xref: /linux/io_uring/rw.c (revision fe7fad476ec8153a8b8767a08114e3e4a58a837e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "io_uring.h"
19 #include "opdef.h"
20 #include "kbuf.h"
21 #include "alloc_cache.h"
22 #include "rsrc.h"
23 #include "poll.h"
24 #include "rw.h"
25 
26 static void io_complete_rw(struct kiocb *kiocb, long res);
27 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
28 
29 struct io_rw {
30 	/* NOTE: kiocb has the file as the first member, so don't do it here */
31 	struct kiocb			kiocb;
32 	u64				addr;
33 	u32				len;
34 	rwf_t				flags;
35 };
36 
37 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
38 {
39 	/* If FMODE_NOWAIT is set for a file, we're golden */
40 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
41 		return true;
42 	/* No FMODE_NOWAIT, if we can poll, check the status */
43 	if (io_file_can_poll(req)) {
44 		struct poll_table_struct pt = { ._key = mask };
45 
46 		return vfs_poll(req->file, &pt) & mask;
47 	}
48 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
49 	return false;
50 }
51 
52 #ifdef CONFIG_COMPAT
53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 	struct compat_iovec __user *uiov;
56 	compat_ssize_t clen;
57 
58 	uiov = u64_to_user_ptr(rw->addr);
59 	if (!access_ok(uiov, sizeof(*uiov)))
60 		return -EFAULT;
61 	if (__get_user(clen, &uiov->iov_len))
62 		return -EFAULT;
63 	if (clen < 0)
64 		return -EINVAL;
65 
66 	rw->len = clen;
67 	return 0;
68 }
69 #endif
70 
71 static int io_iov_buffer_select_prep(struct io_kiocb *req)
72 {
73 	struct iovec __user *uiov;
74 	struct iovec iov;
75 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
76 
77 	if (rw->len != 1)
78 		return -EINVAL;
79 
80 #ifdef CONFIG_COMPAT
81 	if (req->ctx->compat)
82 		return io_iov_compat_buffer_select_prep(rw);
83 #endif
84 
85 	uiov = u64_to_user_ptr(rw->addr);
86 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
87 		return -EFAULT;
88 	rw->len = iov.iov_len;
89 	return 0;
90 }
91 
92 static int __io_import_iovec(int ddir, struct io_kiocb *req,
93 			     struct io_async_rw *io,
94 			     unsigned int issue_flags)
95 {
96 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
97 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
98 	struct iovec *iov;
99 	void __user *buf;
100 	int nr_segs, ret;
101 	size_t sqe_len;
102 
103 	buf = u64_to_user_ptr(rw->addr);
104 	sqe_len = rw->len;
105 
106 	if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) {
107 		if (io_do_buffer_select(req)) {
108 			buf = io_buffer_select(req, &sqe_len, issue_flags);
109 			if (!buf)
110 				return -ENOBUFS;
111 			rw->addr = (unsigned long) buf;
112 			rw->len = sqe_len;
113 		}
114 
115 		return import_ubuf(ddir, buf, sqe_len, &io->iter);
116 	}
117 
118 	if (io->free_iovec) {
119 		nr_segs = io->free_iov_nr;
120 		iov = io->free_iovec;
121 	} else {
122 		iov = &io->fast_iov;
123 		nr_segs = 1;
124 	}
125 	ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter,
126 				req->ctx->compat);
127 	if (unlikely(ret < 0))
128 		return ret;
129 	if (iov) {
130 		req->flags |= REQ_F_NEED_CLEANUP;
131 		io->free_iov_nr = io->iter.nr_segs;
132 		kfree(io->free_iovec);
133 		io->free_iovec = iov;
134 	}
135 	return 0;
136 }
137 
138 static inline int io_import_iovec(int rw, struct io_kiocb *req,
139 				  struct io_async_rw *io,
140 				  unsigned int issue_flags)
141 {
142 	int ret;
143 
144 	ret = __io_import_iovec(rw, req, io, issue_flags);
145 	if (unlikely(ret < 0))
146 		return ret;
147 
148 	iov_iter_save_state(&io->iter, &io->iter_state);
149 	return 0;
150 }
151 
152 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
153 {
154 	struct io_async_rw *rw = req->async_data;
155 
156 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
157 		return;
158 
159 	io_alloc_cache_kasan(&rw->free_iovec, &rw->free_iov_nr);
160 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
161 		req->async_data = NULL;
162 		req->flags &= ~REQ_F_ASYNC_DATA;
163 	}
164 }
165 
166 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
167 {
168 	/*
169 	 * Disable quick recycling for anything that's gone through io-wq.
170 	 * In theory, this should be fine to cleanup. However, some read or
171 	 * write iter handling touches the iovec AFTER having called into the
172 	 * handler, eg to reexpand or revert. This means we can have:
173 	 *
174 	 * task			io-wq
175 	 *   issue
176 	 *     punt to io-wq
177 	 *			issue
178 	 *			  blkdev_write_iter()
179 	 *			    ->ki_complete()
180 	 *			      io_complete_rw()
181 	 *			        queue tw complete
182 	 *  run tw
183 	 *    req_rw_cleanup
184 	 *			iov_iter_count() <- look at iov_iter again
185 	 *
186 	 * which can lead to a UAF. This is only possible for io-wq offload
187 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
188 	 * just leave cleanup to the end.
