1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/blk-mq.h> 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/fsnotify.h> 10 #include <linux/poll.h> 11 #include <linux/nospec.h> 12 #include <linux/compat.h> 13 #include <linux/io_uring/cmd.h> 14 #include <linux/indirect_call_wrapper.h> 15 16 #include <uapi/linux/io_uring.h> 17 18 #include "io_uring.h" 19 #include "opdef.h" 20 #include "kbuf.h" 21 #include "alloc_cache.h" 22 #include "rsrc.h" 23 #include "poll.h" 24 #include "rw.h" 25 26 struct io_rw { 27 /* NOTE: kiocb has the file as the first member, so don't do it here */ 28 struct kiocb kiocb; 29 u64 addr; 30 u32 len; 31 rwf_t flags; 32 }; 33 34 static inline bool io_file_supports_nowait(struct io_kiocb *req) 35 { 36 return req->flags & REQ_F_SUPPORT_NOWAIT; 37 } 38 39 #ifdef CONFIG_COMPAT 40 static int io_iov_compat_buffer_select_prep(struct io_rw *rw) 41 { 42 struct compat_iovec __user *uiov; 43 compat_ssize_t clen; 44 45 uiov = u64_to_user_ptr(rw->addr); 46 if (!access_ok(uiov, sizeof(*uiov))) 47 return -EFAULT; 48 if (__get_user(clen, &uiov->iov_len)) 49 return -EFAULT; 50 if (clen < 0) 51 return -EINVAL; 52 53 rw->len = clen; 54 return 0; 55 } 56 #endif 57 58 static int io_iov_buffer_select_prep(struct io_kiocb *req) 59 { 60 struct iovec __user *uiov; 61 struct iovec iov; 62 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 63 64 if (rw->len != 1) 65 return -EINVAL; 66 67 #ifdef CONFIG_COMPAT 68 if (req->ctx->compat) 69 return io_iov_compat_buffer_select_prep(rw); 70 #endif 71 72 uiov = u64_to_user_ptr(rw->addr); 73 if (copy_from_user(&iov, uiov, sizeof(*uiov))) 74 return -EFAULT; 75 rw->len = iov.iov_len; 76 return 0; 77 } 78 79 static int __io_import_iovec(int ddir, struct io_kiocb *req, 80 struct io_async_rw *io, 81 unsigned int issue_flags) 82 { 83 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 84 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 85 struct iovec *iov; 86 void __user *buf; 87 int nr_segs, ret; 88 size_t sqe_len; 89 90 buf = u64_to_user_ptr(rw->addr); 91 sqe_len = rw->len; 92 93 if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) { 94 if (io_do_buffer_select(req)) { 95 buf = io_buffer_select(req, &sqe_len, issue_flags); 96 if (!buf) 97 return -ENOBUFS; 98 rw->addr = (unsigned long) buf; 99 rw->len = sqe_len; 100 } 101 102 return import_ubuf(ddir, buf, sqe_len, &io->iter); 103 } 104 105 if (io->free_iovec) { 106 nr_segs = io->free_iov_nr; 107 iov = io->free_iovec; 108 } else { 109 iov = &io->fast_iov; 110 nr_segs = 1; 111 } 112 ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter, 113 req->ctx->compat); 114 if (unlikely(ret < 0)) 115 return ret; 116 if (iov) { 117 req->flags |= REQ_F_NEED_CLEANUP; 118 io->free_iov_nr = io->iter.nr_segs; 119 kfree(io->free_iovec); 120 io->free_iovec = iov; 121 } 122 return 0; 123 } 124 125 static inline int io_import_iovec(int rw, struct io_kiocb *req, 126 struct io_async_rw *io, 127 unsigned int issue_flags) 128 { 129 int ret; 130 131 ret = __io_import_iovec(rw, req, io, issue_flags); 132 if (unlikely(ret < 0)) 133 return ret; 134 135 iov_iter_save_state(&io->iter, &io->iter_state); 136 return 0; 137 } 138 139 static void io_rw_iovec_free(struct io_async_rw *rw) 140 { 141 if (rw->free_iovec) { 142 kfree(rw->free_iovec); 143 rw->free_iov_nr = 0; 144 rw->free_iovec = NULL; 145 } 146 } 147 148 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) 149 { 150 struct io_async_rw *rw = req->async_data; 151 struct iovec *iov; 152 153 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) { 154 io_rw_iovec_free(rw); 155 return; 156 } 157 iov = rw->free_iovec; 158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) { 159 if (iov) 160 kasan_mempool_poison_object(iov); 161 req->async_data = NULL; 162 req->flags &= ~REQ_F_ASYNC_DATA; 163 } 164 } 165 166 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) 167 { 168 /* 169 * Disable quick recycling for anything that's gone through io-wq. 170 * In theory, this should be fine to cleanup. However, some read or 171 * write iter handling touches the iovec AFTER having called into the 172 * handler, eg to reexpand or revert. This means we can have: 173 * 174 * task io-wq 175 * issue 176 * punt to io-wq 177 * issue 178 * blkdev_write_iter() 179 * ->ki_complete() 180 * io_complete_rw() 181 * queue tw complete 182 * run tw 183 * req_rw_cleanup 184 * iov_iter_count() <- look at iov_iter again 185 * 186 * which can lead to a UAF. This is only possible for io-wq offload 187 * as the cleanup can run in parallel. As io-wq is not the fast path, 188 * just leave cleanup to the end. 189 * 190 * This is really a bug in the core code that does this, any issue 191 * path should assume that a successful (or -EIOCBQUEUED) return can 192 * mean that the underlying data can be gone at any time. But that 193 * should be fixed seperately, and then this check could be killed. 194 */ 195 if (!(req->flags & REQ_F_REFCOUNT)) { 196 req->flags &= ~REQ_F_NEED_CLEANUP; 197 io_rw_recycle(req, issue_flags); 198 } 199 } 200 201 static int io_rw_alloc_async(struct io_kiocb *req) 202 { 203 struct io_ring_ctx *ctx = req->ctx; 204 struct io_async_rw *rw; 205 206 rw = io_alloc_cache_get(&ctx->rw_cache); 207 if (rw) { 208 if (rw->free_iovec) { 209 kasan_mempool_unpoison_object(rw->free_iovec, 210 rw->free_iov_nr * sizeof(struct iovec)); 211 req->flags |= REQ_F_NEED_CLEANUP; 212 } 213 req->flags |= REQ_F_ASYNC_DATA; 214 req->async_data = rw; 215 goto done; 216 } 217 218 if (!io_alloc_async_data(req)) { 219 rw = req->async_data; 220 rw->free_iovec = NULL; 221 rw->free_iov_nr = 0; 222 done: 223 rw->bytes_done = 0; 224 return 0; 225 } 226 227 return -ENOMEM; 228 } 229 230 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import) 231 { 232 struct io_async_rw *rw; 233 int ret; 234 235 if (io_rw_alloc_async(req)) 236 return -ENOMEM; 237 238 if (!do_import || io_do_buffer_select(req)) 239 return 0; 240 241 rw = req->async_data; 242 ret = io_import_iovec(ddir, req, rw, 0); 243 if (unlikely(ret < 0)) 244 return ret; 245 246 iov_iter_save_state(&rw->iter, &rw->iter_state); 247 return 0; 248 } 249 250 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 251 int ddir, bool do_import) 252 { 253 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 254 unsigned ioprio; 255 int ret; 256 257 rw->kiocb.ki_pos = READ_ONCE(sqe->off); 258 /* used for fixed read/write too - just read unconditionally */ 259 req->buf_index = READ_ONCE(sqe->buf_index); 260 261 ioprio = READ_ONCE(sqe->ioprio); 262 if (ioprio) { 263 ret = ioprio_check_cap(ioprio); 264 if (ret) 265 return ret; 266 267 rw->kiocb.ki_ioprio = ioprio; 268 } else { 269 rw->kiocb.ki_ioprio = get_current_ioprio(); 270 } 271 rw->kiocb.dio_complete = NULL; 272 273 rw->addr = READ_ONCE(sqe->addr); 274 rw->len = READ_ONCE(sqe->len); 275 rw->flags = READ_ONCE(sqe->rw_flags); 276 return io_prep_rw_setup(req, ddir, do_import); 277 } 278 279 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) 280 { 281 return io_prep_rw(req, sqe, ITER_DEST, true); 282 } 283 284 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) 285 { 286 return io_prep_rw(req, sqe, ITER_SOURCE, true); 287 } 288 289 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, 290 int ddir) 291 { 292 const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT); 293 int ret; 294 295 ret = io_prep_rw(req, sqe, ddir, do_import); 296 if (unlikely(ret)) 297 return ret; 298 if (do_import) 299 return 0; 300 301 /* 302 * Have to do this validation here, as this is in io_read() rw->len 303 * might have chanaged due to buffer selection 304 */ 305 return io_iov_buffer_select_prep(req); 306 } 307 308 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) 309 { 310 return io_prep_rwv(req, sqe, ITER_DEST); 311 } 312 313 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) 314 { 315 return io_prep_rwv(req, sqe, ITER_SOURCE); 316 } 317 318 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe, 319 int ddir) 320 { 321 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 322 struct io_ring_ctx *ctx = req->ctx; 323 struct io_async_rw *io; 324 u16 index; 325 int ret; 326 327 ret = io_prep_rw(req, sqe, ddir, false); 328 if (unlikely(ret)) 329 return ret; 330 331 if (unlikely(req->buf_index >= ctx->nr_user_bufs)) 332 return -EFAULT; 333 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs); 334 req->imu = ctx->user_bufs[index]; 335 