xref: /linux/ipc/mqueue.c (revision 543b9b63394ee67ecf5298fe42cbe65b21a16eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * POSIX message queues filesystem for Linux.
4  *
5  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
6  *                          Michal Wronski          (michal.wronski@gmail.com)
7  *
8  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
9  * Lockless receive & send, fd based notify:
10  *			    Manfred Spraul	    (manfred@colorfullife.com)
11  *
12  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
13  */
14 
15 #include <linux/capability.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/file.h>
19 #include <linux/mount.h>
20 #include <linux/fs_context.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41 
42 #include <net/sock.h>
43 #include "util.h"
44 
45 struct mqueue_fs_context {
46 	struct ipc_namespace	*ipc_ns;
47 	bool			 newns;	/* Set if newly created ipc namespace */
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 /*
67  * Locking:
68  *
69  * Accesses to a message queue are synchronized by acquiring info->lock.
70  *
71  * There are two notable exceptions:
72  * - The actual wakeup of a sleeping task is performed using the wake_q
73  *   framework. info->lock is already released when wake_up_q is called.
74  * - The exit codepaths after sleeping check ext_wait_queue->state without
75  *   any locks. If it is STATE_READY, then the syscall is completed without
76  *   acquiring info->lock.
77  *
78  * MQ_BARRIER:
79  * To achieve proper release/acquire memory barrier pairing, the state is set to
80  * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
81  * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
82  *
83  * This prevents the following races:
84  *
85  * 1) With the simple wake_q_add(), the task could be gone already before
86  *    the increase of the reference happens
87  * Thread A
88  *				Thread B
89  * WRITE_ONCE(wait.state, STATE_NONE);
90  * schedule_hrtimeout()
91  *				wake_q_add(A)
92  *				if (cmpxchg()) // success
93  *				   ->state = STATE_READY (reordered)
94  * <timeout returns>
95  * if (wait.state == STATE_READY) return;
96  * sysret to user space
97  * sys_exit()
98  *				get_task_struct() // UaF
99  *
100  * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
101  * the smp_store_release() that does ->state = STATE_READY.
102  *
103  * 2) Without proper _release/_acquire barriers, the woken up task
104  *    could read stale data
105  *
106  * Thread A
107  *				Thread B
108  * do_mq_timedreceive
109  * WRITE_ONCE(wait.state, STATE_NONE);
110  * schedule_hrtimeout()
111  *				state = STATE_READY;
112  * <timeout returns>
113  * if (wait.state == STATE_READY) return;
114  * msg_ptr = wait.msg;		// Access to stale data!
115  *				receiver->msg = message; (reordered)
116  *
117  * Solution: use _release and _acquire barriers.
118  *
119  * 3) There is intentionally no barrier when setting current->state
120  *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
121  *    release memory barrier, and the wakeup is triggered when holding
122  *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
123  *    acquire memory barrier.
124  */
125 
126 struct ext_wait_queue {		/* queue of sleeping tasks */
127 	struct task_struct *task;
128 	struct list_head list;
129 	struct msg_msg *msg;	/* ptr of loaded message */
130 	int state;		/* one of STATE_* values */
131 };
132 
133 struct mqueue_inode_info {
134 	spinlock_t lock;
135 	struct inode vfs_inode;
136 	wait_queue_head_t wait_q;
137 
138 	struct rb_root msg_tree;
139 	struct rb_node *msg_tree_rightmost;
140 	struct posix_msg_tree_node *node_cache;
141 	struct mq_attr attr;
142 
143 	struct sigevent notify;
144 	struct pid *notify_owner;
145 	u32 notify_self_exec_id;
146 	struct user_namespace *notify_user_ns;
147 	struct ucounts *ucounts;	/* user who created, for accounting */
148 	struct sock *notify_sock;
149 	struct sk_buff *notify_cookie;
150 
151 	/* for tasks waiting for free space and messages, respectively */
152 	struct ext_wait_queue e_wait_q[2];
153 
154 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
155 };
156 
157 static struct file_system_type mqueue_fs_type;
158 static const struct inode_operations mqueue_dir_inode_operations;
159 static const struct file_operations mqueue_file_operations;
160 static const struct super_operations mqueue_super_ops;
161 static const struct fs_context_operations mqueue_fs_context_ops;
162 static void remove_notification(struct mqueue_inode_info *info);
163 
164 static struct kmem_cache *mqueue_inode_cachep;
165 
166 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
167 {
168 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
169 }
170 
171 /*
172  * This routine should be called with the mq_lock held.
173  */
174 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
175 {
176 	return get_ipc_ns(inode->i_sb->s_fs_info);
177 }
178 
179 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
180 {
181 	struct ipc_namespace *ns;
182 
183 	spin_lock(&mq_lock);
184 	ns = __get_ns_from_inode(inode);
185 	spin_unlock(&mq_lock);
186 	return ns;
187 }
188 
189 /* Auxiliary functions to manipulate messages' list */
190 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
191 {
192 	struct rb_node **p, *parent = NULL;
193 	struct posix_msg_tree_node *leaf;
194 	bool rightmost = true;
195 
196 	p = &info->msg_tree.rb_node;
197 	while (*p) {
198 		parent = *p;
199 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
200 
201 		if (likely(leaf->priority == msg->m_type))
202 			goto insert_msg;
203 		else if (msg->m_type < leaf->priority) {
204 			p = &(*p)->rb_left;
205 			rightmost = false;
206 		} else
207 			p = &(*p)->rb_right;
208 	}
209 	if (info->node_cache) {
210 		leaf = info->node_cache;
211 		info->node_cache = NULL;
212 	} else {
213 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
214 		if (!leaf)
215 			return -ENOMEM;
216 		INIT_LIST_HEAD(&leaf->msg_list);
217 	}
218 	leaf->priority = msg->m_type;
219 
220 	if (rightmost)
221 		info->msg_tree_rightmost = &leaf->rb_node;
222 
223 	rb_link_node(&leaf->rb_node, parent, p);
224 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
225 insert_msg:
226 	info->attr.mq_curmsgs++;
227 	info->qsize += msg->m_ts;
228 	list_add_tail(&msg->m_list, &leaf->msg_list);
229 	return 0;
230 }
231 
232 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
233 				  struct mqueue_inode_info *info)
234 {
235 	struct rb_node *node = &leaf->rb_node;
236 
237 	if (info->msg_tree_rightmost == node)
238 		info->msg_tree_rightmost = rb_prev(node);
239 
240 	rb_erase(node, &info->msg_tree);
241 	if (info->node_cache)
242 		kfree(leaf);
243 	else
244 		info->node_cache = leaf;
245 }
246 
247 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
248 {
249 	struct rb_node *parent = NULL;
250 	struct posix_msg_tree_node *leaf;
251 	struct msg_msg *msg;
252 
253 try_again:
254 	/*
255 	 * During insert, low priorities go to the left and high to the
256 	 * right.  On receive, we want the highest priorities first, so
257 	 * walk all the way to the right.
