size. That's no longer
264 		 * accurate as the queue is now an rbtree and will grow and
265 		 * shrink depending on usage patterns.  We can, however, still
266 		 * account one msg_msg struct per message, but the nodes are
267 		 * allocated depending on priority usage, and most programs
268 		 * only use one, or a handful, of priorities.  However, since
269 		 * this is pinned memory, we need to assume worst case, so
270 		 * that means the min(mq_maxmsg, max_priorities) * struct
271 		 * posix_msg_tree_node.
272 		 */
273 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
274 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
275 			sizeof(struct posix_msg_tree_node);
276 
277 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
278 					  info->attr.mq_msgsize);
279 
280 		spin_lock(&mq_lock);
281 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
282 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
283 			spin_unlock(&mq_lock);
284 			/* mqueue_evict_inode() releases info->messages */
285 			ret = -EMFILE;
286 			goto out_inode;
287 		}
288 		u->mq_bytes += mq_bytes;
289 		spin_unlock(&mq_lock);
290 
291 		/* all is ok */
292 		info->user = get_uid(u);
293 	} else if (S_ISDIR(mode)) {
294 		inc_nlink(inode);
295 		/* Some things misbehave if size == 0 on a directory */
296 		inode->i_size = 2 * DIRENT_SIZE;
297 		inode->i_op = &mqueue_dir_inode_operations;
298 		inode->i_fop = &simple_dir_operations;
299 	}
300 
301 	return inode;
302 out_inode:
303 	iput(inode);
304 err:
305 	return ERR_PTR(ret);
306 }
307 
308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
309 {
310 	struct inode *inode;
311 	struct ipc_namespace *ns = data;
312 
313 	sb->s_blocksize = PAGE_CACHE_SIZE;
314 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
315 	sb->s_magic = MQUEUE_MAGIC;
316 	sb->s_op = &mqueue_super_ops;
317 
318 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
319 	if (IS_ERR(inode))
320 		return PTR_ERR(inode);
321 
322 	sb->s_root = d_make_root(inode);
323 	if (!sb->s_root)
324 		return -ENOMEM;
325 	return 0;
326 }
327 
328 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
329 			 int flags, const char *dev_name,
330 			 void *data)
331 {
332 	if (!(flags & MS_KERNMOUNT)) {
333 		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
334 		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
335 		 * over the ipc namespace.
336 		 */
337 		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
338 			return ERR_PTR(-EPERM);
339 
340 		data = ns;
341 	}
342 	return mount_ns(fs_type, flags, data, mqueue_fill_super);
343 }
344 
345 static void init_once(void *foo)
346 {
347 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
348 
349 	inode_init_once(&p->vfs_inode);
350 }
351 
352 static struct inode *mqueue_alloc_inode(struct super_block *sb)
353 {
354 	struct mqueue_inode_info *ei;
355 
356 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
357 	if (!ei)
358 		return NULL;
359 	return &ei->vfs_inode;
360 }
361 
362 static void mqueue_i_callback(struct rcu_head *head)
363 {
364 	struct inode *inode = container_of(head, struct inode, i_rcu);
365 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
366 }
367 
368 static void mqueue_destroy_inode(struct inode *inode)
369 {
370 	call_rcu(&inode->i_rcu, mqueue_i_callback);
371 }
372 
373 static void mqueue_evict_inode(struct inode *inode)
374 {
375 	struct mqueue_inode_info *info;
376 	struct user_struct *user;
377 	unsigned long mq_bytes, mq_treesize;
378 	struct ipc_namespace *ipc_ns;
379 	struct msg_msg *msg;
380 
381 	clear_inode(inode);
382 
383 	if (S_ISDIR(inode->i_mode))
384 		return;
385 
386 	ipc_ns = get_ns_from_inode(inode);
387 	info = MQUEUE_I(inode);
388 	spin_lock(&info->lock);
389 	while ((msg = msg_get(info)) != NULL)
390 		free_msg(msg);
391 	kfree(info->node_cache);
392 	spin_unlock(&info->lock);
393 
394 	/* Total amount of bytes accounted for the mqueue */
395 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
396 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
397 		sizeof(struct posix_msg_tree_node);
398 
399 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
400 				  info->attr.mq_msgsize);
401 
402 	user = info->user;
403 	if (user) {
404 		spin_lock(&mq_lock);
405 		user->mq_bytes -= mq_bytes;
406 		/*
407 		 * get_ns_from_inode() ensures that the
408 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
409 		 * to which we now hold a reference, or it is NULL.
410 		 * We can't put it here under mq_lock, though.