189 	 *
190 	 * This is really a bug in the core code that does this, any issue
191 	 * path should assume that a successful (or -EIOCBQUEUED) return can
192 	 * mean that the underlying data can be gone at any time. But that
193 	 * should be fixed seperately, and then this check could be killed.
194 	 */
195 	if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
196 		req->flags &= ~REQ_F_NEED_CLEANUP;
197 		io_rw_recycle(req, issue_flags);
198 	}
199 }
200 
201 static int io_rw_alloc_async(struct io_kiocb *req)
202 {
203 	struct io_ring_ctx *ctx = req->ctx;
204 	struct io_async_rw *rw;
205 
206 	rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
207 	if (!rw)
208 		return -ENOMEM;
209 	if (rw->free_iovec)
210 		req->flags |= REQ_F_NEED_CLEANUP;
211 	rw->bytes_done = 0;
212 	return 0;
213 }
214 
215 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import)
216 {
217 	struct io_async_rw *rw;
218 
219 	if (io_rw_alloc_async(req))
220 		return -ENOMEM;
221 
222 	if (!do_import || io_do_buffer_select(req))
223 		return 0;
224 
225 	rw = req->async_data;
226 	return io_import_iovec(ddir, req, rw, 0);
227 }
228 
229 static inline void io_meta_save_state(struct io_async_rw *io)
230 {
231 	io->meta_state.seed = io->meta.seed;
232 	iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
233 }
234 
235 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
236 {
237 	if (kiocb->ki_flags & IOCB_HAS_METADATA) {
238 		io->meta.seed = io->meta_state.seed;
239 		iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
240 	}
241 }
242 
243 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
244 			 u64 attr_ptr, u64 attr_type_mask)
245 {
246 	struct io_uring_attr_pi pi_attr;
247 	struct io_async_rw *io;
248 	int ret;
249 
250 	if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
251 	    sizeof(pi_attr)))
252 		return -EFAULT;
253 
254 	if (pi_attr.rsvd)
255 		return -EINVAL;
256 
257 	io = req->async_data;
258 	io->meta.flags = pi_attr.flags;
259 	io->meta.app_tag = pi_attr.app_tag;
260 	io->meta.seed = pi_attr.seed;
261 	ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
262 			  pi_attr.len, &io->meta.iter);
263 	if (unlikely(ret < 0))
264 		return ret;
265 	req->flags |= REQ_F_HAS_METADATA;
266 	io_meta_save_state(io);
267 	return ret;
268 }
269 
270 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
271 		      int ddir, bool do_import)
272 {
273 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
274 	unsigned ioprio;
275 	u64 attr_type_mask;
276 	int ret;
277 
278 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
279 	/* used for fixed read/write too - just read unconditionally */
280 	req->buf_index = READ_ONCE(sqe->buf_index);
281 
282 	ioprio = READ_ONCE(sqe->ioprio);
283 	if (ioprio) {
284 		ret = ioprio_check_cap(ioprio);
285 		if (ret)
286 			return ret;
287 
288 		rw->kiocb.ki_ioprio = ioprio;
289 	} else {
290 		rw->kiocb.ki_ioprio = get_current_ioprio();
291 	}
292 	rw->kiocb.dio_complete = NULL;
293 	rw->kiocb.ki_flags = 0;
294 
295 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
296 		rw->kiocb.ki_complete = io_complete_rw_iopoll;
297 	else
298 		rw->kiocb.ki_complete = io_complete_rw;
299 
300 	rw->addr = READ_ONCE(sqe->addr);
301 	rw->len = READ_ONCE(sqe->len);
302 	rw->flags = READ_ONCE(sqe->rw_flags);
303 	ret = io_prep_rw_setup(req, ddir, do_import);
304 
305 	if (unlikely(ret))
306 		return ret;
307 
308 	attr_type_mask = READ_ONCE(sqe->attr_type_mask);
309 	if (attr_type_mask) {
310 		u64 attr_ptr;
311 
312 		/* only PI attribute is supported currently */
313 		if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
314 			return -EINVAL;
315 
316 		attr_ptr = READ_ONCE(sqe->attr_ptr);
317 		ret = io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
318 	}
319 	return ret;
320 }
321 
322 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
323 {
324 	return io_prep_rw(req, sqe, ITER_DEST, true);
325 }
326 
327 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
328 {
329 	return io_prep_rw(req, sqe, ITER_SOURCE, true);
330 }
331 
332 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
333 		       int ddir)
334 {
335 	const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT);
336 	int ret;
337 
338 	ret = io_prep_rw(req, sqe, ddir, do_import);
339 	if (unlikely(ret))
340 		return ret;
341 	if (do_import)
342 		return 0;
343 
344 	/*
345 	 * Have to do this validation here, as this is in io_read() rw->len
346 	 * might have chanaged due to buffer selection
347 	 */
348 	return io_iov_buffer_select_prep(req);
349 }
350 
351 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
352 {
353 	return io_prep_rwv(req, sqe, ITER_DEST);
354 }
355 
356 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
357 {
358 	return io_prep_rwv(req, sqe, ITER_SOURCE);
359 }
360 
361 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe,
362 			    int ddir)
363 {
364 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
365 	struct io_ring_ctx *ctx = req->ctx;
366 	struct io_rsrc_node *node;
367 	struct io_async_rw *io;
368 	int ret;
369 
370 	ret = io_prep_rw(req, sqe, ddir, false);
371 	if (unlikely(ret))
372 		return ret;
373 
374 	node = io_rsrc_node_lookup(&ctx->buf_table, req->buf_index);
375 	if (!node)
376 		return -EFAULT;
377 	io_req_assign_buf_node(req, node);
378 
379 	io = req->async_data;
380 	ret = io_import_fixed(ddir, &io->iter, node->buf, rw->addr, rw->len);
381 	iov_iter_save_state(&io->iter, &io->iter_state);
382 	return ret;
383 }
384 
385 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
386 {
387 	return io_prep_rw_fixed(req, sqe, ITER_DEST);
388 }
389 
390 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
391 {
392 	return io_prep_rw_fixed(req, sqe, ITER_SOURCE);
393 }
394 
395 /*
396  * Multishot read is prepared just like a normal read/write request, only
397  * difference is that we set the MULTISHOT flag.