258 	 */
259 	parent = info->msg_tree_rightmost;
260 	if (!parent) {
261 		if (info->attr.mq_curmsgs) {
262 			pr_warn_once("Inconsistency in POSIX message queue, "
263 				     "no tree element, but supposedly messages "
264 				     "should exist!\n");
265 			info->attr.mq_curmsgs = 0;
266 		}
267 		return NULL;
268 	}
269 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
270 	if (unlikely(list_empty(&leaf->msg_list))) {
271 		pr_warn_once("Inconsistency in POSIX message queue, "
272 			     "empty leaf node but we haven't implemented "
273 			     "lazy leaf delete!\n");
274 		msg_tree_erase(leaf, info);
275 		goto try_again;
276 	} else {
277 		msg = list_first_entry(&leaf->msg_list,
278 				       struct msg_msg, m_list);
279 		list_del(&msg->m_list);
280 		if (list_empty(&leaf->msg_list)) {
281 			msg_tree_erase(leaf, info);
282 		}
283 	}
284 	info->attr.mq_curmsgs--;
285 	info->qsize -= msg->m_ts;
286 	return msg;
287 }
288 
289 static struct inode *mqueue_get_inode(struct super_block *sb,
290 		struct ipc_namespace *ipc_ns, umode_t mode,
291 		struct mq_attr *attr)
292 {
293 	struct inode *inode;
294 	int ret = -ENOMEM;
295 
296 	inode = new_inode(sb);
297 	if (!inode)
298 		goto err;
299 
300 	inode->i_ino = get_next_ino();
301 	inode->i_mode = mode;
302 	inode->i_uid = current_fsuid();
303 	inode->i_gid = current_fsgid();
304 	simple_inode_init_ts(inode);
305 
306 	if (S_ISREG(mode)) {
307 		struct mqueue_inode_info *info;
308 		unsigned long mq_bytes, mq_treesize;
309 
310 		inode->i_fop = &mqueue_file_operations;
311 		inode->i_size = FILENT_SIZE;
312 		/* mqueue specific info */
313 		info = MQUEUE_I(inode);
314 		spin_lock_init(&info->lock);
315 		init_waitqueue_head(&info->wait_q);
316 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
317 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
318 		info->notify_owner = NULL;
319 		info->notify_user_ns = NULL;
320 		info->qsize = 0;
321 		info->ucounts = NULL;	/* set when all is ok */
322 		info->msg_tree = RB_ROOT;
323 		info->msg_tree_rightmost = NULL;
324 		info->node_cache = NULL;
325 		memset(&info->attr, 0, sizeof(info->attr));
326 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
327 					   ipc_ns->mq_msg_default);
328 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
329 					    ipc_ns->mq_msgsize_default);
330 		if (attr) {
331 			info->attr.mq_maxmsg = attr->mq_maxmsg;
332 			info->attr.mq_msgsize = attr->mq_msgsize;
333 		}
334 		/*
335 		 * We used to allocate a static array of pointers and account
336 		 * the size of that array as well as one msg_msg struct per
337 		 * possible message into the queue size. That's no longer
338 		 * accurate as the queue is now an rbtree and will grow and
339 		 * shrink depending on usage patterns.  We can, however, still
340 		 * account one msg_msg struct per message, but the nodes are
341 		 * allocated depending on priority usage, and most programs
342 		 * only use one, or a handful, of priorities.  However, since
343 		 * this is pinned memory, we need to assume worst case, so
344 		 * that means the min(mq_maxmsg, max_priorities) * struct
345 		 * posix_msg_tree_node.
346 		 */
347 
348 		ret = -EINVAL;
349 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
350 			goto out_inode;
351 		if (capable(CAP_SYS_RESOURCE)) {
352 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
353 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
354 				goto out_inode;
355 		} else {
356 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
357 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
358 				goto out_inode;
359 		}
360 		ret = -EOVERFLOW;
361 		/* check for overflow */
362 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
363 			goto out_inode;
364 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
365 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
366 			sizeof(struct posix_msg_tree_node);
367 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
368 		if (mq_bytes + mq_treesize < mq_bytes)
369 			goto out_inode;
370 		mq_bytes += mq_treesize;
371 		info->ucounts = get_ucounts(current_ucounts());
372 		if (info->ucounts) {
373 			long msgqueue;
374 
375 			spin_lock(&mq_lock);
376 			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
377 			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
378 				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
379 				spin_unlock(&mq_lock);
380 				put_ucounts(info->ucounts);
381 				info->ucounts = NULL;
382 				/* mqueue_evict_inode() releases info->messages */
383 				ret = -EMFILE;
384 				goto out_inode;
385 			}
386 			spin_unlock(&mq_lock);
387 		}
388 	} else if (S_ISDIR(mode)) {
389 		inc_nlink(inode);
390 		/* Some things misbehave if size == 0 on a directory */
391 		inode->i_size = 2 * DIRENT_SIZE;
392 		inode->i_op = &mqueue_dir_inode_operations;
393 		inode->i_fop = &simple_dir_operations;
394 	}
395 
396 	return inode;
397 out_inode:
398 	iput(inode);
399 err:
400 	return ERR_PTR(ret);
401 }
402 
403 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
404 {
405 	struct inode *inode;
406 	struct ipc_namespace *ns = sb->s_fs_info;
407 
408 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
409 	sb->s_blocksize = PAGE_SIZE;
410 	sb->s_blocksize_bits = PAGE_SHIFT;
411 	sb->s_magic = MQUEUE_MAGIC;
412 	sb->s_op = &mqueue_super_ops;
413 	sb->s_d_flags = DCACHE_DONTCACHE;
414 
415 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
416 	if (IS_ERR(inode))
417 		return PTR_ERR(inode);
418 
419 	sb->s_root = d_make_root(inode);
420 	if (!sb->s_root)
421 		return -ENOMEM;
422 	return 0;
423 }
424 
425 static int mqueue_get_tree(struct fs_context *fc)
426 {
427 	struct mqueue_fs_context *ctx = fc->fs_private;
428 
429 	/*
430 	 * With a newly created ipc namespace, we don't need to do a search
431 	 * for an ipc namespace match, but we still need to set s_fs_info.