411 		 */
412 		if (ipc_ns)
413 			ipc_ns->mq_queues_count--;
414 		spin_unlock(&mq_lock);
415 		free_uid(user);
416 	}
417 	if (ipc_ns)
418 		put_ipc_ns(ipc_ns);
419 }
420 
421 static int mqueue_create(struct inode *dir, struct dentry *dentry,
422 				umode_t mode, bool excl)
423 {
424 	struct inode *inode;
425 	struct mq_attr *attr = dentry->d_fsdata;
426 	int error;
427 	struct ipc_namespace *ipc_ns;
428 
429 	spin_lock(&mq_lock);
430 	ipc_ns = __get_ns_from_inode(dir);
431 	if (!ipc_ns) {
432 		error = -EACCES;
433 		goto out_unlock;
434 	}
435 
436 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
437 	    !capable(CAP_SYS_RESOURCE)) {
438 		error = -ENOSPC;
439 		goto out_unlock;
440 	}
441 	ipc_ns->mq_queues_count++;
442 	spin_unlock(&mq_lock);
443 
444 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
445 	if (IS_ERR(inode)) {
446 		error = PTR_ERR(inode);
447 		spin_lock(&mq_lock);
448 		ipc_ns->mq_queues_count--;
449 		goto out_unlock;
450 	}
451 
452 	put_ipc_ns(ipc_ns);
453 	dir->i_size += DIRENT_SIZE;
454 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
455 
456 	d_instantiate(dentry, inode);
457 	dget(dentry);
458 	return 0;
459 out_unlock:
460 	spin_unlock(&mq_lock);
461 	if (ipc_ns)
462 		put_ipc_ns(ipc_ns);
463 	return error;
464 }
465 
466 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
467 {
468 	struct inode *inode = d_inode(dentry);
469 
470 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
471 	dir->i_size -= DIRENT_SIZE;
472 	drop_nlink(inode);
473 	dput(dentry);
474 	return 0;
475 }
476 
477 /*
478 *	This is routine for system read from queue file.
479 *	To avoid mess with doing here some sort of mq_receive we allow
480 *	to read only queue size & notification info (the only values
481 *	that are interesting from user point of view and aren't accessible
482 *	through std routines)
483 */
484 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
485 				size_t count, loff_t *off)
486 {
487 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
488 	char buffer[FILENT_SIZE];
489 	ssize_t ret;
490 
491 	spin_lock(&info->lock);
492 	snprintf(buffer, sizeof(buffer),
493 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
494 			info->qsize,
495 			info->notify_owner ? info->notify.sigev_notify : 0,
496 			(info->notify_owner &&
497 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
498 				info->notify.sigev_signo : 0,
499 			pid_vnr(info->notify_owner));
500 	spin_unlock(&info->lock);
501 	buffer[sizeof(buffer)-1] = '\0';
502 
503 	ret = simple_read_from_buffer(u_data, count, off, buffer,
504 				strlen(buffer));
505 	if (ret <= 0)
506 		return ret;
507 
508 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
509 	return ret;
510 }
511 
512 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
513 {
514 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
515 
516 	spin_lock(&info->lock);
517 	if (task_tgid(current) == info->notify_owner)
518 		remove_notification(info);
519 
520 	spin_unlock(&info->lock);
521 	return 0;
522 }
523 
524 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
525 {
526 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
527 	int retval = 0;
528 
529 	poll_wait(filp, &info->wait_q, poll_tab);
530 
531 	spin_lock(&info->lock);
532 	if (info->attr.mq_curmsgs)
533 		retval = POLLIN | POLLRDNORM;
534 
535 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
536 		retval |= POLLOUT | POLLWRNORM;
537 	spin_unlock(&info->lock);
538 
539 	return retval;
540 }
541 
542 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
543 static void wq_add(struct mqueue_inode_info *info, int sr,
544 			struct ext_wait_queue *ewp)
545 {
546 	struct ext_wait_queue *walk;
547 
548 	ewp->task = current;
549 
550 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
551 		if (walk->task->static_prio <= current->static_prio) {
552 			list_add_tail(&ewp->list, &walk->list);
553 			return;
554 		}
555 	}
556 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
557 }
558 
559 /*
560  * Puts current task to sleep. Caller must hold queue lock. After return
561  * lock isn't held.
