1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/blk-mq.h> 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/fsnotify.h> 10 #include <linux/poll.h> 11 #include <linux/nospec.h> 12 #include <linux/compat.h> 13 #include <linux/io_uring/cmd.h> 14 #include <linux/indirect_call_wrapper.h> 15 16 #include <uapi/linux/io_uring.h> 17 18 #include "io_uring.h" 19 #include "opdef.h" 20 #include "kbuf.h" 21 #include "alloc_cache.h" 22 #include "rsrc.h" 23 #include "poll.h" 24 #include "rw.h" 25 26 struct io_rw { 27 /* NOTE: kiocb has the file as the first member, so don't do it here */ 28 struct kiocb kiocb; 29 u64 addr; 30 u32 len; 31 rwf_t flags; 32 }; 33 34 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask) 35 { 36 /* If FMODE_NOWAIT is set for a file, we're golden */ 37 if (req->flags & REQ_F_SUPPORT_NOWAIT) 38 return true; 39 /* No FMODE_NOWAIT, if we can poll, check the status */ 40 if (io_file_can_poll(req)) { 41 struct poll_table_struct pt = { ._key = mask }; 42 43 return vfs_poll(req->file, &pt) & mask; 44 } 45 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */ 46 return false; 47 } 48 49 #ifdef CONFIG_COMPAT 50 static int io_iov_compat_buffer_select_prep(struct io_rw *rw) 51 { 52 struct compat_iovec __user *uiov; 53 compat_ssize_t clen; 54 55 uiov = u64_to_user_ptr(rw->addr); 56 if (!access_ok(uiov, sizeof(*uiov))) 57 return -EFAULT; 58 if (__get_user(clen, &uiov->iov_len)) 59 return -EFAULT; 60 if (clen < 0) 61 return -EINVAL; 62 63 rw->len = clen; 64 return 0; 65 } 66 #endif 67 68 static int io_iov_buffer_select_prep(struct io_kiocb *req) 69 { 70 struct iovec __user *uiov; 71 struct iovec iov; 72 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 73 74 if (rw->len != 1) 75 return -EINVAL; 76 77 #ifdef CONFIG_COMPAT 78 if (req->ctx->compat) 79 return io_iov_compat_buffer_select_prep(rw); 80 #endif 81 82 uiov = u64_to_user_ptr(rw->addr); 83 if (copy_from_user(&iov, uiov, sizeof(*uiov))) 84 return -EFAULT; 85 rw->len = iov.iov_len; 86 return 0; 87 } 88 89 static int __io_import_iovec(int ddir, struct io_kiocb *req, 90 struct io_async_rw *io, 91 unsigned int issue_flags) 92 { 93 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 94 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 95 struct iovec *iov; 96 void __user *buf; 97 int nr_segs, ret; 98 size_t sqe_len; 99 100 buf = u64_to_user_ptr(rw->addr); 101 sqe_len = rw->len; 102 103 if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) { 104 if (io_do_buffer_select(req)) { 105 buf = io_buffer_select(req, &sqe_len, issue_flags); 106 if (!buf) 107 return -ENOBUFS; 108 rw->addr = (unsigned long) buf; 109 rw->len = sqe_len; 110 } 111 112 return import_ubuf(ddir, buf, sqe_len, &io->iter); 113 } 114 115 if (io->free_iovec) { 116 nr_segs = io->free_iov_nr; 117 iov = io->free_iovec; 118 } else { 119 iov = &io->fast_iov; 120 nr_segs = 1; 121 } 122 ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter, 123 req->ctx->compat); 124 if (unlikely(ret < 0)) 125 return ret; 126 if (iov) { 127 req->flags |= REQ_F_NEED_CLEANUP; 128 io->free_iov_nr = io->iter.nr_segs; 129 kfree(io->free_iovec); 130 io->free_iovec = iov; 131 } 132 return 0; 133 } 134 135 static inline int io_import_iovec(int rw, struct io_kiocb *req, 136 struct io_async_rw *io, 137 unsigned int issue_flags) 138 { 139 int ret; 140 141 ret = __io_import_iovec(rw, req, io, issue_flags); 142 if (unlikely(ret < 0)) 143 return ret; 144 145 iov_iter_save_state(&io->iter, &io->iter_state); 146 return 0; 147 } 148 149 static void io_rw_iovec_free(struct io_async_rw *rw) 150 { 151 if (rw->free_iovec) { 152 kfree(rw->free_iovec); 153 rw->free_iov_nr = 0; 154 rw->free_iovec = NULL; 155 } 156 } 157 158 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) 