432 	 */
433 	if (ctx->newns) {
434 		fc->s_fs_info = ctx->ipc_ns;
435 		return get_tree_nodev(fc, mqueue_fill_super);
436 	}
437 	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
438 }
439 
440 static void mqueue_fs_context_free(struct fs_context *fc)
441 {
442 	struct mqueue_fs_context *ctx = fc->fs_private;
443 
444 	put_ipc_ns(ctx->ipc_ns);
445 	kfree(ctx);
446 }
447 
448 static int mqueue_init_fs_context(struct fs_context *fc)
449 {
450 	struct mqueue_fs_context *ctx;
451 
452 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
453 	if (!ctx)
454 		return -ENOMEM;
455 
456 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
457 	put_user_ns(fc->user_ns);
458 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
459 	fc->fs_private = ctx;
460 	fc->ops = &mqueue_fs_context_ops;
461 	return 0;
462 }
463 
464 /*
465  * mq_init_ns() is currently the only caller of mq_create_mount().
466  * So the ns parameter is always a newly created ipc namespace.
467  */
468 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
469 {
470 	struct mqueue_fs_context *ctx;
471 	struct fs_context *fc;
472 	struct vfsmount *mnt;
473 
474 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
475 	if (IS_ERR(fc))
476 		return ERR_CAST(fc);
477 
478 	ctx = fc->fs_private;
479 	ctx->newns = true;
480 	put_ipc_ns(ctx->ipc_ns);
481 	ctx->ipc_ns = get_ipc_ns(ns);
482 	put_user_ns(fc->user_ns);
483 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
484 
485 	mnt = fc_mount_longterm(fc);
486 	put_fs_context(fc);
487 	return mnt;
488 }
489 
490 static void init_once(void *foo)
491 {
492 	struct mqueue_inode_info *p = foo;
493 
494 	inode_init_once(&p->vfs_inode);
495 }
496 
497 static struct inode *mqueue_alloc_inode(struct super_block *sb)
498 {
499 	struct mqueue_inode_info *ei;
500 
501 	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
502 	if (!ei)
503 		return NULL;
504 	return &ei->vfs_inode;
505 }
506 
507 static void mqueue_free_inode(struct inode *inode)
508 {
509 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
510 }
511 
512 static void mqueue_evict_inode(struct inode *inode)
513 {
514 	struct mqueue_inode_info *info;
515 	struct ipc_namespace *ipc_ns;
516 	struct msg_msg *msg, *nmsg;
517 	LIST_HEAD(tmp_msg);
518 
519 	clear_inode(inode);
520 
521 	if (S_ISDIR(inode->i_mode))
522 		return;
523 
524 	ipc_ns = get_ns_from_inode(inode);
525 	info = MQUEUE_I(inode);
526 	spin_lock(&info->lock);
527 	while ((msg = msg_get(info)) != NULL)
528 		list_add_tail(&msg->m_list, &tmp_msg);
529 	kfree(info->node_cache);
530 	spin_unlock(&info->lock);
531 
532 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533 		list_del(&msg->m_list);
534 		free_msg(msg);
535 	}
536 
537 	if (info->ucounts) {
538 		unsigned long mq_bytes, mq_treesize;
539 
540 		/* Total amount of bytes accounted for the mqueue */
541 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
542 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
543 			sizeof(struct posix_msg_tree_node);
544 
545 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
546 					  info->attr.mq_msgsize);
547 
548 		spin_lock(&mq_lock);
549 		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
550 		/*
551 		 * get_ns_from_inode() ensures that the
552 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
553 		 * to which we now hold a reference, or it is NULL.
554 		 * We can't put it here under mq_lock, though.
555 		 */
556 		if (ipc_ns)
557 			ipc_ns->mq_queues_count--;
558 		spin_unlock(&mq_lock);
559 		put_ucounts(info->ucounts);
560 		info->ucounts = NULL;
561 	}
562 	if (ipc_ns)
563 		put_ipc_ns(ipc_ns);
564 }
565 
566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567 {
568 	struct inode *dir = dentry->d_parent->d_inode;
569 	struct inode *inode;
570 	struct mq_attr *attr = arg;
571 	int error;
572 	struct ipc_namespace *ipc_ns;
573 
574 	spin_lock(&mq_lock);
575 	ipc_ns = __get_ns_from_inode(dir);
576 	if (!ipc_ns) {
577 		error = -EACCES;
578 		goto out_unlock;
579 	}
580 
581 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582 	    !capable(CAP_SYS_RESOURCE)) {
583 		error = -ENOSPC;
584 		goto out_unlock;
585 	}
586 	ipc_ns->mq_queues_count++;
587 	spin_unlock(&mq_lock);
588 
589 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
590 	if (IS_ERR(inode)) {
591 		error = PTR_ERR(inode);
592 		spin_lock(&mq_lock);
593 		ipc_ns->mq_queues_count--;
594 		goto out_unlock;
595 	}
596 
597 	put_ipc_ns(ipc_ns);
598 	dir->i_size += DIRENT_SIZE;
599 	simple_inode_init_ts(dir);
600 
601 	d_make_persistent(dentry, inode);
602 	return 0;
603 out_unlock:
604 	spin_unlock(&mq_lock);
605 	if (ipc_ns)
606 		put_ipc_ns(ipc_ns);
607 	return error;
608 }
609 
610 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
611 			 struct dentry *dentry, umode_t mode, bool excl)
612 {
613 	return mqueue_create_attr(dentry, mode, NULL);
614 }
615 
616 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
617 {
618 	dir->i_size -= DIRENT_SIZE;
619 	return simple_unlink(dir, dentry);
620 }
621 
622 /*
623 *	This is routine for system read from queue file.
624 *	To avoid mess with doing here some sort of mq_receive we allow
625 *	to read only queue size & notification info (the only values
626 *	that are interesting from user point of view and aren't accessible
627 *	through std routines)
628 */
629 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
630 				size_t count, loff_t *off)
631 {
632 	struct inode *inode = file_inode(filp);
633 	struct mqueue_inode_info *info = MQUEUE_I(inode);
634 	char buffer[FILENT_SIZE];
635 	ssize_t ret;
636 
637 	spin_lock(&info->lock);
638 	snprintf(buffer, sizeof(buffer),
639 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
640 			info->qsize,
641 			info->notify_owner ? info->notify.sigev_notify : 0,
642 			(info->notify_owner &&
643 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
644 				info->notify.sigev_signo : 0,
645 			pid_vnr(info->notify_owner));
646 	spin_unlock(&info->lock);
647 	buffer[sizeof(buffer)-1] = '\0';
648 
649 	ret = simple_read_from_buffer(u_data, count, off, buffer,
650 				strlen(buffer));
651 	if (ret <= 0)
652 		return ret;
653 
654 	inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
655 	return ret;
656 }
657 
658 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
659 {
660 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
661 
662 	spin_lock(&info->lock);
663 	if (task_tgid(current) == info->notify_owner)
664 		remove_notification(info);
665 
666 	spin_unlock(&info->lock);
667 	return 0;
668 }
669 
670 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
671 {
672 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
673 	__poll_t retval = 0;
674 
675 	poll_wait(filp, &info->wait_q, poll_tab);
676 
677 	spin_lock(&info->lock);
678 	if (info->attr.mq_curmsgs)
679 		retval = EPOLLIN | EPOLLRDNORM;
680 
681 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
682 		retval |= EPOLLOUT | EPOLLWRNORM;
683 	spin_unlock(&info->lock);
684 
685 	return retval;
686 }
687 
688 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
689 static void wq_add(struct mqueue_inode_info *info, int sr,
690 			struct ext_wait_queue *ewp)
691 {
692 	struct ext_wait_queue *walk;
693 
694 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
695 		if (walk->task->prio <= current->prio) {
696 			list_add_tail(&ewp->list, &walk->list);
697 			return;
698 		}
699 	}
700 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
701 }
702 
703 /*
704  * Puts current task to sleep. Caller must hold queue lock. After return
705  * lock isn't held.