io_req_set_rsrc_node(req, ctx, 0); 336 337 io = req->async_data; 338 ret = io_import_fixed(ddir, &io->iter, req->imu, rw->addr, rw->len); 339 iov_iter_save_state(&io->iter, &io->iter_state); 340 return ret; 341 } 342 343 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 344 { 345 return io_prep_rw_fixed(req, sqe, ITER_DEST); 346 } 347 348 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 349 { 350 return io_prep_rw_fixed(req, sqe, ITER_SOURCE); 351 } 352 353 /* 354 * Multishot read is prepared just like a normal read/write request, only 355 * difference is that we set the MULTISHOT flag. 356 */ 357 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 358 { 359 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 360 int ret; 361 362 /* must be used with provided buffers */ 363 if (!(req->flags & REQ_F_BUFFER_SELECT)) 364 return -EINVAL; 365 366 ret = io_prep_rw(req, sqe, ITER_DEST, false); 367 if (unlikely(ret)) 368 return ret; 369 370 if (rw->addr || rw->len) 371 return -EINVAL; 372 373 req->flags |= REQ_F_APOLL_MULTISHOT; 374 return 0; 375 } 376 377 void io_readv_writev_cleanup(struct io_kiocb *req) 378 { 379 io_rw_iovec_free(req->async_data); 380 } 381 382 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) 383 { 384 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 385 386 if (rw->kiocb.ki_pos != -1) 387 return &rw->kiocb.ki_pos; 388 389 if (!(req->file->f_mode & FMODE_STREAM)) { 390 req->flags |= REQ_F_CUR_POS; 391 rw->kiocb.ki_pos = req->file->f_pos; 392 return &rw->kiocb.ki_pos; 393 } 394 395 rw->kiocb.ki_pos = 0; 396 return NULL; 397 } 398 399 #ifdef CONFIG_BLOCK 400 static void io_resubmit_prep(struct io_kiocb *req) 401 { 402 struct io_async_rw *io = req->async_data; 403 404 iov_iter_restore(&io->iter, &io->iter_state); 405 } 406 407 static bool io_rw_should_reissue(struct io_kiocb *req) 408 { 409 umode_t mode = file_inode(req->file)->i_mode; 410 struct io_ring_ctx *ctx = req->ctx; 411 412 if (!S_ISBLK(mode) && !S_ISREG(mode)) 413 return false; 414 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && 415 !(ctx->flags & IORING_SETUP_IOPOLL))) 416 return false; 417 /* 418 * If ref is dying, we might be running poll reap from the exit work. 419 * Don't attempt to reissue from that path, just let it fail with 420 * -EAGAIN. 421 */ 422 if (percpu_ref_is_dying(&ctx->refs)) 423 return false; 424 /* 425 * Play it safe and assume not safe to re-import and reissue if we're 426 * not in the original thread group (or in task context). 427 */ 428 if (!same_thread_group(req->task, current) || !in_task()) 429 return false; 430 return true; 431 } 432 #else 433 static void io_resubmit_prep(struct io_kiocb *req) 434 { 435 } 436 static bool io_rw_should_reissue(struct io_kiocb *req) 437 { 438 return false; 439 } 440 #endif 441 442 static void io_req_end_write(struct io_kiocb *req) 443 { 444 if (req->flags & REQ_F_ISREG) { 445 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 446 447 kiocb_end_write(&rw->kiocb); 448 } 449 } 450 451 /* 452 * Trigger the notifications after having done some IO, and finish the write 453 * accounting, if any. 454 */ 455 static void io_req_io_end(struct io_kiocb *req) 456 { 457 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 458 459 if (rw->kiocb.ki_flags & IOCB_WRITE) { 460 io_req_end_write(req); 461 fsnotify_modify(req->file); 462 } else { 463 fsnotify_access(req->file); 464 } 465 } 466 467 static bool __io_complete_rw_common(struct io_kiocb *req, long res) 468 { 469 if (unlikely(res != req->cqe.res)) { 470 if ((res == -EAGAIN || res == -EOPNOTSUPP) && 471 io_rw_should_reissue(req)) { 472 /* 473 * Reissue will start accounting again, finish the 474 * current cycle. 