159 { 160 struct io_async_rw *rw = req->async_data; 161 struct iovec *iov; 162 163 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) { 164 io_rw_iovec_free(rw); 165 return; 166 } 167 iov = rw->free_iovec; 168 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) { 169 if (iov) 170 kasan_mempool_poison_object(iov); 171 req->async_data = NULL; 172 req->flags &= ~REQ_F_ASYNC_DATA; 173 } 174 } 175 176 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) 177 { 178 /* 179 * Disable quick recycling for anything that's gone through io-wq. 180 * In theory, this should be fine to cleanup. However, some read or 181 * write iter handling touches the iovec AFTER having called into the 182 * handler, eg to reexpand or revert. This means we can have: 183 * 184 * task io-wq 185 * issue 186 * punt to io-wq 187 * issue 188 * blkdev_write_iter() 189 * ->ki_complete() 190 * io_complete_rw() 191 * queue tw complete 192 * run tw 193 * req_rw_cleanup 194 * iov_iter_count() <- look at iov_iter again 195 * 196 * which can lead to a UAF. This is only possible for io-wq offload 197 * as the cleanup can run in parallel. As io-wq is not the fast path, 198 * just leave cleanup to the end. 199 * 200 * This is really a bug in the core code that does this, any issue 201 * path should assume that a successful (or -EIOCBQUEUED) return can 202 * mean that the underlying data can be gone at any time. But that 203 * should be fixed seperately, and then this check could be killed. 204 */ 205 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) { 206 req->flags &= ~REQ_F_NEED_CLEANUP; 207 io_rw_recycle(req, issue_flags); 208 } 209 } 210 211 static void io_rw_async_data_init(void *obj) 212 { 213 struct io_async_rw *rw = (struct io_async_rw *)obj; 214 215 rw->free_iovec = NULL; 216 rw->bytes_done = 0; 217 } 218 219 static int io_rw_alloc_async(struct io_kiocb *req) 220 { 221 struct io_ring_ctx *ctx = req->ctx; 222 struct io_async_rw *rw; 223 224 rw = io_uring_alloc_async_data(&ctx->rw_cache, req, io_rw_async_data_init); 225 if (!rw) 226 return -ENOMEM; 227 if (rw->free_iovec) { 228 kasan_mempool_unpoison_object(rw->free_iovec, 229 rw->free_iov_nr * sizeof(struct iovec)); 230 req->flags |= REQ_F_NEED_CLEANUP; 231 } 232 rw->bytes_done = 0; 233 return 0; 234 } 235 236 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import) 237 { 238 struct io_async_rw *rw; 239 240 if (io_rw_alloc_async(req)) 241 return -ENOMEM; 242 243 if (!do_import || io_do_buffer_select(req)) 244 return 0; 245 246 rw = req->async_data; 247 return io_import_iovec(ddir, req, rw, 0); 248 } 249 250 static inline void io_meta_save_state(struct io_async_rw *io) 251 { 252 io->meta_state.seed = io->meta.seed; 253 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta); 254 } 255 256 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb) 257 { 258 if (kiocb->ki_flags & IOCB_HAS_METADATA) { 259 io->meta.seed = io->meta_state.seed; 260 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta); 261 } 262 } 263 264 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir, 265 u64 attr_ptr, u64 attr_type_mask) 266 { 267 struct io_uring_attr_pi pi_attr; 268 struct io_async_rw *io; 269 int ret; 270 271 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr), 272 sizeof(pi_attr))) 273 return -EFAULT; 274 275 if (pi_attr.rsvd) 276 return -EINVAL; 277 278 io = req->async_data; 279 io->meta.flags = pi_attr.flags; 280 io->meta.app_tag = pi_attr.app_tag; 281 io->meta.seed = pi_attr.seed; 282 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr), 283 pi_attr.len, &io->meta.iter); 284 if (unlikely(ret < 0)) 285 return ret; 286 req->flags |= REQ_F_HAS_METADATA; 287 io_meta_save_state(io); 288 return ret; 289 } 290 