398  */
399 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
400 {
401 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
402 	int ret;
403 
404 	/* must be used with provided buffers */
405 	if (!(req->flags & REQ_F_BUFFER_SELECT))
406 		return -EINVAL;
407 
408 	ret = io_prep_rw(req, sqe, ITER_DEST, false);
409 	if (unlikely(ret))
410 		return ret;
411 
412 	if (rw->addr || rw->len)
413 		return -EINVAL;
414 
415 	req->flags |= REQ_F_APOLL_MULTISHOT;
416 	return 0;
417 }
418 
419 void io_readv_writev_cleanup(struct io_kiocb *req)
420 {
421 	lockdep_assert_held(&req->ctx->uring_lock);
422 	io_rw_recycle(req, 0);
423 }
424 
425 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
426 {
427 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
428 
429 	if (rw->kiocb.ki_pos != -1)
430 		return &rw->kiocb.ki_pos;
431 
432 	if (!(req->file->f_mode & FMODE_STREAM)) {
433 		req->flags |= REQ_F_CUR_POS;
434 		rw->kiocb.ki_pos = req->file->f_pos;
435 		return &rw->kiocb.ki_pos;
436 	}
437 
438 	rw->kiocb.ki_pos = 0;
439 	return NULL;
440 }
441 
442 static bool io_rw_should_reissue(struct io_kiocb *req)
443 {
444 #ifdef CONFIG_BLOCK
445 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
446 	umode_t mode = file_inode(req->file)->i_mode;
447 	struct io_async_rw *io = req->async_data;
448 	struct io_ring_ctx *ctx = req->ctx;
449 
450 	if (!S_ISBLK(mode) && !S_ISREG(mode))
451 		return false;
452 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
453 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
454 		return false;
455 	/*
456 	 * If ref is dying, we might be running poll reap from the exit work.
457 	 * Don't attempt to reissue from that path, just let it fail with
458 	 * -EAGAIN.
459 	 */
460 	if (percpu_ref_is_dying(&ctx->refs))
461 		return false;
462 
463 	io_meta_restore(io, &rw->kiocb);
464 	iov_iter_restore(&io->iter, &io->iter_state);
465 	return true;
466 #else
467 	return false;
468 #endif
469 }
470 
471 static void io_req_end_write(struct io_kiocb *req)
472 {
473 	if (req->flags & REQ_F_ISREG) {
474 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
475 
476 		kiocb_end_write(&rw->kiocb);
477 	}
478 }
479 
480 /*
481  * Trigger the notifications after having done some IO, and finish the write
482  * accounting, if any.