475 */ 476 io_req_io_end(req); 477 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 478 return true; 479 } 480 req_set_fail(req); 481 req->cqe.res = res; 482 } 483 return false; 484 } 485 486 static inline int io_fixup_rw_res(struct io_kiocb *req, long res) 487 { 488 struct io_async_rw *io = req->async_data; 489 490 /* add previously done IO, if any */ 491 if (req_has_async_data(req) && io->bytes_done > 0) { 492 if (res < 0) 493 res = io->bytes_done; 494 else 495 res += io->bytes_done; 496 } 497 return res; 498 } 499 500 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts) 501 { 502 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 503 struct kiocb *kiocb = &rw->kiocb; 504 505 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) { 506 long res = kiocb->dio_complete(rw->kiocb.private); 507 508 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 509 } 510 511 io_req_io_end(req); 512 513 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) 514 req->cqe.flags |= io_put_kbuf(req, 0); 515 516 io_req_rw_cleanup(req, 0); 517 io_req_task_complete(req, ts); 518 } 519 520 static void io_complete_rw(struct kiocb *kiocb, long res) 521 { 522 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 523 struct io_kiocb *req = cmd_to_io_kiocb(rw); 524 525 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) { 526 if (__io_complete_rw_common(req, res)) 527 return; 528 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 529 } 530 req->io_task_work.func = io_req_rw_complete; 531 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); 532 } 533 534 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) 535 { 536 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 537 struct io_kiocb *req = cmd_to_io_kiocb(rw); 538 539 if (kiocb->ki_flags & IOCB_WRITE) 540 io_req_end_write(req); 541 if (unlikely(res != req->cqe.res)) { 542 if (res == -EAGAIN && io_rw_should_reissue(req)) { 543 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 544 return; 545 } 546 req->cqe.res = res; 547 } 548 549 /* order with io_iopoll_complete() checking ->iopoll_completed */ 550 smp_store_release(&req->iopoll_completed, 1); 551 } 552 553 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) 554 { 555 /* IO was queued async, completion will happen later */ 556 if (ret == -EIOCBQUEUED) 557 return; 558 559 /* transform internal restart error codes */ 560 if (unlikely(ret < 0)) { 561 switch (ret) { 562 case -ERESTARTSYS: 563 case -ERESTARTNOINTR: 564 case -ERESTARTNOHAND: 565 case -ERESTART_RESTARTBLOCK: 566 /* 567 * We can't just restart the syscall, since previously 568 * submitted sqes may already be in progress. Just fail 569 * this IO with EINTR. 570 */ 571 ret = -EINTR; 572 break; 573 } 574 } 575 576 INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll, 577 io_complete_rw, kiocb, ret); 578 } 579 580 static int kiocb_done(struct io_kiocb *req, ssize_t ret, 581 unsigned int issue_flags) 582 { 583 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 584 unsigned final_ret = io_fixup_rw_res(req, ret); 585 586 if (ret >= 0 && req->flags & REQ_F_CUR_POS) 587 req->file->f_pos = rw->kiocb.ki_pos; 588 if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) { 589 if (!__io_complete_rw_common(req, ret)) { 590 /* 591 * Safe to call io_end from here as we're inline 592 * from the submission path. 593 */ 594 io_req_io_end(req); 595 io_req_set_res(req, final_ret, 596 io_put_kbuf(req, issue_flags)); 597 io_req_rw_cleanup(req, issue_flags); 598 return IOU_OK; 599 } 600 } else { 601 io_rw_done(&rw->kiocb, ret); 602 } 603 604 if (req->flags & REQ_F_REISSUE) { 605 req->flags &= ~REQ_F_REISSUE; 606 io_resubmit_prep(req); 607 return -EAGAIN; 608 } 609 return IOU_ISSUE_SKIP_COMPLETE; 610 } 611 612 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) 613 { 614 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; 615 } 616 617 /* 618 * For files that don't have ->read_iter() and ->write_iter(), handle them 619 * by looping over ->read() or ->write() manually. 620 */ 621 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) 622 { 623 struct kiocb *kiocb = &rw->kiocb; 624 struct file *file = kiocb->ki_filp; 625 ssize_t ret = 0; 626 loff_t *ppos; 627 628 /* 629 * Don't support polled IO through this interface, and we can't 630 * support non-blocking either. For the latter, this just causes 631 * the kiocb to be handled from an async context. 632 */ 633 if (kiocb->ki_flags & IOCB_HIPRI) 634 return -EOPNOTSUPP; 635 if ((kiocb->ki_flags & IOCB_NOWAIT) && 636 !