291 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 292 int ddir, bool do_import) 293 { 294 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 295 unsigned ioprio; 296 u64 attr_type_mask; 297 int ret; 298 299 rw->kiocb.ki_pos = READ_ONCE(sqe->off); 300 /* used for fixed read/write too - just read unconditionally */ 301 req->buf_index = READ_ONCE(sqe->buf_index); 302 303 ioprio = READ_ONCE(sqe->ioprio); 304 if (ioprio) { 305 ret = ioprio_check_cap(ioprio); 306 if (ret) 307 return ret; 308 309 rw->kiocb.ki_ioprio = ioprio; 310 } else { 311 rw->kiocb.ki_ioprio = get_current_ioprio(); 312 } 313 rw->kiocb.dio_complete = NULL; 314 rw->kiocb.ki_flags = 0; 315 316 rw->addr = READ_ONCE(sqe->addr); 317 rw->len = READ_ONCE(sqe->len); 318 rw->flags = READ_ONCE(sqe->rw_flags); 319 ret = io_prep_rw_setup(req, ddir, do_import); 320 321 if (unlikely(ret)) 322 return ret; 323 324 attr_type_mask = READ_ONCE(sqe->attr_type_mask); 325 if (attr_type_mask) { 326 u64 attr_ptr; 327 328 /* only PI attribute is supported currently */ 329 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI) 330 return -EINVAL; 331 332 attr_ptr = READ_ONCE(sqe->attr_ptr); 333 ret = io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask); 334 } 335 return ret; 336 } 337 338 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) 339 { 340 return io_prep_rw(req, sqe, ITER_DEST, true); 341 } 342 343 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) 344 { 345 return io_prep_rw(req, sqe, ITER_SOURCE, true); 346 } 347 348 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, 349 int ddir) 350 { 351 const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT); 352 int ret; 353 354 ret = io_prep_rw(req, sqe, ddir, do_import); 355 if (unlikely(ret)) 356 return ret; 357 if (do_import) 358 return 0; 359 360 /* 361 * Have to do this validation here, as this is in io_read() rw->len 362 * might have chanaged due to buffer selection 363 */ 364 return io_iov_buffer_select_prep(req); 365 } 366 367 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) 368 { 369 return io_prep_rwv(req, sqe, ITER_DEST); 370 } 371 372 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) 373 { 374 return io_prep_rwv(req, sqe, ITER_SOURCE); 375 } 376 377 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe, 378 int ddir) 379 { 380 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 381 struct io_ring_ctx *ctx = req->ctx; 382 struct io_rsrc_node *node; 383 struct io_async_rw *io; 384 int ret; 385 386 ret = io_prep_rw(req, sqe, ddir, false); 387 if (unlikely(ret)) 388 return ret; 389 390 node = io_rsrc_node_lookup(&ctx->buf_table, req->buf_index); 391 if (!node) 392 return -EFAULT; 393 io_req_assign_buf_node(req, node); 394 395 io = req->async_data; 396 ret = io_import_fixed(ddir, &io->iter, node->buf, rw->addr, rw->len); 397 iov_iter_save_state(&io->iter, &io->iter_state); 398 return ret; 399 } 400 401 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 402 { 403 return io_prep_rw_fixed(req, sqe, ITER_DEST); 404 } 405 406 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 407 { 408 return io_prep_rw_fixed(req, sqe, ITER_SOURCE); 409 } 410 411 /* 412 * Multishot read is prepared just like a normal read/write request, only 413 * difference is that we set the MULTISHOT flag. 414 */ 415 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 416 { 417 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 418 int ret; 419 420 /* must be used with provided buffers */ 421 if (!