562  * sr: SEND or RECV
563  */
564 static int wq_sleep(struct mqueue_inode_info *info, int sr,
565 		    ktime_t *timeout, struct ext_wait_queue *ewp)
566 {
567 	int retval;
568 	signed long time;
569 
570 	wq_add(info, sr, ewp);
571 
572 	for (;;) {
573 		__set_current_state(TASK_INTERRUPTIBLE);
574 
575 		spin_unlock(&info->lock);
576 		time = schedule_hrtimeout_range_clock(timeout, 0,
577 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
578 
579 		if (ewp->state == STATE_READY) {
580 			retval = 0;
581 			goto out;
582 		}
583 		spin_lock(&info->lock);
584 		if (ewp->state == STATE_READY) {
585 			retval = 0;
586 			goto out_unlock;
587 		}
588 		if (signal_pending(current)) {
589 			retval = -ERESTARTSYS;
590 			break;
591 		}
592 		if (time == 0) {
593 			retval = -ETIMEDOUT;
594 			break;
595 		}
596 	}
597 	list_del(&ewp->list);
598 out_unlock:
599 	spin_unlock(&info->lock);
600 out:
601 	return retval;
602 }
603 
604 /*
605  * Returns waiting task that should be serviced first or NULL if none exists
606  */
607 static struct ext_wait_queue *wq_get_first_waiter(
608 		struct mqueue_inode_info *info, int sr)
609 {
610 	struct list_head *ptr;
611 
612 	ptr = info->e_wait_q[sr].list.prev;
613 	if (ptr == &info->e_wait_q[sr].list)
614 		return NULL;
615 	return list_entry(ptr, struct ext_wait_queue, list);
616 }
617 
618 
619 static inline void set_cookie(struct sk_buff *skb, char code)
620 {
621 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
622 }
623 
624 /*
625  * The next function is only to split too long sys_mq_timedsend
626  */
627 static void __do_notify(struct mqueue_inode_info *info)
628 {
629 	/* notification
630 	 * invoked when there is registered process and there isn't process
631 	 * waiting synchronously for message AND state of queue changed from
632 	 * empty to not empty. Here we are sure that no one is waiting
633 	 * synchronously. */
634 	if (info->notify_owner &&
635 	    info->attr.mq_curmsgs == 1) {
636 		struct siginfo sig_i;
637 		switch (info->notify.sigev_notify) {
638 		case SIGEV_NONE:
639 			break;
640 		case SIGEV_SIGNAL:
641 			/* sends signal */
642 
643 			sig_i.si_signo = info->notify.sigev_signo;
644 			sig_i.si_errno = 0;
645 			sig_i.si_code = SI_MESGQ;
646 			sig_i.si_value = info->notify.sigev_value;
647 			/* map current pid/uid into info->owner's namespaces */
648 			rcu_read_lock();
649 			sig_i.si_pid = task_tgid_nr_ns(current,
650 						ns_of_pid(info->notify_owner));
651 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
652 			rcu_read_unlock();
653 
654 			kill_pid_info(info->notify.sigev_signo,
655 				      &sig_i, info->notify_owner);
656 			break;
657 		case SIGEV_THREAD:
658 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
659 			netlink_sendskb(info->notify_sock, info->notify_cookie);
660 			break;
661 		}
662 		/* after notification unregisters process */
663 		put_pid(info->notify_owner);
664 		put_user_ns(info->notify_user_ns);
665 		info->notify_owner = NULL;
666 		info->notify_user_ns = NULL;
667 	}
668 	wake_up(&info->wait_q);
669 }
670 
671 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
672 			   ktime_t *expires, struct timespec *ts)
673 {
674 	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
675 		return -EFAULT;
676 	if (!timespec_valid(ts))
677 		return -EINVAL;
678 
679 	*expires = timespec_to_ktime(*ts);
680 	return 0;
681 }
682 
683 static void remove_notification(struct mqueue_inode_info *info)
684 {
685 	if (info->notify_owner != NULL &&
686 	    info->notify.sigev_notify == SIGEV_THREAD) {
687 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
688 		netlink_sendskb(info->notify_sock, info->notify_cookie);
689 	}
690 	put_pid(info->notify_owner);
691 	put_user_ns(info->notify_user_ns);
692 	info->notify_owner = NULL;
693 	info->notify_user_ns = NULL;
694 }
695 
696 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
697 {
698 	int mq_treesize;
699 	unsigned long total_size;
700 
701 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
702 		return -EINVAL;
703 	if (capable(CAP_SYS_RESOURCE)) {
704 		if (attr->mq_maxmsg > HARD_MSGMAX ||
705 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
706 			return -EINVAL;
707 	} else {
708 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
709 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
710 			return -EINVAL;
711 	}
712 	/* check for overflow */
713 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
714 		return -EOVERFLOW;
715 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
716 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
717 		sizeof(struct posix_msg_tree_node);
718 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
719 	if (total_size + mq_treesize < total_size)