483  */
484 static void io_req_io_end(struct io_kiocb *req)
485 {
486 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
487 
488 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
489 		io_req_end_write(req);
490 		fsnotify_modify(req->file);
491 	} else {
492 		fsnotify_access(req->file);
493 	}
494 }
495 
496 static void __io_complete_rw_common(struct io_kiocb *req, long res)
497 {
498 	if (res == req->cqe.res)
499 		return;
500 	if (res == -EAGAIN && io_rw_should_reissue(req)) {
501 		req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
502 	} else {
503 		req_set_fail(req);
504 		req->cqe.res = res;
505 	}
506 }
507 
508 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
509 {
510 	struct io_async_rw *io = req->async_data;
511 
512 	/* add previously done IO, if any */
513 	if (req_has_async_data(req) && io->bytes_done > 0) {
514 		if (res < 0)
515 			res = io->bytes_done;
516 		else
517 			res += io->bytes_done;
518 	}
519 	return res;
520 }
521 
522 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts)
523 {
524 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
525 	struct kiocb *kiocb = &rw->kiocb;
526 
527 	if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
528 		long res = kiocb->dio_complete(rw->kiocb.private);
529 
530 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
531 	}
532 
533 	io_req_io_end(req);
534 
535 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
536 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
537 
538 	io_req_rw_cleanup(req, 0);
539 	io_req_task_complete(req, ts);
540 }
541 
542 static void io_complete_rw(struct kiocb *kiocb, long res)
543 {
544 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
545 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
546 
547 	if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
548 		__io_complete_rw_common(req, res);
549 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
550 	}
551 	req->io_task_work.func = io_req_rw_complete;
552 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
553 }
554 
555 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
556 {
557 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
558 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
559 
560 	if (kiocb->ki_flags & IOCB_WRITE)
561 		io_req_end_write(req);
562 	if (unlikely(res != req->cqe.res)) {
563 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
564 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
565 			return;
566 		}
567 		req->cqe.res = res;
568 	}
569 
570 	/* order with io_iopoll_complete() checking ->iopoll_completed */
571 	smp_store_release(&req->iopoll_completed, 1);
572 }
573 
574 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
575 {
576 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
577 
578 	/* IO was queued async, completion will happen later */
579 	if (ret == -EIOCBQUEUED)
580 		return;
581 
582 	/* transform internal restart error codes */
583 	if (unlikely(ret < 0)) {
584 		switch (ret) {
585 		case -ERESTARTSYS:
586 		case -ERESTARTNOINTR:
587 		case -ERESTARTNOHAND:
588 		case -ERESTART_RESTARTBLOCK:
589 			/*
590 			 * We can't just restart the syscall, since previously
591 			 * submitted sqes may already be in progress. Just fail
592 			 * this IO with EINTR.
593 			 */
594 			ret = -EINTR;
595 			break;
596 		}
597 	}
598 
599 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
600 		io_complete_rw_iopoll(&rw->kiocb, ret);
601 	else
602 		io_complete_rw(&rw->kiocb, ret);
603 }
604 
605 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
606 		       unsigned int issue_flags)
607 {
608 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
609 	unsigned final_ret = io_fixup_rw_res(req, ret);
610 
611 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
612 		req->file->f_pos = rw->kiocb.ki_pos;
613 	if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
614 		__io_complete_rw_common(req, ret);
615 		/*
616 		 * Safe to call io_end from here as we're inline
617 		 * from the submission path.
618 		 */
619 		io_req_io_end(req);
620 		io_req_set_res(req, final_ret, io_put_kbuf(req, ret, issue_flags));
621 		io_req_rw_cleanup(req, issue_flags);
622 		return IOU_OK;
623 	} else {
624 		io_rw_done(req, ret);
625 	}
626 
627 	return IOU_ISSUE_SKIP_COMPLETE;
628 }
629 
630 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
631 {
632 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
633 }
634 
635 /*
636  * For files that don't have ->read_iter() and ->write_iter(), handle them
637  * by looping over ->read() or ->write() manually.
638  */
639 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
640 {
641 	struct kiocb *kiocb = &rw->kiocb;
642 	struct file *file = kiocb->ki_filp;
643 	ssize_t ret = 0;
644 	loff_t *ppos;
645 
646 	/*
647 	 * Don't support polled IO through this interface, and we can't
648 	 * support non-blocking either. For the latter, this just causes
649 	 * the kiocb to be handled from an async context.
650 	 */
651 	if (kiocb->ki_flags & IOCB_HIPRI)
652 		return -EOPNOTSUPP;
653 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
654 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
655 		return -EAGAIN;
656 
657 	ppos = io_kiocb_ppos(kiocb);
658 
659 	while (iov_iter_count(iter)) {
660 		void __user *addr;
661 		size_t len;
662 		ssize_t nr;
663 
664 		if (iter_is_ubuf(iter)) {
665 			addr = iter->ubuf + iter->iov_offset;
666 			len = iov_iter_count(iter);
667 		} else if (!iov_iter_is_bvec(iter)) {
668 			addr = iter_iov_addr(iter);
669 			len = iter_iov_len(iter);
670 		} else {
671 			addr = u64_to_user_ptr(rw->addr);
672 			len = rw->len;
673 		}
674 
675 		if (ddir == READ)
676 			nr = file->f_op->read(file, addr, len, ppos);
677 		else
678 			nr = file->f_op->write(file, addr, len, ppos);
679 
680 		if (nr < 0) {
681 			if (!ret)
682 				ret = nr;
683 			break;
684 		}
685 		ret += nr;
686 		if (!iov_iter_is_bvec(iter)) {
687 			iov_iter_advance(iter, nr);
688 		} else {
689 			rw->addr += nr;
690 			rw->len -= nr;
691 			if (!rw->len)
692 				break;
693 		}
694 		if (nr != len)
695 			break;
696 	}
697 
698 	return ret;
699 }
700 
701 /*
702  * This is our waitqueue callback handler, registered through __folio_lock_async()
703  * when we initially tried to do the IO with the iocb armed our waitqueue.