(req->flags & REQ_F_BUFFER_SELECT)) 422 return -EINVAL; 423 424 ret = io_prep_rw(req, sqe, ITER_DEST, false); 425 if (unlikely(ret)) 426 return ret; 427 428 if (rw->addr || rw->len) 429 return -EINVAL; 430 431 req->flags |= REQ_F_APOLL_MULTISHOT; 432 return 0; 433 } 434 435 void io_readv_writev_cleanup(struct io_kiocb *req) 436 { 437 lockdep_assert_held(&req->ctx->uring_lock); 438 io_rw_recycle(req, 0); 439 } 440 441 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) 442 { 443 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 444 445 if (rw->kiocb.ki_pos != -1) 446 return &rw->kiocb.ki_pos; 447 448 if (!(req->file->f_mode & FMODE_STREAM)) { 449 req->flags |= REQ_F_CUR_POS; 450 rw->kiocb.ki_pos = req->file->f_pos; 451 return &rw->kiocb.ki_pos; 452 } 453 454 rw->kiocb.ki_pos = 0; 455 return NULL; 456 } 457 458 static bool io_rw_should_reissue(struct io_kiocb *req) 459 { 460 #ifdef CONFIG_BLOCK 461 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 462 umode_t mode = file_inode(req->file)->i_mode; 463 struct io_async_rw *io = req->async_data; 464 struct io_ring_ctx *ctx = req->ctx; 465 466 if (!S_ISBLK(mode) && !S_ISREG(mode)) 467 return false; 468 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && 469 !(ctx->flags & IORING_SETUP_IOPOLL))) 470 return false; 471 /* 472 * If ref is dying, we might be running poll reap from the exit work. 473 * Don't attempt to reissue from that path, just let it fail with 474 * -EAGAIN. 475 */ 476 if (percpu_ref_is_dying(&ctx->refs)) 477 return false; 478 479 io_meta_restore(io, &rw->kiocb); 480 iov_iter_restore(&io->iter, &io->iter_state); 481 return true; 482 #else 483 return false; 484 #endif 485 } 486 487 static void io_req_end_write(struct io_kiocb *req) 488 { 489 if (req->flags & REQ_F_ISREG) { 490 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 491 492 kiocb_end_write(&rw->kiocb); 493 } 494 } 495 496 /* 497 * Trigger the notifications after having done some IO, and finish the write 498 * accounting, if any. 499 */ 500 static void io_req_io_end(struct io_kiocb *req) 501 { 502 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 503 504 if (rw->kiocb.ki_flags & IOCB_WRITE) { 505 io_req_end_write(req); 506 fsnotify_modify(req->file); 507 } else { 508 fsnotify_access(req->file); 509 } 510 } 511 512 static void __io_complete_rw_common(struct io_kiocb *req, long res) 513 { 514 if (res == req->cqe.res) 515 return; 516 if (res == -EAGAIN && io_rw_should_reissue(req)) { 517 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 518 } else { 519 req_set_fail(req); 520 req->cqe.res = res; 521 } 522 } 523 524 static inline int io_fixup_rw_res(struct io_kiocb *req, long res) 525 { 526 struct io_async_rw *io = req->async_data; 527 528 /* add previously done IO, if any */ 529 if (req_has_async_data(req) && io->bytes_done > 0) { 530 if (res < 0) 531 res = io->bytes_done; 532 else 533 res += io->bytes_done; 534 } 535 return res; 536 } 537 538 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts) 539 { 540 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 541 struct kiocb *kiocb = &rw->kiocb; 542 543 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) { 544 long res = kiocb->dio_complete(rw->kiocb.private); 545 546 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 547 } 548 549 io_req_io_end(req); 550 551 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) 552 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0); 553 554 io_req_rw_cleanup(req, 0); 555 io_req_task_complete(req, ts); 556 } 557 558 static void io_complete_rw(struct kiocb *kiocb, long res) 559 { 560 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 561 struct io_kiocb *req = cmd_to_io_kiocb(rw); 562 563 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) { 564 __io_complete_rw_common(req, res); 565 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 566 } 567 req->io_task_work.func = io_req_rw_complete; 568 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); 