720 		return -EOVERFLOW;
721 	return 0;
722 }
723 
724 /*
725  * Invoked when creating a new queue via sys_mq_open
726  */
727 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
728 			struct path *path, int oflag, umode_t mode,
729 			struct mq_attr *attr)
730 {
731 	const struct cred *cred = current_cred();
732 	int ret;
733 
734 	if (attr) {
735 		ret = mq_attr_ok(ipc_ns, attr);
736 		if (ret)
737 			return ERR_PTR(ret);
738 		/* store for use during create */
739 		path->dentry->d_fsdata = attr;
740 	} else {
741 		struct mq_attr def_attr;
742 
743 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
744 					 ipc_ns->mq_msg_default);
745 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
746 					  ipc_ns->mq_msgsize_default);
747 		ret = mq_attr_ok(ipc_ns, &def_attr);
748 		if (ret)
749 			return ERR_PTR(ret);
750 	}
751 
752 	mode &= ~current_umask();
753 	ret = vfs_create(dir, path->dentry, mode, true);
754 	path->dentry->d_fsdata = NULL;
755 	if (ret)
756 		return ERR_PTR(ret);
757 	return dentry_open(path, oflag, cred);
758 }
759 
760 /* Opens existing queue */
761 static struct file *do_open(struct path *path, int oflag)
762 {
763 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
764 						  MAY_READ | MAY_WRITE };
765 	int acc;
766 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
767 		return ERR_PTR(-EINVAL);
768 	acc = oflag2acc[oflag & O_ACCMODE];
769 	if (inode_permission(d_inode(path->dentry), acc))
770 		return ERR_PTR(-EACCES);
771 	return dentry_open(path, oflag, current_cred());
772 }
773 
774 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
775 		struct mq_attr __user *, u_attr)
776 {
777 	struct path path;
778 	struct file *filp;
779 	struct filename *name;
780 	struct mq_attr attr;
781 	int fd, error;
782 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
783 	struct vfsmount *mnt = ipc_ns->mq_mnt;
784 	struct dentry *root = mnt->mnt_root;
785 	int ro;
786 
787 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
788 		return -EFAULT;
789 
790 	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
791 
792 	if (IS_ERR(name = getname(u_name)))
793 		return PTR_ERR(name);
794 
795 	fd = get_unused_fd_flags(O_CLOEXEC);
796 	if (fd < 0)
797 		goto out_putname;
798 
799 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
800 	error = 0;
801 	mutex_lock(&d_inode(root)->i_mutex);
802 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
803 	if (IS_ERR(path.dentry)) {
804 		error = PTR_ERR(path.dentry);
805 		goto out_putfd;
806 	}
807 	path.mnt = mntget(mnt);
808 
809 	if (oflag & O_CREAT) {
810 		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
811 			audit_inode(name, path.dentry, 0);
812 			if (oflag & O_EXCL) {
813 				error = -EEXIST;
814 				goto out;
815 			}
816 			filp = do_open(&path, oflag);
817 		} else {
818 			if (ro) {
819 				error = ro;
820 				goto out;
821 			}
822 			audit_inode_parent_hidden(name, root);
823 			filp = do_create(ipc_ns, d_inode(root),
824 						&path, oflag, mode,
825 						u_attr ? &attr : NULL);
826 		}
827 	} else {
828 		if (d_really_is_negative(path.dentry)) {
829 			error = -ENOENT;
830 			goto out;
831 		}
832 		audit_inode(name, path.dentry, 0);
833 		filp = do_open(&path, oflag);
834 	}
835 
836 	if (!IS_ERR(filp))
837 		fd_install(fd, filp);
838 	else
839 		error = PTR_ERR(filp);
840 out:
841 	path_put(&path);
842 out_putfd:
843 	if (error) {
844 		put_unused_fd(fd);
845 		fd = error;
846 	}
847 	mutex_unlock(&d_inode(root)->i_mutex);
848 	if (!ro)
849 		mnt_drop_write(mnt);
850 out_putname:
851 	putname(name);
852 	return fd;
853 }
854 
855 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
856 {
857 	int err;
858 	struct filename *name;
859 	struct dentry *dentry;
860 	struct inode *inode = NULL;
861 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
862 	struct vfsmount *mnt = ipc_ns->mq_mnt;
863 
864 	name = getname(u_name);
865 	if (IS_ERR(name))
866 		return PTR_ERR(name);
867 
868 	audit_inode_parent_hidden(name, mnt->mnt_root);
869 	err = mnt_want_write(mnt);
870 	if (err)
871 		goto out_name;
872 	mutex_lock_nested(&d_inode(mnt->mnt_root)->i_mutex, I_MUTEX_PARENT);
873 	dentry = lookup_one_len(name->name, mnt->mnt_root,
874 				strlen(name->name));
875 	if (IS_ERR(dentry)) {
876 		err = PTR_ERR(dentry);
877 		goto out_unlock;
878 	}
879 
880 	inode = d_inode(dentry);
881 	if (!inode) {
882 		err = -ENOENT;
883 	} else {
884 		ihold(inode);
885 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
886 	}
887 	dput(dentry);
888 
889 out_unlock:
890 	mutex_unlock(&d_inode(mnt->mnt_root)->i_mutex);
891 	if (inode)
892 		iput(inode);
893 	mnt_drop_write(mnt);
894 out_name:
895 	putname(name);
896 
897 	return err;
898 }
899 
900 /* Pipelined send and receive functions.