704  * This gets called when the page is unlocked, and we generally expect that to
705  * happen when the page IO is completed and the page is now uptodate. This will
706  * queue a task_work based retry of the operation, attempting to copy the data
707  * again. If the latter fails because the page was NOT uptodate, then we will
708  * do a thread based blocking retry of the operation. That's the unexpected
709  * slow path.
710  */
711 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
712 			     int sync, void *arg)
713 {
714 	struct wait_page_queue *wpq;
715 	struct io_kiocb *req = wait->private;
716 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
717 	struct wait_page_key *key = arg;
718 
719 	wpq = container_of(wait, struct wait_page_queue, wait);
720 
721 	if (!wake_page_match(wpq, key))
722 		return 0;
723 
724 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
725 	list_del_init(&wait->entry);
726 	io_req_task_queue(req);
727 	return 1;
728 }
729 
730 /*
731  * This controls whether a given IO request should be armed for async page
732  * based retry. If we return false here, the request is handed to the async
733  * worker threads for retry. If we're doing buffered reads on a regular file,
734  * we prepare a private wait_page_queue entry and retry the operation. This
735  * will either succeed because the page is now uptodate and unlocked, or it
736  * will register a callback when the page is unlocked at IO completion. Through
737  * that callback, io_uring uses task_work to setup a retry of the operation.
738  * That retry will attempt the buffered read again. The retry will generally
739  * succeed, or in rare cases where it fails, we then fall back to using the
740  * async worker threads for a blocking retry.
741  */
742 static bool io_rw_should_retry(struct io_kiocb *req)
743 {
744 	struct io_async_rw *io = req->async_data;
745 	struct wait_page_queue *wait = &io->wpq;
746 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
747 	struct kiocb *kiocb = &rw->kiocb;
748 
749 	/*
750 	 * Never retry for NOWAIT or a request with metadata, we just complete
751 	 * with -EAGAIN.
752 	 */
753 	if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
754 		return false;
755 
756 	/* Only for buffered IO */
757 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
758 		return false;
759 
760 	/*
761 	 * just use poll if we can, and don't attempt if the fs doesn't
762 	 * support callback based unlocks
763 	 */
764 	if (io_file_can_poll(req) ||
765 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
766 		return false;
767 
768 	wait->wait.func = io_async_buf_func;
769 	wait->wait.private = req;
770 	wait->wait.flags = 0;
771 	INIT_LIST_HEAD(&wait->wait.entry);
772 	kiocb->ki_flags |= IOCB_WAITQ;
773 	kiocb->ki_flags &= ~IOCB_NOWAIT;
774 	kiocb->ki_waitq = wait;
775 	return true;
776 }
777 
778 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
779 {
780 	struct file *file = rw->kiocb.ki_filp;
781 
782 	if (likely(file->f_op->read_iter))
783 		return file->f_op->read_iter(&rw->kiocb, iter);
784 	else if (file->f_op->read)
785 		return loop_rw_iter(READ, rw, iter);
786 	else
787 		return -EINVAL;
788 }
789 
790 static bool need_complete_io(struct io_kiocb *req)
791 {
792 	return req->flags & REQ_F_ISREG ||
793 		S_ISBLK(file_inode(req->file)->i_mode);
794 }
795 
796 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
797 {
798 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
799 	struct kiocb *kiocb = &rw->kiocb;
800 	struct io_ring_ctx *ctx = req->ctx;
801 	struct file *file = req->file;
802 	int ret;
803 
804 	if (unlikely(!(file->f_mode & mode)))
805 		return -EBADF;
806 
807 	if (!(req->flags & REQ_F_FIXED_FILE))
808 		req->flags |= io_file_get_flags(file);
809 
810 	kiocb->ki_flags = file->f_iocb_flags;
811 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
812 	if (unlikely(ret))
813 		return ret;
814 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
815 
816 	/*
817 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
818 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
819 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
820 	 */
821 	if (kiocb->ki_flags & IOCB_NOWAIT ||
822 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
823 		req->flags |= REQ_F_NOWAIT;
824 
825 	if (ctx->flags & IORING_SETUP_IOPOLL) {
826 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
827 			return -EOPNOTSUPP;
828 		kiocb->private = NULL;
829 		kiocb->ki_flags |= IOCB_HIPRI;
830 		req->iopoll_completed = 0;
831 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
832 			/* make sure every req only blocks once*/
833 			req->flags &= ~REQ_F_IOPOLL_STATE;
834 			req->iopoll_start = ktime_get_ns();
835 		}
836 	} else {
837 		if (kiocb->ki_flags & IOCB_HIPRI)
838 			return -EINVAL;
839 	}
840 
841 	if (req->flags & REQ_F_HAS_METADATA) {
842 		struct io_async_rw *io = req->async_data;
843 
844 		/*
845 		 * We have a union of meta fields with wpq used for buffered-io
846 		 * in io_async_rw, so fail it here.