706  * sr: SEND or RECV
707  */
708 static int wq_sleep(struct mqueue_inode_info *info, int sr,
709 		    ktime_t *timeout, struct ext_wait_queue *ewp)
710 	__releases(&info->lock)
711 {
712 	int retval;
713 	signed long time;
714 
715 	wq_add(info, sr, ewp);
716 
717 	for (;;) {
718 		/* memory barrier not required, we hold info->lock */
719 		__set_current_state(TASK_INTERRUPTIBLE);
720 
721 		spin_unlock(&info->lock);
722 		time = schedule_hrtimeout_range_clock(timeout, 0,
723 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
724 
725 		if (READ_ONCE(ewp->state) == STATE_READY) {
726 			/* see MQ_BARRIER for purpose/pairing */
727 			smp_acquire__after_ctrl_dep();
728 			retval = 0;
729 			goto out;
730 		}
731 		spin_lock(&info->lock);
732 
733 		/* we hold info->lock, so no memory barrier required */
734 		if (READ_ONCE(ewp->state) == STATE_READY) {
735 			retval = 0;
736 			goto out_unlock;
737 		}
738 		if (signal_pending(current)) {
739 			retval = -ERESTARTSYS;
740 			break;
741 		}
742 		if (time == 0) {
743 			retval = -ETIMEDOUT;
744 			break;
745 		}
746 	}
747 	list_del(&ewp->list);
748 out_unlock:
749 	spin_unlock(&info->lock);
750 out:
751 	return retval;
752 }
753 
754 /*
755  * Returns waiting task that should be serviced first or NULL if none exists
756  */
757 static struct ext_wait_queue *wq_get_first_waiter(
758 		struct mqueue_inode_info *info, int sr)
759 {
760 	struct list_head *ptr;
761 
762 	ptr = info->e_wait_q[sr].list.prev;
763 	if (ptr == &info->e_wait_q[sr].list)
764 		return NULL;
765 	return list_entry(ptr, struct ext_wait_queue, list);
766 }
767 
768 
769 static inline void set_cookie(struct sk_buff *skb, char code)
770 {
771 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
772 }
773 
774 /*
775  * The next function is only to split too long sys_mq_timedsend
776  */
777 static void __do_notify(struct mqueue_inode_info *info)
778 {
779 	/* notification
780 	 * invoked when there is registered process and there isn't process
781 	 * waiting synchronously for message AND state of queue changed from
782 	 * empty to not empty. Here we are sure that no one is waiting
783 	 * synchronously. */
784 	if (info->notify_owner &&
785 	    info->attr.mq_curmsgs == 1) {
786 		switch (info->notify.sigev_notify) {
787 		case SIGEV_NONE:
788 			break;
789 		case SIGEV_SIGNAL: {
790 			struct kernel_siginfo sig_i;
791 			struct task_struct *task;
792 
793 			/* do_mq_notify() accepts sigev_signo == 0, why?? */
794 			if (!info->notify.sigev_signo)
795 				break;
796 
797 			clear_siginfo(&sig_i);
798 			sig_i.si_signo = info->notify.sigev_signo;
799 			sig_i.si_errno = 0;
800 			sig_i.si_code = SI_MESGQ;
801 			sig_i.si_value = info->notify.sigev_value;
802 			rcu_read_lock();
803 			/* map current pid/uid into info->owner's namespaces */
804 			sig_i.si_pid = task_tgid_nr_ns(current,
805 						ns_of_pid(info->notify_owner));
806 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
807 						current_uid());
808 			/*
809 			 * We can't use kill_pid_info(), this signal should
810 			 * bypass check_kill_permission(). It is from kernel
811 			 * but si_fromuser() can't know this.
812 			 * We do check the self_exec_id, to avoid sending
813 			 * signals to programs that don't expect them.