901  *
902  * If a receiver finds no waiting message, then it registers itself in the
903  * list of waiting receivers. A sender checks that list before adding the new
904  * message into the message array. If there is a waiting receiver, then it
905  * bypasses the message array and directly hands the message over to the
906  * receiver. The receiver accepts the message and returns without grabbing the
907  * queue spinlock:
908  *
909  * - Set pointer to message.
910  * - Queue the receiver task for later wakeup (without the info->lock).
911  * - Update its state to STATE_READY. Now the receiver can continue.
912  * - Wake up the process after the lock is dropped. Should the process wake up
913  *   before this wakeup (due to a timeout or a signal) it will either see
914  *   STATE_READY and continue or acquire the lock to check the state again.
915  *
916  * The same algorithm is used for senders.
917  */
918 
919 /* pipelined_send() - send a message directly to the task waiting in
920  * sys_mq_timedreceive() (without inserting message into a queue).
921  */
922 static inline void pipelined_send(struct wake_q_head *wake_q,
923 				  struct mqueue_inode_info *info,
924 				  struct msg_msg *message,
925 				  struct ext_wait_queue *receiver)
926 {
927 	receiver->msg = message;
928 	list_del(&receiver->list);
929 	wake_q_add(wake_q, receiver->task);
930 	/*
931 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
932 	 * that we can ensure that updating receiver->state is the last
933 	 * write operation: As once set, the receiver can continue,
934 	 * and if we don't have the reference count from the wake_q,
935 	 * yet, at that point we can later have a use-after-free
936 	 * condition and bogus wakeup.
937 	 */
938 	receiver->state = STATE_READY;
939 }
940 
941 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
942  * gets its message and put to the queue (we have one free place for sure). */
943 static inline void pipelined_receive(struct wake_q_head *wake_q,
944 				     struct mqueue_inode_info *info)
945 {
946 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
947 
948 	if (!sender) {
949 		/* for poll */
950 		wake_up_interruptible(&info->wait_q);
951 		return;
952 	}
953 	if (msg_insert(sender->msg, info))
954 		return;
955 
956 	list_del(&sender->list);
957 	wake_q_add(wake_q, sender->task);
958 	sender->state = STATE_READY;
959 }
960 
961 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
962 		size_t, msg_len, unsigned int, msg_prio,
963 		const struct timespec __user *, u_abs_timeout)
964 {
965 	struct fd f;
966 	struct inode *inode;
967 	struct ext_wait_queue wait;
968 	struct ext_wait_queue *receiver;
969 	struct msg_msg *msg_ptr;
970 	struct mqueue_inode_info *info;
971 	ktime_t expires, *timeout = NULL;
972 	struct timespec ts;
973 	struct posix_msg_tree_node *new_leaf = NULL;
974 	int ret = 0;
975 	WAKE_Q(wake_q);
976 
977 	if (u_abs_timeout) {
978 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
979 		if (res)
980 			return res;
981 		timeout = &expires;
982 	}
983 
984 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
985 		return -EINVAL;
986 
987 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
988 
989 	f = fdget(mqdes);
990 	if (unlikely(!f.file)) {
991 		ret = -EBADF;
992 		goto out;
993 	}
994 
995 	inode = file_inode(f.file);
996 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
997 		ret = -EBADF;
998 		goto out_fput;
999 	}
1000 	info = MQUEUE_I(inode);
1001 	audit_file(f.file);
1002 
1003 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1004 		ret = -EBADF;
1005 		goto out_fput;
1006 	}
1007 
1008 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1009 		ret = -EMSGSIZE;
1010 		goto out_fput;
1011 	}
1012 
1013 	/* First try to allocate memory, before doing anything with
1014 	 * existing queues. */
1015 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1016 	if (IS_ERR(msg_ptr)) {
1017 		ret = PTR_ERR(msg_ptr);
1018 		goto out_fput;
1019 	}
1020 	msg_ptr->m_ts = msg_len;
1021 	msg_ptr->m_type = msg_prio;
1022 
1023 	/*
1024 	 * msg_insert really wants us to have a valid, spare node struct so
1025 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1026 	 * fall back to that if necessary.