(kiocb->ki_filp->f_flags & O_NONBLOCK)) 637 return -EAGAIN; 638 639 ppos = io_kiocb_ppos(kiocb); 640 641 while (iov_iter_count(iter)) { 642 void __user *addr; 643 size_t len; 644 ssize_t nr; 645 646 if (iter_is_ubuf(iter)) { 647 addr = iter->ubuf + iter->iov_offset; 648 len = iov_iter_count(iter); 649 } else if (!iov_iter_is_bvec(iter)) { 650 addr = iter_iov_addr(iter); 651 len = iter_iov_len(iter); 652 } else { 653 addr = u64_to_user_ptr(rw->addr); 654 len = rw->len; 655 } 656 657 if (ddir == READ) 658 nr = file->f_op->read(file, addr, len, ppos); 659 else 660 nr = file->f_op->write(file, addr, len, ppos); 661 662 if (nr < 0) { 663 if (!ret) 664 ret = nr; 665 break; 666 } 667 ret += nr; 668 if (!iov_iter_is_bvec(iter)) { 669 iov_iter_advance(iter, nr); 670 } else { 671 rw->addr += nr; 672 rw->len -= nr; 673 if (!rw->len) 674 break; 675 } 676 if (nr != len) 677 break; 678 } 679 680 return ret; 681 } 682 683 /* 684 * This is our waitqueue callback handler, registered through __folio_lock_async() 685 * when we initially tried to do the IO with the iocb armed our waitqueue. 686 * This gets called when the page is unlocked, and we generally expect that to 687 * happen when the page IO is completed and the page is now uptodate. This will 688 * queue a task_work based retry of the operation, attempting to copy the data 689 * again. If the latter fails because the page was NOT uptodate, then we will 690 * do a thread based blocking retry of the operation. That's the unexpected 691 * slow path. 692 */ 693 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, 694 int sync, void *arg) 695 { 696 struct wait_page_queue *wpq; 697 struct io_kiocb *req = wait->private; 698 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 699 struct wait_page_key *key = arg; 700 701 wpq = container_of(wait, struct wait_page_queue, wait); 702 703 if (!wake_page_match(wpq, key)) 704 return 0; 705 706 rw->kiocb.ki_flags &= ~IOCB_WAITQ; 707 list_del_init(&wait->entry); 708 io_req_task_queue(req); 709 return 1; 710 } 711 712 /* 713 * This controls whether a given IO request should be armed for async page 714 * based retry. If we return false here, the request is handed to the async 715 * worker threads for retry. If we're doing buffered reads on a regular file, 716 * we prepare a private wait_page_queue entry and retry the operation. This 717 * will either succeed because the page is now uptodate and unlocked, or it 718 * will register a callback when the page is unlocked at IO completion. Through 719 * that callback, io_uring uses task_work to setup a retry of the operation. 720 * That retry will attempt the buffered read again. The retry will generally 721 * succeed, or in rare cases where it fails, we then fall back to using the 722 * async worker threads for a blocking retry. 723 */ 724 static bool io_rw_should_retry(struct io_kiocb *req) 725 { 726 struct io_async_rw *io = req->async_data; 727 struct wait_page_queue *wait = &io->wpq; 728 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 729 struct kiocb *kiocb = &rw->kiocb; 730 731 /* never retry for NOWAIT, we just complete with -EAGAIN */ 732 if (req->flags & REQ_F_NOWAIT) 733 return false; 734 735 /* Only for buffered IO */ 736 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) 737 return false; 738 739 /* 740 * just use poll if we can, and don't attempt if the fs doesn't 741 * support callback based unlocks 742 */ 743 if (io_file_can_poll(req) || 744 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC)) 745 return false; 746 747 wait->wait.func = io_async_buf_func; 748 wait->wait.private = req; 749 wait->wait.flags = 0; 750 INIT_LIST_HEAD(&wait->wait.entry); 751 kiocb->ki_flags |= IOCB_WAITQ; 752 kiocb->ki_flags &= ~IOCB_NOWAIT; 753 kiocb->ki_waitq = wait; 754 return true; 755 } 756 757 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) 758 { 759 struct file *file = rw->kiocb.ki_filp; 760 761 if (likely(file->f_op->read_iter)) 762 return file->f_op->read_iter(&rw->kiocb, iter); 763 else if (file->f_op->read) 764 return loop_rw_iter(READ, rw, iter); 765 else 766 return -EINVAL; 767 } 768 769 static bool need_complete_io(struct io_kiocb *req) 770 { 771 return req->flags & REQ_F_ISREG || 772 S_ISBLK(file_inode(req->file)->i_mode); 773 } 774 775 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type) 776 { 777 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 778 struct kiocb *kiocb = &rw->kiocb; 779 struct io_ring_ctx *ctx = req->ctx; 780 struct file *file = req->file; 781 int ret; 782 783 if (unlikely(!