814 			 */
815 			task = pid_task(info->notify_owner, PIDTYPE_TGID);
816 			if (task && task->self_exec_id ==
817 						info->notify_self_exec_id) {
818 				do_send_sig_info(info->notify.sigev_signo,
819 						&sig_i, task, PIDTYPE_TGID);
820 			}
821 			rcu_read_unlock();
822 			break;
823 		}
824 		case SIGEV_THREAD:
825 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
826 			netlink_sendskb(info->notify_sock, info->notify_cookie);
827 			break;
828 		}
829 		/* after notification unregisters process */
830 		put_pid(info->notify_owner);
831 		put_user_ns(info->notify_user_ns);
832 		info->notify_owner = NULL;
833 		info->notify_user_ns = NULL;
834 	}
835 	wake_up(&info->wait_q);
836 }
837 
838 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
839 			   struct timespec64 *ts)
840 {
841 	if (get_timespec64(ts, u_abs_timeout))
842 		return -EFAULT;
843 	if (!timespec64_valid(ts))
844 		return -EINVAL;
845 	return 0;
846 }
847 
848 static void remove_notification(struct mqueue_inode_info *info)
849 {
850 	if (info->notify_owner != NULL &&
851 	    info->notify.sigev_notify == SIGEV_THREAD) {
852 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
853 		netlink_sendskb(info->notify_sock, info->notify_cookie);
854 	}
855 	put_pid(info->notify_owner);
856 	put_user_ns(info->notify_user_ns);
857 	info->notify_owner = NULL;
858 	info->notify_user_ns = NULL;
859 }
860 
861 static int prepare_open(struct dentry *dentry, int oflag, int ro,
862 			umode_t mode, struct filename *name,
863 			struct mq_attr *attr)
864 {
865 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
866 						  MAY_READ | MAY_WRITE };
867 	int acc;
868 
869 	if (d_really_is_negative(dentry)) {
870 		if (!(oflag & O_CREAT))
871 			return -ENOENT;
872 		if (ro)
873 			return ro;
874 		audit_inode_parent_hidden(name, dentry->d_parent);
875 		return vfs_mkobj(dentry, mode & ~current_umask(),
876 				  mqueue_create_attr, attr);
877 	}
878 	/* it already existed */
879 	audit_inode(name, dentry, 0);
880 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
881 		return -EEXIST;
882 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
883 		return -EINVAL;
884 	acc = oflag2acc[oflag & O_ACCMODE];
885 	return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
886 }
887 
888 static struct file *mqueue_file_open(struct filename *name,
889 				     struct vfsmount *mnt, int oflag, int ro,
890 				     umode_t mode, struct mq_attr *attr)
891 {
892 	struct dentry *dentry;
893 	struct file *file;
894 	int ret;
895 
896 	dentry = start_creating_noperm(mnt->mnt_root, &QSTR(name->name));
897 	if (IS_ERR(dentry))
898 		return ERR_CAST(dentry);
899 
900 	ret = prepare_open(dentry, oflag, ro, mode, name, attr);
901 	file = ERR_PTR(ret);
902 	if (!ret) {
903 		const struct path path = { .mnt = mnt, .dentry = dentry };
904 		file = dentry_open(&path, oflag, current_cred());
905 	}
906 
907 	end_creating(dentry);
908 	return file;
909 }
910 
911 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
912 		      struct mq_attr *attr)
913 {
914 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
915 	int fd, ro;
916 
917 	audit_mq_open(oflag, mode, attr);
918 
919 	CLASS(filename, name)(u_name);
920 	if (IS_ERR(name))
921 		return PTR_ERR(name);
922 
923 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
924 	fd = FD_ADD(O_CLOEXEC, mqueue_file_open(name, mnt, oflag, ro, mode, attr));
925 	if (!ro)
926 		mnt_drop_write(mnt);
927 	return fd;
928 }
929 
930 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
931 		struct mq_attr __user *, u_attr)
932 {
933 	struct mq_attr attr;
934 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
935 		return -EFAULT;
936 
937 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
938 }
939 
940 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
941 {
942 	int err;
943 	struct dentry *dentry;
944 	struct inode *inode;
945 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
946 	struct vfsmount *mnt = ipc_ns->mq_mnt;
947 	CLASS(filename, name)(u_name);
948 
949 	if (IS_ERR(name))
950 		return PTR_ERR(name);
951 
952 	audit_inode_parent_hidden(name, mnt->mnt_root);
953 	err = mnt_want_write(mnt);
954 	if (err)
955 		return err;
956 	dentry = start_removing_noperm(mnt->mnt_root, &QSTR(name->name));
957 	if (IS_ERR(dentry)) {
958 		err = PTR_ERR(dentry);
959 		goto out_drop_write;
960 	}
961 
962 	inode = d_inode(dentry);
963 	ihold(inode);
964 	err = vfs_unlink(&nop_mnt_idmap, d_inode(mnt->mnt_root),
965 			 dentry, NULL);
966 	end_removing(dentry);
967 	iput(inode);
968 
969 out_drop_write:
970 	mnt_drop_write(mnt);
971 	return err;
972 }
973 
974 /* Pipelined send and receive functions.
975  *
976  * If a receiver finds no waiting message, then it registers itself in the
977  * list of waiting receivers. A sender checks that list before adding the new
978  * message into the message array. If there is a waiting receiver, then it
979  * bypasses the message array and directly hands the message over to the
980  * receiver. The receiver accepts the message and returns without grabbing the
981  * queue spinlock:
982  *
983  * - Set pointer to message.
984  * - Queue the receiver task for later wakeup (without the info->lock).
985  * - Update its state to STATE_READY. Now the receiver can continue.
986  * - Wake up the process after the lock is dropped. Should the process wake up
987  *   before this wakeup (due to a timeout or a signal) it will either see
988  *   STATE_READY and continue or acquire the lock to check the state again.
989  *
990  * The same algorithm is used for senders.
991  */
992 
993 static inline void __pipelined_op(struct wake_q_head *wake_q,
994 				  struct mqueue_inode_info *info,
995 				  struct ext_wait_queue *this)
996 {
997 	struct task_struct *task;
998 
999 	list_del(&this->list);
1000 	task = get_task_struct(this->task);
1001 
1002 	/* see MQ_BARRIER for purpose/pairing */
1003 	smp_store_release(&this->state, STATE_READY);
1004 	wake_q_add_safe(wake_q, task);
1005 }
1006 
1007 /* pipelined_send() - send a message directly to the task waiting in
1008  * sys_mq_timedreceive() (without inserting message into a queue).
1009  */
1010 static inline void pipelined_send(struct wake_q_head *wake_q,
1011 				  struct mqueue_inode_info *info,
1012 				  struct msg_msg *message,
1013 				  struct ext_wait_queue *receiver)
1014 {
1015 	receiver->msg = message;
1016 	__pipelined_op(wake_q, info, receiver);
1017 }
1018 
1019 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1020  * gets its message and put to the queue (we have one free place for sure). */
1021 static inline void pipelined_receive(struct wake_q_head *wake_q,
1022 				     struct mqueue_inode_info *info)
1023 {
1024 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1025 
1026 	if (!sender) {
1027 		/* for poll */
1028 		wake_up_interruptible(&info->wait_q);
1029 		return;
1030 	}
1031 	if (msg_insert(sender->msg, info))
1032 		return;
1033 
1034 	__pipelined_op(wake_q, info, sender);
1035 }
1036 
1037 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1038 		size_t msg_len, unsigned int msg_prio,
1039 		struct timespec64 *ts)
1040 {
1041 	struct inode *inode;
1042 	struct ext_wait_queue wait;
1043 	struct ext_wait_queue *receiver;
1044 	struct msg_msg *msg_ptr;
1045 	struct mqueue_inode_info *info;
1046 	ktime_t expires, *timeout = NULL;
1047 	struct posix_msg_tree_node *new_leaf = NULL;
1048 	int ret = 0;
1049 	DEFINE_WAKE_Q(wake_q);
1050 
1051 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1052 		return -EINVAL;
1053 
1054 	if (ts) {
1055 		expires = timespec64_to_ktime(*ts);
1056 		timeout = &expires;
1057 	}
1058 
1059 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1060 
1061 	CLASS(fd, f)(mqdes);
1062 	if (fd_empty(f))
1063 		return -EBADF;
1064 
1065 	inode = file_inode(fd_file(f));
1066 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1067 		return -EBADF;
1068 	info = MQUEUE_I(inode);
1069 	audit_file(fd_file(f));
1070 
1071 	if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE)))
1072 		return -EBADF;
1073 
1074 	if (unlikely(msg_len > info->attr.mq_msgsize))
1075 		return -EMSGSIZE;
1076 
1077 	/* First try to allocate memory, before doing anything with
1078 	 * existing queues. */
1079 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1080 	if (IS_ERR(msg_ptr))
1081 		return PTR_ERR(msg_ptr);
1082 	msg_ptr->m_ts = msg_len;
1083 	msg_ptr->m_type = msg_prio;
1084 
1085 	/*
1086 	 * msg_insert really wants us to have a valid, spare node struct so
1087 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1088 	 * fall back to that if necessary.