1027 	 */
1028 	if (!info->node_cache)
1029 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1030 
1031 	spin_lock(&info->lock);
1032 
1033 	if (!info->node_cache && new_leaf) {
1034 		/* Save our speculative allocation into the cache */
1035 		INIT_LIST_HEAD(&new_leaf->msg_list);
1036 		info->node_cache = new_leaf;
1037 		info->qsize += sizeof(*new_leaf);
1038 		new_leaf = NULL;
1039 	} else {
1040 		kfree(new_leaf);
1041 	}
1042 
1043 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1044 		if (f.file->f_flags & O_NONBLOCK) {
1045 			ret = -EAGAIN;
1046 		} else {
1047 			wait.task = current;
1048 			wait.msg = (void *) msg_ptr;
1049 			wait.state = STATE_NONE;
1050 			ret = wq_sleep(info, SEND, timeout, &wait);
1051 			/*
1052 			 * wq_sleep must be called with info->lock held, and
1053 			 * returns with the lock released
1054 			 */
1055 			goto out_free;
1056 		}
1057 	} else {
1058 		receiver = wq_get_first_waiter(info, RECV);
1059 		if (receiver) {
1060 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1061 		} else {
1062 			/* adds message to the queue */
1063 			ret = msg_insert(msg_ptr, info);
1064 			if (ret)
1065 				goto out_unlock;
1066 			__do_notify(info);
1067 		}
1068 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1069 				CURRENT_TIME;
1070 	}
1071 out_unlock:
1072 	spin_unlock(&info->lock);
1073 	wake_up_q(&wake_q);
1074 out_free:
1075 	if (ret)
1076 		free_msg(msg_ptr);
1077 out_fput:
1078 	fdput(f);
1079 out:
1080 	return ret;
1081 }
1082 
1083 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1084 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1085 		const struct timespec __user *, u_abs_timeout)
1086 {
1087 	ssize_t ret;
1088 	struct msg_msg *msg_ptr;
1089 	struct fd f;
1090 	struct inode *inode;
1091 	struct mqueue_inode_info *info;
1092 	struct ext_wait_queue wait;
1093 	ktime_t expires, *timeout = NULL;
1094 	struct timespec ts;
1095 	struct posix_msg_tree_node *new_leaf = NULL;
1096 
1097 	if (u_abs_timeout) {
1098 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1099 		if (res)
1100 			return res;
1101 		timeout = &expires;
1102 	}
1103 
1104 	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1105 
1106 	f = fdget(mqdes);
1107 	if (unlikely(!f.file)) {
1108 		ret = -EBADF;
1109 		goto out;
1110 	}
1111 
1112 	inode = file_inode(f.file);
1113 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1114 		ret = -EBADF;
1115 		goto out_fput;
1116 	}
1117 	info = MQUEUE_I(inode);
1118 	audit_file(f.file);
1119 
1120 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1121 		ret = -EBADF;
1122 		goto out_fput;
1123 	}
1124 
1125 	/* checks if buffer is big enough */
1126 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1127 		ret = -EMSGSIZE;
1128 		goto out_fput;
1129 	}
1130 
1131 	/*
1132 	 * msg_insert really wants us to have a valid, spare node struct so
1133 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1134 	 * fall back to that if necessary.
1135 	 */
1136 	if (!info->node_cache)
1137 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1138 
1139 	spin_lock(&info->lock);
1140 
1141 	if (!info->node_cache && new_leaf) {
1142 		/* Save our speculative allocation into the cache */
1143 		INIT_LIST_HEAD(&new_leaf->msg_list);
1144 		info->node_cache = new_leaf;
1145 		info->qsize += sizeof(*new_leaf);
1146 	} else {
1147 		kfree(new_leaf);
1148 	}
1149 
1150 	if (info->attr.mq_curmsgs == 0) {
1151 		if (f.file->f_flags & O_NONBLOCK) {
1152 			spin_unlock(&info->lock);
1153 			ret = -EAGAIN;
1154 		} else {
1155 			wait.task = current;
1156 			wait.state = STATE_NONE;
1157 			ret = wq_sleep(info, RECV, timeout, &wait);
1158 			msg_ptr = wait.msg;
1159 		}
1160 	} else {
1161 		WAKE_Q(wake_q);
1162 
1163 		msg_ptr = msg_get(info);
1164 
1165 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1166 				CURRENT_TIME;
1167 
1168 		/* There is now free space in queue. */
1169 		pipelined_receive(&wake_q, info);
1170 		spin_unlock(&info->lock);
1171 		wake_up_q(&wake_q);
1172 		ret = 0;
1173 	}
1174 	if (ret == 0) {
1175 		ret = msg_ptr->m_ts;
1176 
1177 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1178 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1179 			ret = -EFAULT;
1180 		}
1181 		free_msg(msg_ptr);
1182 	}
1183 out_fput:
1184 	fdput(f);
1185 out:
1186 	return ret;
1187 }
1188 
1189 /*
1190  * Notes: the case when user wants us to deregister (with NULL as pointer)
1191  * and he isn't currently owner of notification, will be silently discarded.