(file->f_mode & mode))) 784 return -EBADF; 785 786 if (!(req->flags & REQ_F_FIXED_FILE)) 787 req->flags |= io_file_get_flags(file); 788 789 kiocb->ki_flags = file->f_iocb_flags; 790 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type); 791 if (unlikely(ret)) 792 return ret; 793 kiocb->ki_flags |= IOCB_ALLOC_CACHE; 794 795 /* 796 * If the file is marked O_NONBLOCK, still allow retry for it if it 797 * supports async. Otherwise it's impossible to use O_NONBLOCK files 798 * reliably. If not, or it IOCB_NOWAIT is set, don't retry. 799 */ 800 if ((kiocb->ki_flags & IOCB_NOWAIT) || 801 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req))) 802 req->flags |= REQ_F_NOWAIT; 803 804 if (ctx->flags & IORING_SETUP_IOPOLL) { 805 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) 806 return -EOPNOTSUPP; 807 808 kiocb->private = NULL; 809 kiocb->ki_flags |= IOCB_HIPRI; 810 kiocb->ki_complete = io_complete_rw_iopoll; 811 req->iopoll_completed = 0; 812 } else { 813 if (kiocb->ki_flags & IOCB_HIPRI) 814 return -EINVAL; 815 kiocb->ki_complete = io_complete_rw; 816 } 817 818 return 0; 819 } 820 821 static int __io_read(struct io_kiocb *req, unsigned int issue_flags) 822 { 823 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 824 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 825 struct io_async_rw *io = req->async_data; 826 struct kiocb *kiocb = &rw->kiocb; 827 ssize_t ret; 828 loff_t *ppos; 829 830 if (io_do_buffer_select(req)) { 831 ret = io_import_iovec(ITER_DEST, req, io, issue_flags); 832 if (unlikely(ret < 0)) 833 return ret; 834 } 835 ret = io_rw_init_file(req, FMODE_READ, READ); 836 if (unlikely(ret)) 837 return ret; 838 req->cqe.res = iov_iter_count(&io->iter); 839 840 if (force_nonblock) { 841 /* If the file doesn't support async, just async punt */ 842 if (unlikely(!io_file_supports_nowait(req))) 843 return -EAGAIN; 844 kiocb->ki_flags |= IOCB_NOWAIT; 845 } else { 846 /* Ensure we clear previously set non-block flag */ 847 kiocb->ki_flags &= ~IOCB_NOWAIT; 848 } 849 850 ppos = io_kiocb_update_pos(req); 851 852 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); 853 if (unlikely(ret)) 854 return ret; 855 856 ret = io_iter_do_read(rw, &io->iter); 857 858 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) { 859 req->flags &= ~REQ_F_REISSUE; 860 /* If we can poll, just do that. */ 861 if (io_file_can_poll(req)) 862 return -EAGAIN; 863 /* IOPOLL retry should happen for io-wq threads */ 864 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) 865 goto done; 866 /* no retry on NONBLOCK nor RWF_NOWAIT */ 867 if (req->flags & REQ_F_NOWAIT) 868 goto done; 869 ret = 0; 870 } else if (ret == -EIOCBQUEUED) { 871 return IOU_ISSUE_SKIP_COMPLETE; 872 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || 873 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) { 874 /* read all, failed, already did sync or don't want to retry */ 875 goto done; 876 } 877 878 /* 879 * Don't depend on the iter state matching what was consumed, or being 880 * untouched in case of error. Restore it and we'll advance it 881 * manually if we need to. 882 */ 883 iov_iter_restore(&io->iter, &io->iter_state); 884 885 do { 886 /* 887 * We end up here because of a partial read, either from 888 * above or inside this loop. Advance the iter by the bytes 889 * that were consumed. 890 */ 891 iov_iter_advance(&io->iter, ret); 892 if (!iov_iter_count(&io->iter)) 893 break; 894 io->bytes_done += ret; 895 iov_iter_save_state(&io->iter, &io->iter_state); 896 897 /* if we can retry, do so with the callbacks armed */ 898 if (!io_rw_should_retry(req)) { 899 kiocb->ki_flags &= ~IOCB_WAITQ; 900 return -EAGAIN; 901 } 902 903 req->cqe.res = iov_iter_count(&io->iter); 904 /* 905 * Now retry read with the IOCB_WAITQ parts set in the iocb. If 906 * we get -EIOCBQUEUED, then we'll get a notification when the 907 * desired page gets unlocked. We can also get a partial read 908 * here, and if we do, then just retry at the new offset. 