1089 	 */
1090 	if (!info->node_cache)
1091 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1092 
1093 	spin_lock(&info->lock);
1094 
1095 	if (!info->node_cache && new_leaf) {
1096 		/* Save our speculative allocation into the cache */
1097 		INIT_LIST_HEAD(&new_leaf->msg_list);
1098 		info->node_cache = new_leaf;
1099 		new_leaf = NULL;
1100 	} else {
1101 		kfree(new_leaf);
1102 	}
1103 
1104 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1105 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1106 			ret = -EAGAIN;
1107 		} else {
1108 			wait.task = current;
1109 			wait.msg = (void *) msg_ptr;
1110 
1111 			/* memory barrier not required, we hold info->lock */
1112 			WRITE_ONCE(wait.state, STATE_NONE);
1113 			ret = wq_sleep(info, SEND, timeout, &wait);
1114 			/*
1115 			 * wq_sleep must be called with info->lock held, and
1116 			 * returns with the lock released
1117 			 */
1118 			goto out_free;
1119 		}
1120 	} else {
1121 		receiver = wq_get_first_waiter(info, RECV);
1122 		if (receiver) {
1123 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1124 		} else {
1125 			/* adds message to the queue */
1126 			ret = msg_insert(msg_ptr, info);
1127 			if (ret)
1128 				goto out_unlock;
1129 			__do_notify(info);
1130 		}
1131 		simple_inode_init_ts(inode);
1132 	}
1133 out_unlock:
1134 	spin_unlock(&info->lock);
1135 	wake_up_q(&wake_q);
1136 out_free:
1137 	if (ret)
1138 		free_msg(msg_ptr);
1139 	return ret;
1140 }
1141 
1142 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1143 		size_t msg_len, unsigned int __user *u_msg_prio,
1144 		struct timespec64 *ts)
1145 {
1146 	ssize_t ret;
1147 	struct msg_msg *msg_ptr;
1148 	struct inode *inode;
1149 	struct mqueue_inode_info *info;
1150 	struct ext_wait_queue wait;
1151 	ktime_t expires, *timeout = NULL;
1152 	struct posix_msg_tree_node *new_leaf = NULL;
1153 
1154 	if (ts) {
1155 		expires = timespec64_to_ktime(*ts);
1156 		timeout = &expires;
1157 	}
1158 
1159 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1160 
1161 	CLASS(fd, f)(mqdes);
1162 	if (fd_empty(f))
1163 		return -EBADF;
1164 
1165 	inode = file_inode(fd_file(f));
1166 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1167 		return -EBADF;
1168 	info = MQUEUE_I(inode);
1169 	audit_file(fd_file(f));
1170 
1171 	if (unlikely(!(fd_file(f)->f_mode & FMODE_READ)))
1172 		return -EBADF;
1173 
1174 	/* checks if buffer is big enough */
1175 	if (unlikely(msg_len < info->attr.mq_msgsize))
1176 		return -EMSGSIZE;
1177 
1178 	/*
1179 	 * msg_insert really wants us to have a valid, spare node struct so
1180 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1181 	 * fall back to that if necessary.
1182 	 */
1183 	if (!info->node_cache)
1184 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1185 
1186 	spin_lock(&info->lock);
1187 
1188 	if (!info->node_cache && new_leaf) {
1189 		/* Save our speculative allocation into the cache */
1190 		INIT_LIST_HEAD(&new_leaf->msg_list);
1191 		info->node_cache = new_leaf;
1192 	} else {
1193 		kfree(new_leaf);
1194 	}
1195 
1196 	if (info->attr.mq_curmsgs == 0) {
1197 		if (fd_file(f)->f_flags & O_NONBLOCK) {
1198 			spin_unlock(&info->lock);
1199 			ret = -EAGAIN;
1200 		} else {
1201 			wait.task = current;
1202 
1203 			/* memory barrier not required, we hold info->lock */
1204 			WRITE_ONCE(wait.state, STATE_NONE);
1205 			ret = wq_sleep(info, RECV, timeout, &wait);
1206 			msg_ptr = wait.msg;
1207 		}
1208 	} else {
1209 		DEFINE_WAKE_Q(wake_q);
1210 
1211 		msg_ptr = msg_get(info);
1212 
1213 		simple_inode_init_ts(inode);
1214 
1215 		/* There is now free space in queue. */
1216 		pipelined_receive(&wake_q, info);
1217 		spin_unlock(&info->lock);
1218 		wake_up_q(&wake_q);
1219 		ret = 0;
1220 	}
1221 	if (ret == 0) {
1222 		ret = msg_ptr->m_ts;
1223 
1224 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1225 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1226 			ret = -EFAULT;
1227 		}
1228 		free_msg(msg_ptr);
1229 	}
1230 	return ret;
1231 }
1232 
1233 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1234 		size_t, msg_len, unsigned int, msg_prio,
1235 		const struct __kernel_timespec __user *, u_abs_timeout)
1236 {
1237 	struct timespec64 ts, *p = NULL;
1238 	if (u_abs_timeout) {
1239 		int res = prepare_timeout(u_abs_timeout, &ts);
1240 		if (res)
1241 			return res;
1242 		p = &ts;
1243 	}
1244 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1245 }
1246 
1247 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1248 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1249 		const struct __kernel_timespec __user *, u_abs_timeout)
1250 {
1251 	struct timespec64 ts, *p = NULL;
1252 	if (u_abs_timeout) {
1253 		int res = prepare_timeout(u_abs_timeout, &ts);
1254 		if (res)
1255 			return res;
1256 		p = &ts;
1257 	}
1258 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1259 }
1260 
1261 /*
1262  * Notes: the case when user wants us to deregister (with NULL as pointer)
1263  * and he isn't currently owner of notification, will be silently discarded.
1264  * It isn't explicitly defined in the POSIX.