1192  * It isn't explicitly defined in the POSIX.
1193  */
1194 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1195 		const struct sigevent __user *, u_notification)
1196 {
1197 	int ret;
1198 	struct fd f;
1199 	struct sock *sock;
1200 	struct inode *inode;
1201 	struct sigevent notification;
1202 	struct mqueue_inode_info *info;
1203 	struct sk_buff *nc;
1204 
1205 	if (u_notification) {
1206 		if (copy_from_user(&notification, u_notification,
1207 					sizeof(struct sigevent)))
1208 			return -EFAULT;
1209 	}
1210 
1211 	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1212 
1213 	nc = NULL;
1214 	sock = NULL;
1215 	if (u_notification != NULL) {
1216 		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1217 			     notification.sigev_notify != SIGEV_SIGNAL &&
1218 			     notification.sigev_notify != SIGEV_THREAD))
1219 			return -EINVAL;
1220 		if (notification.sigev_notify == SIGEV_SIGNAL &&
1221 			!valid_signal(notification.sigev_signo)) {
1222 			return -EINVAL;
1223 		}
1224 		if (notification.sigev_notify == SIGEV_THREAD) {
1225 			long timeo;
1226 
1227 			/* create the notify skb */
1228 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1229 			if (!nc) {
1230 				ret = -ENOMEM;
1231 				goto out;
1232 			}
1233 			if (copy_from_user(nc->data,
1234 					notification.sigev_value.sival_ptr,
1235 					NOTIFY_COOKIE_LEN)) {
1236 				ret = -EFAULT;
1237 				goto out;
1238 			}
1239 
1240 			/* TODO: add a header? */
1241 			skb_put(nc, NOTIFY_COOKIE_LEN);
1242 			/* and attach it to the socket */
1243 retry:
1244 			f = fdget(notification.sigev_signo);
1245 			if (!f.file) {
1246 				ret = -EBADF;
1247 				goto out;
1248 			}
1249 			sock = netlink_getsockbyfilp(f.file);
1250 			fdput(f);
1251 			if (IS_ERR(sock)) {
1252 				ret = PTR_ERR(sock);
1253 				sock = NULL;
1254 				goto out;
1255 			}
1256 
1257 			timeo = MAX_SCHEDULE_TIMEOUT;
1258 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1259 			if (ret == 1)
1260 				goto retry;
1261 			if (ret) {
1262 				sock = NULL;
1263 				nc = NULL;
1264 				goto out;
1265 			}
1266 		}
1267 	}
1268 
1269 	f = fdget(mqdes);
1270 	if (!f.file) {
1271 		ret = -EBADF;
1272 		goto out;
1273 	}
1274 
1275 	inode = file_inode(f.file);
1276 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1277 		ret = -EBADF;
1278 		goto out_fput;
1279 	}
1280 	info = MQUEUE_I(inode);
1281 
1282 	ret = 0;
1283 	spin_lock(&info->lock);
1284 	if (u_notification == NULL) {
1285 		if (info->notify_owner == task_tgid(current)) {
1286 			remove_notification(info);
1287 			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1288 		}
1289 	} else if (info->notify_owner != NULL) {
1290 		ret = -EBUSY;
1291 	} else {
1292 		switch (notification.sigev_notify) {
1293 		case SIGEV_NONE:
1294 			info->notify.sigev_notify = SIGEV_NONE;
1295 			break;
1296 		case SIGEV_THREAD:
1297 			info->notify_sock = sock;
1298 			info->notify_cookie = nc;
1299 			sock = NULL;
1300 			nc = NULL;
1301 			info->notify.sigev_notify = SIGEV_THREAD;
1302 			break;
1303 		case SIGEV_SIGNAL:
1304 			info->notify.sigev_signo = notification.sigev_signo;
1305 			info->notify.sigev_value = notification.sigev_value;
1306 			info->notify.sigev_notify = SIGEV_SIGNAL;
1307 			break;
1308 		}
1309 
1310 		info->notify_owner = get_pid(task_tgid(current));
1311 		info->notify_user_ns = get_user_ns(current_user_ns());
1312 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1313 	}
1314 	spin_unlock(&info->lock);
1315 out_fput:
1316 	fdput(f);
1317 out:
1318 	if (sock)
1319 		netlink_detachskb(sock, nc);
1320 	else if (nc)
1321 		dev_kfree_skb(nc);
1322 
1323 	return ret;
1324 }
1325 
1326 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1327 		const struct mq_attr __user *, u_mqstat,
1328 		struct mq_attr __user *, u_omqstat)
1329 {
1330 	int ret;