909 */ 910 ret = io_iter_do_read(rw, &io->iter); 911 if (ret == -EIOCBQUEUED) 912 return IOU_ISSUE_SKIP_COMPLETE; 913 /* we got some bytes, but not all. retry. */ 914 kiocb->ki_flags &= ~IOCB_WAITQ; 915 iov_iter_restore(&io->iter, &io->iter_state); 916 } while (ret > 0); 917 done: 918 /* it's faster to check here then delegate to kfree */ 919 return ret; 920 } 921 922 int io_read(struct io_kiocb *req, unsigned int issue_flags) 923 { 924 int ret; 925 926 ret = __io_read(req, issue_flags); 927 if (ret >= 0) 928 return kiocb_done(req, ret, issue_flags); 929 930 return ret; 931 } 932 933 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) 934 { 935 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 936 unsigned int cflags = 0; 937 int ret; 938 939 /* 940 * Multishot MUST be used on a pollable file 941 */ 942 if (!io_file_can_poll(req)) 943 return -EBADFD; 944 945 ret = __io_read(req, issue_flags); 946 947 /* 948 * If the file doesn't support proper NOWAIT, then disable multishot 949 * and stay in single shot mode. 950 */ 951 if (!io_file_supports_nowait(req)) 952 req->flags &= ~REQ_F_APOLL_MULTISHOT; 953 954 /* 955 * If we get -EAGAIN, recycle our buffer and just let normal poll 956 * handling arm it. 957 */ 958 if (ret == -EAGAIN) { 959 /* 960 * Reset rw->len to 0 again to avoid clamping future mshot 961 * reads, in case the buffer size varies. 962 */ 963 if (io_kbuf_recycle(req, issue_flags)) 964 rw->len = 0; 965 if (issue_flags & IO_URING_F_MULTISHOT) 966 return IOU_ISSUE_SKIP_COMPLETE; 967 return -EAGAIN; 968 } 969 970 /* 971 * Any successful return value will keep the multishot read armed. 972 */ 973 if (ret > 0 && req->flags & REQ_F_APOLL_MULTISHOT) { 974 /* 975 * Put our buffer and post a CQE. If we fail to post a CQE, then 976 * jump to the termination path. This request is then done. 977 */ 978 cflags = io_put_kbuf(req, issue_flags); 979 rw->len = 0; /* similarly to above, reset len to 0 */ 980 981 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { 982 if (issue_flags & IO_URING_F_MULTISHOT) { 983 /* 984 * Force retry, as we might have more data to 985 * be read and otherwise it won't get retried 986 * until (if ever) another poll is triggered. 987 */ 988 io_poll_multishot_retry(req); 989 return IOU_ISSUE_SKIP_COMPLETE; 990 } 991 return -EAGAIN; 992 } 993 } 994 995 /* 996 * Either an error, or we've hit overflow posting the CQE. For any 997 * multishot request, hitting overflow will terminate it. 998 */ 999 io_req_set_res(req, ret, cflags); 1000 io_req_rw_cleanup(req, issue_flags); 1001 if (issue_flags & IO_URING_F_MULTISHOT) 1002 return IOU_STOP_MULTISHOT; 1003 return IOU_OK; 1004 } 1005 1006 int io_write(struct io_kiocb *req, unsigned int issue_flags) 1007 { 1008 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 1009 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1010 struct io_async_rw *io = req->async_data; 1011 struct kiocb *kiocb = &rw->kiocb; 1012 ssize_t ret, ret2; 1013 loff_t *ppos; 1014 1015 ret = io_rw_init_file(req, FMODE_WRITE, WRITE); 1016 if (unlikely(ret)) 1017 return ret; 1018 req->cqe.res = iov_iter_count(&io->iter); 1019 1020 if (force_nonblock) { 1021 /* If the file doesn't support async, just async punt */ 1022 if (unlikely(!io_file_supports_nowait(req))) 1023 goto ret_eagain; 1024 1025 /* Check if we can support NOWAIT. */ 1026 if (!(kiocb->ki_flags & IOCB_DIRECT) && 1027 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) && 1028 (req->flags & REQ_F_ISREG)) 1029 goto ret_eagain; 1030 1031 kiocb->ki_flags |= IOCB_NOWAIT; 1032 } else { 1033 /* Ensure we clear previously set non-block flag */ 1034 kiocb->ki_flags &= ~IOCB_NOWAIT; 1035 } 1036 1037 ppos = io_kiocb_update_pos(req); 1038 1039 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); 1040 if (unlikely(ret)) 1041 return ret; 1042 1043 if (req->flags & REQ_F_ISREG) 1044 kiocb_start_write(kiocb); 1045 kiocb->ki_flags |= IOCB_WRITE; 1046 1047 if (likely(req->file->f_op->write_iter)) 1048 ret2 = req->file->f_op->write_iter(kiocb, &io->iter); 1049 else if (req->file->f_op->write) 1050 ret2 = loop_rw_iter(WRITE, rw, &io->iter); 1051 else 1052 ret2 = -EINVAL; 1053 1054 if (req->flags & REQ_F_REISSUE) { 1055 req->flags &= ~REQ_F_REISSUE; 1056 ret2 = -EAGAIN; 1057 } 1058 1059 /* 1060 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just 1061 * retry them without IOCB_NOWAIT. 