1265  */
1266 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1267 {
1268 	int ret;
1269 	struct sock *sock;
1270 	struct inode *inode;
1271 	struct mqueue_inode_info *info;
1272 	struct sk_buff *nc;
1273 
1274 	audit_mq_notify(mqdes, notification);
1275 
1276 	nc = NULL;
1277 	sock = NULL;
1278 	if (notification != NULL) {
1279 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1280 			     notification->sigev_notify != SIGEV_SIGNAL &&
1281 			     notification->sigev_notify != SIGEV_THREAD))
1282 			return -EINVAL;
1283 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1284 			!valid_signal(notification->sigev_signo)) {
1285 			return -EINVAL;
1286 		}
1287 		if (notification->sigev_notify == SIGEV_THREAD) {
1288 			long timeo;
1289 
1290 			/* create the notify skb */
1291 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1292 			if (!nc)
1293 				return -ENOMEM;
1294 
1295 			if (copy_from_user(nc->data,
1296 					notification->sigev_value.sival_ptr,
1297 					NOTIFY_COOKIE_LEN)) {
1298 				kfree_skb(nc);
1299 				return -EFAULT;
1300 			}
1301 
1302 			/* TODO: add a header? */
1303 			skb_put(nc, NOTIFY_COOKIE_LEN);
1304 			/* and attach it to the socket */
1305 retry:
1306 			sock = netlink_getsockbyfd(notification->sigev_signo);
1307 			if (IS_ERR(sock)) {
1308 				kfree_skb(nc);
1309 				return PTR_ERR(sock);
1310 			}
1311 
1312 			timeo = MAX_SCHEDULE_TIMEOUT;
1313 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1314 			if (ret == 1)
1315 				goto retry;
1316 			if (ret)
1317 				return ret;
1318 		}
1319 	}
1320 
1321 	CLASS(fd, f)(mqdes);
1322 	if (fd_empty(f)) {
1323 		ret = -EBADF;
1324 		goto out;
1325 	}
1326 
1327 	inode = file_inode(fd_file(f));
1328 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1329 		ret = -EBADF;
1330 		goto out;
1331 	}
1332 	info = MQUEUE_I(inode);
1333 
1334 	ret = 0;
1335 	spin_lock(&info->lock);
1336 	if (notification == NULL) {
1337 		if (info->notify_owner == task_tgid(current)) {
1338 			remove_notification(info);
1339 			inode_set_atime_to_ts(inode,
1340 					      inode_set_ctime_current(inode));
1341 		}
1342 	} else if (info->notify_owner != NULL) {
1343 		ret = -EBUSY;
1344 	} else {
1345 		switch (notification->sigev_notify) {
1346 		case SIGEV_NONE:
1347 			info->notify.sigev_notify = SIGEV_NONE;
1348 			break;
1349 		case SIGEV_THREAD:
1350 			info->notify_sock = sock;
1351 			info->notify_cookie = nc;
1352 			sock = NULL;
1353 			nc = NULL;
1354 			info->notify.sigev_notify = SIGEV_THREAD;
1355 			break;
1356 		case SIGEV_SIGNAL:
1357 			info->notify.sigev_signo = notification->sigev_signo;
1358 			info->notify.sigev_value = notification->sigev_value;
1359 			info->notify.sigev_notify = SIGEV_SIGNAL;
1360 			info->notify_self_exec_id = current->self_exec_id;
1361 			break;
1362 		}
1363 
1364 		info->notify_owner = get_pid(task_tgid(current));
1365 		info->notify_user_ns = get_user_ns(current_user_ns());
1366 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1367 	}
1368 	spin_unlock(&info->lock);
1369 out:
1370 	if (sock)
1371 		netlink_detachskb(sock, nc);
1372 	return ret;
1373 }
1374 
1375 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1376 		const struct sigevent __user *, u_notification)
1377 {
1378 	struct sigevent n, *p = NULL;
1379 	if (u_notification) {
1380 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1381 			return -EFAULT;
1382 		p = &n;
1383 	}
1384 	return do_mq_notify(mqdes, p);
1385 }
1386 
1387 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1388 {
1389 	struct inode *inode;
1390 	struct mqueue_inode_info *info;
1391 
1392 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1393 		return -EINVAL;
1394 
1395 	CLASS(fd, f)(mqdes);
1396 	if (fd_empty(f))
1397 		return -EBADF;
1398 
1399 	if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1400 		return -EBADF;
1401 
1402 	inode = file_inode(fd_file(f));
1403 	info = MQUEUE_I(inode);
1404 
1405 	spin_lock(&info->lock);
1406 
1407 	if (old) {
1408 		*old = info->attr;
1409 		old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK;
1410 	}
1411 	if (new) {
1412 		audit_mq_getsetattr(mqdes, new);
1413 		spin_lock(&fd_file(f)->f_lock);
1414 		if (new->mq_flags & O_NONBLOCK)
1415 			fd_file(f)->f_flags |= O_NONBLOCK;
1416 		else
1417 			fd_file(f)->f_flags &= ~O_NONBLOCK;
1418 		spin_unlock(&fd_file(f)->f_lock);
1419 
1420 		inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1421 	}
1422 
1423 	spin_unlock(&info->lock);
1424 	return 0;
1425 }
1426 
1427 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1428 		const struct mq_attr __user *, u_mqstat,
1429 		struct mq_attr __user *, u_omqstat)
1430 {
1431 	int ret;
1432 	struct mq_attr mqstat, omqstat;
1433 	struct mq_attr *new = NULL, *old = NULL;
1434 
1435 	if (u_mqstat) {
1436 		new = &mqstat;
1437 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1438 			return -EFAULT;
1439 	}
1440 	if (u_omqstat)
1441 		old = &omqstat;
1442 
1443 	ret = do_mq_getsetattr(mqdes, new, old);
1444 	if (ret || !old)
1445 		return ret;
1446 
1447 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1448 		return -EFAULT;
1449 	return 0;
1450 }
1451 
1452 #ifdef CONFIG_COMPAT
1453 
1454 struct compat_mq_attr {
1455 	compat_long_t mq_flags;      /* message queue flags		     */
1456 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1457 	compat_long_t mq_msgsize;    /* maximum message size		     */
1458 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1459 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1460 };
1461 
1462 static inline int get_compat_mq_attr(struct mq_attr *attr,
1463 			const struct compat_mq_attr __user *uattr)
1464 {
1465 	struct compat_mq_attr v;
1466 
1467 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1468 		return -EFAULT;
1469 
1470 	memset(attr, 0, sizeof(*attr));
1471 	attr->mq_flags = v.mq_flags;
1472 	attr->mq_maxmsg = v.mq_maxmsg;