847 		 */
848 		if (!(req->file->f_flags & O_DIRECT))
849 			return -EOPNOTSUPP;
850 		kiocb->ki_flags |= IOCB_HAS_METADATA;
851 		kiocb->private = &io->meta;
852 	}
853 
854 	return 0;
855 }
856 
857 static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
858 {
859 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
860 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
861 	struct io_async_rw *io = req->async_data;
862 	struct kiocb *kiocb = &rw->kiocb;
863 	ssize_t ret;
864 	loff_t *ppos;
865 
866 	if (io_do_buffer_select(req)) {
867 		ret = io_import_iovec(ITER_DEST, req, io, issue_flags);
868 		if (unlikely(ret < 0))
869 			return ret;
870 	}
871 	ret = io_rw_init_file(req, FMODE_READ, READ);
872 	if (unlikely(ret))
873 		return ret;
874 	req->cqe.res = iov_iter_count(&io->iter);
875 
876 	if (force_nonblock) {
877 		/* If the file doesn't support async, just async punt */
878 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
879 			return -EAGAIN;
880 		kiocb->ki_flags |= IOCB_NOWAIT;
881 	} else {
882 		/* Ensure we clear previously set non-block flag */
883 		kiocb->ki_flags &= ~IOCB_NOWAIT;
884 	}
885 
886 	ppos = io_kiocb_update_pos(req);
887 
888 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
889 	if (unlikely(ret))
890 		return ret;
891 
892 	ret = io_iter_do_read(rw, &io->iter);
893 
894 	/*
895 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
896 	 * issue, even though they should be returning -EAGAIN. To be safe,
897 	 * retry from blocking context for either.
898 	 */
899 	if (ret == -EOPNOTSUPP && force_nonblock)
900 		ret = -EAGAIN;
901 
902 	if (ret == -EAGAIN) {
903 		/* If we can poll, just do that. */
904 		if (io_file_can_poll(req))
905 			return -EAGAIN;
906 		/* IOPOLL retry should happen for io-wq threads */
907 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
908 			goto done;
909 		/* no retry on NONBLOCK nor RWF_NOWAIT */
910 		if (req->flags & REQ_F_NOWAIT)
911 			goto done;
912 		ret = 0;
913 	} else if (ret == -EIOCBQUEUED) {
914 		return IOU_ISSUE_SKIP_COMPLETE;
915 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
916 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
917 		   (issue_flags & IO_URING_F_MULTISHOT)) {
918 		/* read all, failed, already did sync or don't want to retry */
919 		goto done;
920 	}
921 
922 	/*
923 	 * Don't depend on the iter state matching what was consumed, or being
924 	 * untouched in case of error. Restore it and we'll advance it
925 	 * manually if we need to.
926 	 */
927 	iov_iter_restore(&io->iter, &io->iter_state);
928 	io_meta_restore(io, kiocb);
929 
930 	do {
931 		/*
932 		 * We end up here because of a partial read, either from
933 		 * above or inside this loop. Advance the iter by the bytes
934 		 * that were consumed.
935 		 */
936 		iov_iter_advance(&io->iter, ret);
937 		if (!iov_iter_count(&io->iter))
938 			break;
939 		io->bytes_done += ret;
940 		iov_iter_save_state(&io->iter, &io->iter_state);
941 
942 		/* if we can retry, do so with the callbacks armed */
943 		if (!io_rw_should_retry(req)) {
944 			kiocb->ki_flags &= ~IOCB_WAITQ;
945 			return -EAGAIN;
946 		}
947 
948 		req->cqe.res = iov_iter_count(&io->iter);
949 		/*
950 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
951 		 * we get -EIOCBQUEUED, then we'll get a notification when the
952 		 * desired page gets unlocked. We can also get a partial read
953 		 * here, and if we do, then just retry at the new offset.
954 		 */
955 		ret = io_iter_do_read(rw, &io->iter);
956 		if (ret == -EIOCBQUEUED)
957 			return IOU_ISSUE_SKIP_COMPLETE;
958 		/* we got some bytes, but not all. retry. */
959 		kiocb->ki_flags &= ~IOCB_WAITQ;
960 		iov_iter_restore(&io->iter, &io->iter_state);
961 	} while (ret > 0);
962 done:
963 	/* it's faster to check here then delegate to kfree */
964 	return ret;
965 }
966 
967 int io_read(struct io_kiocb *req, unsigned int issue_flags)
968 {
969 	int ret;
970 
971 	ret = __io_read(req, issue_flags);
972 	if (ret >= 0)
973 		return kiocb_done(req, ret, issue_flags);
974 
975 	return ret;
976 }
977 
978 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
979 {
980 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
981 	unsigned int cflags = 0;
982 	int ret;
983 
984 	/*
985 	 * Multishot MUST be used on a pollable file
986 	 */
987 	if (!io_file_can_poll(req))
988 		return -EBADFD;
989 
990 	/* make it sync, multishot doesn't support async execution */
991 	rw->kiocb.ki_complete = NULL;
992 	ret = __io_read(req, issue_flags);
993 
994 	/*
995 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
996 	 * handling arm it.
997 	 */
998 	if (ret == -EAGAIN) {
999 		/*
1000 		 * Reset rw->len to 0 again to avoid clamping future mshot
1001 		 * reads, in case the buffer size varies.