1331 	struct mq_attr mqstat, omqstat;
1332 	struct fd f;
1333 	struct inode *inode;
1334 	struct mqueue_inode_info *info;
1335 
1336 	if (u_mqstat != NULL) {
1337 		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1338 			return -EFAULT;
1339 		if (mqstat.mq_flags & (~O_NONBLOCK))
1340 			return -EINVAL;
1341 	}
1342 
1343 	f = fdget(mqdes);
1344 	if (!f.file) {
1345 		ret = -EBADF;
1346 		goto out;
1347 	}
1348 
1349 	inode = file_inode(f.file);
1350 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1351 		ret = -EBADF;
1352 		goto out_fput;
1353 	}
1354 	info = MQUEUE_I(inode);
1355 
1356 	spin_lock(&info->lock);
1357 
1358 	omqstat = info->attr;
1359 	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1360 	if (u_mqstat) {
1361 		audit_mq_getsetattr(mqdes, &mqstat);
1362 		spin_lock(&f.file->f_lock);
1363 		if (mqstat.mq_flags & O_NONBLOCK)
1364 			f.file->f_flags |= O_NONBLOCK;
1365 		else
1366 			f.file->f_flags &= ~O_NONBLOCK;
1367 		spin_unlock(&f.file->f_lock);
1368 
1369 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1370 	}
1371 
1372 	spin_unlock(&info->lock);
1373 
1374 	ret = 0;
1375 	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1376 						sizeof(struct mq_attr)))
1377 		ret = -EFAULT;
1378 
1379 out_fput:
1380 	fdput(f);
1381 out:
1382 	return ret;
1383 }
1384 
1385 static const struct inode_operations mqueue_dir_inode_operations = {
1386 	.lookup = simple_lookup,
1387 	.create = mqueue_create,
1388 	.unlink = mqueue_unlink,
1389 };
1390 
1391 static const struct file_operations mqueue_file_operations = {
1392 	.flush = mqueue_flush_file,
1393 	.poll = mqueue_poll_file,
1394 	.read = mqueue_read_file,
1395 	.llseek = default_llseek,
1396 };
1397 
1398 static const struct super_operations mqueue_super_ops = {
1399 	.alloc_inode = mqueue_alloc_inode,
1400 	.destroy_inode = mqueue_destroy_inode,
1401 	.evict_inode = mqueue_evict_inode,
1402 	.statfs = simple_statfs,
1403 };
1404 
1405 static struct file_system_type mqueue_fs_type = {
1406 	.name = "mqueue",
1407 	.mount = mqueue_mount,
1408 	.kill_sb = kill_litter_super,
1409 	.fs_flags = FS_USERNS_MOUNT,
1410 };
1411 
1412 int mq_init_ns(struct ipc_namespace *ns)
1413 {
1414 	ns->mq_queues_count  = 0;
1415 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1416 	ns->mq_msg_max       = DFLT_MSGMAX;
1417 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1418 	ns->mq_msg_default   = DFLT_MSG;
1419 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1420 
1421 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1422 	if (IS_ERR(ns->mq_mnt)) {
1423 		int err = PTR_ERR(ns->mq_mnt);
1424 		ns->mq_mnt = NULL;
1425 		return err;
1426 	}
1427 	return 0;
1428 }
1429 
1430 void mq_clear_sbinfo(struct ipc_namespace *ns)
1431 {
1432 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1433 }
1434 
1435 void mq_put_mnt(struct ipc_namespace *ns)
1436 {
1437 	kern_unmount(ns->mq_mnt);
1438 }
1439 
1440 static int __init init_mqueue_fs(void)
1441 {
1442 	int error;
1443 
1444 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1445 				sizeof(struct mqueue_inode_info), 0,
1446 				SLAB_HWCACHE_ALIGN, init_once);
1447 	if (mqueue_inode_cachep == NULL)
1448 		return -ENOMEM;
1449 
1450 	/* ignore failures - they are not fatal */
1451 	mq_sysctl_table = mq_register_sysctl_table();
1452 
1453 	error = register_filesystem(&mqueue_fs_type);
1454 	if (error)
1455 		goto out_sysctl;
1456 
1457 	spin_lock_init(&mq_lock);
1458 
1459 	error = mq_init_ns(&init_ipc_ns);
1460 	if (error)
1461 		goto out_filesystem;
1462 
1463 	return 0;
1464 
1465 out_filesystem:
1466 	unregister_filesystem(&mqueue_fs_type);
1467 out_sysctl:
1468 	if (mq_sysctl_table)
1469 		unregister_sysctl_table(mq_sysctl_table);
1470 	kmem_cache_destroy(mqueue_inode_cachep);
1471 	return error;
1472 }
1473 
1474 device_initcall(init_mqueue_fs);
1475