1062 */ 1063 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) 1064 ret2 = -EAGAIN; 1065 /* no retry on NONBLOCK nor RWF_NOWAIT */ 1066 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) 1067 goto done; 1068 if (!force_nonblock || ret2 != -EAGAIN) { 1069 /* IOPOLL retry should happen for io-wq threads */ 1070 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) 1071 goto ret_eagain; 1072 1073 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { 1074 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, 1075 req->cqe.res, ret2); 1076 1077 /* This is a partial write. The file pos has already been 1078 * updated, setup the async struct to complete the request 1079 * in the worker. Also update bytes_done to account for 1080 * the bytes already written. 1081 */ 1082 iov_iter_save_state(&io->iter, &io->iter_state); 1083 io->bytes_done += ret2; 1084 1085 if (kiocb->ki_flags & IOCB_WRITE) 1086 io_req_end_write(req); 1087 return -EAGAIN; 1088 } 1089 done: 1090 return kiocb_done(req, ret2, issue_flags); 1091 } else { 1092 ret_eagain: 1093 iov_iter_restore(&io->iter, &io->iter_state); 1094 if (kiocb->ki_flags & IOCB_WRITE) 1095 io_req_end_write(req); 1096 return -EAGAIN; 1097 } 1098 } 1099 1100 void io_rw_fail(struct io_kiocb *req) 1101 { 1102 int res; 1103 1104 res = io_fixup_rw_res(req, req->cqe.res); 1105 io_req_set_res(req, res, req->cqe.flags); 1106 } 1107 1108 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) 1109 { 1110 struct io_wq_work_node *pos, *start, *prev; 1111 unsigned int poll_flags = 0; 1112 DEFINE_IO_COMP_BATCH(iob); 1113 int nr_events = 0; 1114 1115 /* 1116 * Only spin for completions if we don't have multiple devices hanging 1117 * off our complete list. 1118 */ 1119 if (ctx->poll_multi_queue || force_nonspin) 1120 poll_flags |= BLK_POLL_ONESHOT; 1121 1122 wq_list_for_each(pos, start, &ctx->iopoll_list) { 1123 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1124 struct file *file = req->file; 1125 int ret; 1126 1127 /* 1128 * Move completed and retryable entries to our local lists. 1129 * If we find a request that requires polling, break out 1130 * and complete those lists first, if we have entries there. 1131 */ 1132 if (READ_ONCE(req->iopoll_completed)) 1133 break; 1134 1135 if (req->opcode == IORING_OP_URING_CMD) { 1136 struct io_uring_cmd *ioucmd; 1137 1138 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); 1139 ret = file->f_op->uring_cmd_iopoll(ioucmd, &iob, 1140 poll_flags); 1141 } else { 1142 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1143 1144 ret = file->f_op->iopoll(&rw->kiocb, &iob, poll_flags); 1145 } 1146 if (unlikely(ret < 0)) 1147 return ret; 1148 else if (ret) 1149 poll_flags |= BLK_POLL_ONESHOT; 1150 1151 /* iopoll may have completed current req */ 1152 if (!rq_list_empty(iob.req_list) || 1153 READ_ONCE(req->iopoll_completed)) 1154 break; 1155 } 1156 1157 if (!rq_list_empty(iob.req_list)) 1158 iob.complete(&iob); 1159 else if (!pos) 1160 return 0; 1161 1162 prev = start; 1163 wq_list_for_each_resume(pos, prev) { 1164 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1165 1166 /* order with io_complete_rw_iopoll(), e.g. ->result updates */ 1167 if (!smp_load_acquire(&req->iopoll_completed)) 1168 break; 1169 nr_events++; 1170 req->cqe.flags = io_put_kbuf(req, 0); 1171 if (req->opcode != IORING_OP_URING_CMD) 1172 io_req_rw_cleanup(req, 0); 1173 } 1174 if (unlikely(!nr_events)) 1175 return 0; 1176 1177 pos = start ? start->next : ctx->iopoll_list.first; 1178 wq_list_cut(&ctx->iopoll_list, prev, start); 1179 1180 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) 1181 return 0; 1182 ctx->submit_state.compl_reqs.first = pos; 1183 __io_submit_flush_completions(ctx); 1184 return nr_events; 1185 } 1186 1187 void io_rw_cache_free(const void *entry) 1188 { 1189 struct io_async_rw *rw = (struct io_async_rw *) entry; 1190 1191 if (rw->free_iovec) { 1192 kasan_mempool_unpoison_object(rw->free_iovec, 1193 rw->free_iov_nr * sizeof(struct iovec)); 1194 io_rw_iovec_free(rw); 1195 } 1196 kfree(rw); 1197 } 1198