1002 		 */
1003 		if (io_kbuf_recycle(req, issue_flags))
1004 			rw->len = 0;
1005 		if (issue_flags & IO_URING_F_MULTISHOT)
1006 			return IOU_ISSUE_SKIP_COMPLETE;
1007 		return -EAGAIN;
1008 	} else if (ret <= 0) {
1009 		io_kbuf_recycle(req, issue_flags);
1010 		if (ret < 0)
1011 			req_set_fail(req);
1012 	} else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1013 		cflags = io_put_kbuf(req, ret, issue_flags);
1014 	} else {
1015 		/*
1016 		 * Any successful return value will keep the multishot read
1017 		 * armed, if it's still set. Put our buffer and post a CQE. If
1018 		 * we fail to post a CQE, or multishot is no longer set, then
1019 		 * jump to the termination path. This request is then done.
1020 		 */
1021 		cflags = io_put_kbuf(req, ret, issue_flags);
1022 		rw->len = 0; /* similarly to above, reset len to 0 */
1023 
1024 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1025 			if (issue_flags & IO_URING_F_MULTISHOT) {
1026 				/*
1027 				 * Force retry, as we might have more data to
1028 				 * be read and otherwise it won't get retried
1029 				 * until (if ever) another poll is triggered.
1030 				 */
1031 				io_poll_multishot_retry(req);
1032 				return IOU_ISSUE_SKIP_COMPLETE;
1033 			}
1034 			return -EAGAIN;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Either an error, or we've hit overflow posting the CQE. For any
1040 	 * multishot request, hitting overflow will terminate it.
1041 	 */
1042 	io_req_set_res(req, ret, cflags);
1043 	io_req_rw_cleanup(req, issue_flags);
1044 	if (issue_flags & IO_URING_F_MULTISHOT)
1045 		return IOU_STOP_MULTISHOT;
1046 	return IOU_OK;
1047 }
1048 
1049 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1050 {
1051 	struct inode *inode;
1052 	bool ret;
1053 
1054 	if (!(req->flags & REQ_F_ISREG))
1055 		return true;
1056 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1057 		kiocb_start_write(kiocb);
1058 		return true;
1059 	}
1060 
1061 	inode = file_inode(kiocb->ki_filp);
1062 	ret = sb_start_write_trylock(inode->i_sb);
1063 	if (ret)
1064 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1065 	return ret;
1066 }
1067 
1068 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1069 {
1070 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1071 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1072 	struct io_async_rw *io = req->async_data;
1073 	struct kiocb *kiocb = &rw->kiocb;
1074 	ssize_t ret, ret2;
1075 	loff_t *ppos;
1076 
1077 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1078 	if (unlikely(ret))
1079 		return ret;
1080 	req->cqe.res = iov_iter_count(&io->iter);
1081 
1082 	if (force_nonblock) {
1083 		/* If the file doesn't support async, just async punt */
1084 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1085 			goto ret_eagain;
1086 
1087 		/* Check if we can support NOWAIT. */
1088 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1089 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1090 		    (req->flags & REQ_F_ISREG))
1091 			goto ret_eagain;
1092 
1093 		kiocb->ki_flags |= IOCB_NOWAIT;
1094 	} else {
1095 		/* Ensure we clear previously set non-block flag */
1096 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1097 	}
1098 
1099 	ppos = io_kiocb_update_pos(req);
1100 
1101 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1102 	if (unlikely(ret))
1103 		return ret;
1104 
1105 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1106 		return -EAGAIN;
1107 	kiocb->ki_flags |= IOCB_WRITE;
1108 
1109 	if (likely(req->file->f_op->write_iter))
1110 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1111 	else if (req->file->f_op->write)
1112 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1113 	else
1114 		ret2 = -EINVAL;
1115 
1116 	/*
1117 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1118 	 * retry them without IOCB_NOWAIT.
1119 	 */
1120 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1121 		ret2 = -EAGAIN;
1122 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1123 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1124 		goto done;
1125 	if (!force_nonblock || ret2 != -EAGAIN) {
1126 		/* IOPOLL retry should happen for io-wq threads */
1127 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1128 			goto ret_eagain;
1129 
1130 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1131 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1132 						req->cqe.res, ret2);
1133 
1134 			/* This is a partial write. The file pos has already been
1135 			 * updated, setup the async struct to complete the request
1136 			 * in the worker. Also update bytes_done to account for
1137 			 * the bytes already written.