1473 	attr->mq_msgsize = v.mq_msgsize;
1474 	attr->mq_curmsgs = v.mq_curmsgs;
1475 	return 0;
1476 }
1477 
1478 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1479 			struct compat_mq_attr __user *uattr)
1480 {
1481 	struct compat_mq_attr v;
1482 
1483 	memset(&v, 0, sizeof(v));
1484 	v.mq_flags = attr->mq_flags;
1485 	v.mq_maxmsg = attr->mq_maxmsg;
1486 	v.mq_msgsize = attr->mq_msgsize;
1487 	v.mq_curmsgs = attr->mq_curmsgs;
1488 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1489 		return -EFAULT;
1490 	return 0;
1491 }
1492 
1493 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1494 		       int, oflag, compat_mode_t, mode,
1495 		       struct compat_mq_attr __user *, u_attr)
1496 {
1497 	struct mq_attr attr, *p = NULL;
1498 	if (u_attr && oflag & O_CREAT) {
1499 		p = &attr;
1500 		if (get_compat_mq_attr(&attr, u_attr))
1501 			return -EFAULT;
1502 	}
1503 	return do_mq_open(u_name, oflag, mode, p);
1504 }
1505 
1506 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1507 		       const struct compat_sigevent __user *, u_notification)
1508 {
1509 	struct sigevent n, *p = NULL;
1510 	if (u_notification) {
1511 		if (get_compat_sigevent(&n, u_notification))
1512 			return -EFAULT;
1513 		if (n.sigev_notify == SIGEV_THREAD)
1514 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1515 		p = &n;
1516 	}
1517 	return do_mq_notify(mqdes, p);
1518 }
1519 
1520 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1521 		       const struct compat_mq_attr __user *, u_mqstat,
1522 		       struct compat_mq_attr __user *, u_omqstat)
1523 {
1524 	int ret;
1525 	struct mq_attr mqstat, omqstat;
1526 	struct mq_attr *new = NULL, *old = NULL;
1527 
1528 	if (u_mqstat) {
1529 		new = &mqstat;
1530 		if (get_compat_mq_attr(new, u_mqstat))
1531 			return -EFAULT;
1532 	}
1533 	if (u_omqstat)
1534 		old = &omqstat;
1535 
1536 	ret = do_mq_getsetattr(mqdes, new, old);
1537 	if (ret || !old)
1538 		return ret;
1539 
1540 	if (put_compat_mq_attr(old, u_omqstat))
1541 		return -EFAULT;
1542 	return 0;
1543 }
1544 #endif
1545 
1546 #ifdef CONFIG_COMPAT_32BIT_TIME
1547 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1548 				   struct timespec64 *ts)
1549 {
1550 	if (get_old_timespec32(ts, p))
1551 		return -EFAULT;
1552 	if (!timespec64_valid(ts))
1553 		return -EINVAL;
1554 	return 0;
1555 }
1556 
1557 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1558 		const char __user *, u_msg_ptr,
1559 		unsigned int, msg_len, unsigned int, msg_prio,
1560 		const struct old_timespec32 __user *, u_abs_timeout)
1561 {
1562 	struct timespec64 ts, *p = NULL;
1563 	if (u_abs_timeout) {
1564 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1565 		if (res)
1566 			return res;
1567 		p = &ts;
1568 	}
1569 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1570 }
1571 
1572 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1573 		char __user *, u_msg_ptr,
1574 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1575 		const struct old_timespec32 __user *, u_abs_timeout)
1576 {
1577 	struct timespec64 ts, *p = NULL;
1578 	if (u_abs_timeout) {
1579 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1580 		if (res)
1581 			return res;
1582 		p = &ts;
1583 	}
1584 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1585 }
1586 #endif
1587 
1588 static const struct inode_operations mqueue_dir_inode_operations = {
1589 	.lookup = simple_lookup,
1590 	.create = mqueue_create,
1591 	.unlink = mqueue_unlink,
1592 };
1593 
1594 static const struct file_operations mqueue_file_operations = {
1595 	.flush = mqueue_flush_file,
1596 	.poll = mqueue_poll_file,
1597 	.read = mqueue_read_file,
1598 	.llseek = default_llseek,
1599 };
1600 
1601 static const struct super_operations mqueue_super_ops = {
1602 	.alloc_inode = mqueue_alloc_inode,
1603 	.free_inode = mqueue_free_inode,
1604 	.evict_inode = mqueue_evict_inode,
1605 	.statfs = simple_statfs,
1606 };
1607 
1608 static const struct fs_context_operations mqueue_fs_context_ops = {
1609 	.free		= mqueue_fs_context_free,
1610 	.get_tree	= mqueue_get_tree,
1611 };
1612 
1613 static struct file_system_type mqueue_fs_type = {
1614 	.name			= "mqueue",
1615 	.init_fs_context	= mqueue_init_fs_context,
1616 	.kill_sb		= kill_anon_super,
1617 	.fs_flags		= FS_USERNS_MOUNT,
1618 };
1619 
1620 int mq_init_ns(struct ipc_namespace *ns)
1621 {
1622 	struct vfsmount *m;
1623 
1624 	ns->mq_queues_count  = 0;
1625 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1626 	ns->mq_msg_max       = DFLT_MSGMAX;
1627 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1628 	ns->mq_msg_default   = DFLT_MSG;
1629 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1630 
1631 	m = mq_create_mount(ns);
1632 	if (IS_ERR(m))
1633 		return PTR_ERR(m);
1634 	ns->mq_mnt = m;
1635 	return 0;
1636 }
1637 
1638 void mq_clear_sbinfo(struct ipc_namespace *ns)
1639 {
1640 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1641 }
1642 
1643 static int __init init_mqueue_fs(void)
1644 {
1645 	int error;
1646 
1647 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1648 				sizeof(struct mqueue_inode_info), 0,
1649 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1650 	if (mqueue_inode_cachep == NULL)
1651 		return -ENOMEM;
1652 
1653 	if (!setup_mq_sysctls(&init_ipc_ns)) {
1654 		pr_warn("sysctl registration failed\n");
1655 		error = -ENOMEM;
1656 		goto out_kmem;
1657 	}
1658 
1659 	error = register_filesystem(&mqueue_fs_type);
1660 	if (error)
1661 		goto out_sysctl;
1662 
1663 	spin_lock_init(&mq_lock);
1664 
1665 	error = mq_init_ns(&init_ipc_ns);
1666 	if (error)
1667 		goto out_filesystem;
1668 
1669 	return 0;
1670 
1671 out_filesystem:
1672 	unregister_filesystem(&mqueue_fs_type);
1673 out_sysctl:
1674 	retire_mq_sysctls(&init_ipc_ns);
1675 out_kmem:
1676 	kmem_cache_destroy(mqueue_inode_cachep);
1677 	return error;
1678 }
1679 
1680 device_initcall(init_mqueue_fs);
1681