1138 			 */
1139 			iov_iter_save_state(&io->iter, &io->iter_state);
1140 			io->bytes_done += ret2;
1141 
1142 			if (kiocb->ki_flags & IOCB_WRITE)
1143 				io_req_end_write(req);
1144 			return -EAGAIN;
1145 		}
1146 done:
1147 		return kiocb_done(req, ret2, issue_flags);
1148 	} else {
1149 ret_eagain:
1150 		iov_iter_restore(&io->iter, &io->iter_state);
1151 		io_meta_restore(io, kiocb);
1152 		if (kiocb->ki_flags & IOCB_WRITE)
1153 			io_req_end_write(req);
1154 		return -EAGAIN;
1155 	}
1156 }
1157 
1158 void io_rw_fail(struct io_kiocb *req)
1159 {
1160 	int res;
1161 
1162 	res = io_fixup_rw_res(req, req->cqe.res);
1163 	io_req_set_res(req, res, req->cqe.flags);
1164 }
1165 
1166 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1167 				unsigned int poll_flags)
1168 {
1169 	struct file *file = req->file;
1170 
1171 	if (req->opcode == IORING_OP_URING_CMD) {
1172 		struct io_uring_cmd *ioucmd;
1173 
1174 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1175 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1176 	} else {
1177 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1178 
1179 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1180 	}
1181 }
1182 
1183 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1184 {
1185 	struct hrtimer_sleeper timer;
1186 	enum hrtimer_mode mode;
1187 	ktime_t kt;
1188 	u64 sleep_time;
1189 
1190 	if (req->flags & REQ_F_IOPOLL_STATE)
1191 		return 0;
1192 
1193 	if (ctx->hybrid_poll_time == LLONG_MAX)
1194 		return 0;
1195 
1196 	/* Using half the running time to do schedule */
1197 	sleep_time = ctx->hybrid_poll_time / 2;
1198 
1199 	kt = ktime_set(0, sleep_time);
1200 	req->flags |= REQ_F_IOPOLL_STATE;
1201 
1202 	mode = HRTIMER_MODE_REL;
1203 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1204 	hrtimer_set_expires(&timer.timer, kt);
1205 	set_current_state(TASK_INTERRUPTIBLE);
1206 	hrtimer_sleeper_start_expires(&timer, mode);
1207 
1208 	if (timer.task)
1209 		io_schedule();
1210 
1211 	hrtimer_cancel(&timer.timer);
1212 	__set_current_state(TASK_RUNNING);
1213 	destroy_hrtimer_on_stack(&timer.timer);
1214 	return sleep_time;
1215 }
1216 
1217 static int io_uring_hybrid_poll(struct io_kiocb *req,
1218 				struct io_comp_batch *iob, unsigned int poll_flags)
1219 {
1220 	struct io_ring_ctx *ctx = req->ctx;
1221 	u64 runtime, sleep_time;
1222 	int ret;
1223 
1224 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1225 	ret = io_uring_classic_poll(req, iob, poll_flags);
1226 	runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1227 
1228 	/*
1229 	 * Use minimum sleep time if we're polling devices with different
1230 	 * latencies. We could get more completions from the faster ones.
1231 	 */
1232 	if (ctx->hybrid_poll_time > runtime)
1233 		ctx->hybrid_poll_time = runtime;
1234 
1235 	return ret;
1236 }
1237 
1238 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1239 {
1240 	struct io_wq_work_node *pos, *start, *prev;
1241 	unsigned int poll_flags = 0;
1242 	DEFINE_IO_COMP_BATCH(iob);
1243 	int nr_events = 0;
1244 
1245 	/*
1246 	 * Only spin for completions if we don't have multiple devices hanging
1247 	 * off our complete list.
1248 	 */
1249 	if (ctx->poll_multi_queue || force_nonspin)
1250 		poll_flags |= BLK_POLL_ONESHOT;
1251 
1252 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1253 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1254 		int ret;
1255 
1256 		/*
1257 		 * Move completed and retryable entries to our local lists.
1258 		 * If we find a request that requires polling, break out
1259 		 * and complete those lists first, if we have entries there.
1260 		 */
1261 		if (READ_ONCE(req->iopoll_completed))
1262 			break;
1263 
1264 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1265 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1266 		else
1267 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1268 
1269 		if (unlikely(ret < 0))
1270 			return ret;
1271 		else if (ret)
1272 			poll_flags |= BLK_POLL_ONESHOT;
1273 
1274 		/* iopoll may have completed current req */
1275 		if (!rq_list_empty(&iob.req_list) ||
1276 		    READ_ONCE(req->iopoll_completed))
1277 			break;
1278 	}
1279 
1280 	if (!rq_list_empty(&iob.req_list))
1281 		iob.complete(&iob);
1282 	else if (!pos)
1283 		return 0;
1284 
1285 	prev = start;
1286 	wq_list_for_each_resume(pos, prev) {
1287 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1288 
1289 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1290 		if (!smp_load_acquire(&req->iopoll_completed))
1291 			break;
1292 		nr_events++;
1293 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
1294 		if (req->opcode != IORING_OP_URING_CMD)
1295 			io_req_rw_cleanup(req, 0);
1296 	}
1297 	if (unlikely(!nr_events))
1298 		return 0;
1299 
1300 	pos = start ? start->next : ctx->iopoll_list.first;
1301 	wq_list_cut(&ctx->iopoll_list, prev, start);
1302 
1303 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1304 		return 0;
1305 	ctx->submit_state.compl_reqs.first = pos;
1306 	__io_submit_flush_completions(ctx);
1307 	return nr_events;
1308 }
1309 
1310 void io_rw_cache_free(const void *entry)
1311 {
1312 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1313 
1314 	if (rw->free_iovec)
1315 		kfree(rw->free_iovec);
1316 	kfree(rw);
1317 }
1318