569 } 570 571 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) 572 { 573 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 574 struct io_kiocb *req = cmd_to_io_kiocb(rw); 575 576 if (kiocb->ki_flags & IOCB_WRITE) 577 io_req_end_write(req); 578 if (unlikely(res != req->cqe.res)) { 579 if (res == -EAGAIN && io_rw_should_reissue(req)) { 580 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 581 return; 582 } 583 req->cqe.res = res; 584 } 585 586 /* order with io_iopoll_complete() checking ->iopoll_completed */ 587 smp_store_release(&req->iopoll_completed, 1); 588 } 589 590 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) 591 { 592 /* IO was queued async, completion will happen later */ 593 if (ret == -EIOCBQUEUED) 594 return; 595 596 /* transform internal restart error codes */ 597 if (unlikely(ret < 0)) { 598 switch (ret) { 599 case -ERESTARTSYS: 600 case -ERESTARTNOINTR: 601 case -ERESTARTNOHAND: 602 case -ERESTART_RESTARTBLOCK: 603 /* 604 * We can't just restart the syscall, since previously 605 * submitted sqes may already be in progress. Just fail 606 * this IO with EINTR. 607 */ 608 ret = -EINTR; 609 break; 610 } 611 } 612 613 INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll, 614 io_complete_rw, kiocb, ret); 615 } 616 617 static int kiocb_done(struct io_kiocb *req, ssize_t ret, 618 unsigned int issue_flags) 619 { 620 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 621 unsigned final_ret = io_fixup_rw_res(req, ret); 622 623 if (ret >= 0 && req->flags & REQ_F_CUR_POS) 624 req->file->f_pos = rw->kiocb.ki_pos; 625 if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) { 626 __io_complete_rw_common(req, ret); 627 /* 628 * Safe to call io_end from here as we're inline 629 * from the submission path. 630 */ 631 io_req_io_end(req); 632 io_req_set_res(req, final_ret, io_put_kbuf(req, ret, issue_flags)); 633 io_req_rw_cleanup(req, issue_flags); 634 return IOU_OK; 635 } else { 636 io_rw_done(&rw->kiocb, ret); 637 } 638 639 return IOU_ISSUE_SKIP_COMPLETE; 640 } 641 642 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) 643 { 644 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; 645 } 646 647 /* 648 * For files that don't have ->read_iter() and ->write_iter(), handle them 649 * by looping over ->read() or ->write() manually. 650 */ 651 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) 652 { 653 struct kiocb *kiocb = &rw->kiocb; 654 struct file *file = kiocb->ki_filp; 655 ssize_t ret = 0; 656 loff_t *ppos; 657 658 /* 659 * Don't support polled IO through this interface, and we can't 660 * support non-blocking either. For the latter, this just causes 661 * the kiocb to be handled from an async context. 662 */ 663 if (kiocb->ki_flags & IOCB_HIPRI) 664 return -EOPNOTSUPP; 665 if ((kiocb->ki_flags & IOCB_NOWAIT) && 666 !(kiocb->ki_filp->f_flags & O_NONBLOCK)) 667 return -EAGAIN; 668 669 ppos = io_kiocb_ppos(kiocb); 670 671 while (iov_iter_count(iter)) { 672 void __user *addr; 673 size_t len; 674 ssize_t nr; 675 676 if (iter_is_ubuf(iter)) { 677 addr = iter->ubuf + iter->iov_offset; 678 len = iov_iter_count(iter); 679 } else if (!iov_iter_is_bvec(iter)) { 680 addr = iter_iov_addr(iter); 681 len = iter_iov_len(iter); 682 } else { 683 addr = u64_to_user_ptr(rw->addr); 684 len = rw->len; 685 } 686 687 if (ddir == READ) 688 nr = file->f_op->read(file, addr, len, ppos); 689 else 690 nr = file->f_op->write(file, addr, len, ppos); 691 692 if (nr < 0) { 693 if (!ret) 694 ret = nr; 695 break; 696 } 697 ret += nr; 698 if (!iov_iter_is_bvec(iter)) { 699 iov_iter_advance(iter, nr); 700 } else { 701 rw->addr += nr; 702 rw->len -= nr; 703 if (!rw->len) 704 break; 705 } 706 if (nr != len) 707 break; 708 } 709 710 return ret; 711 } 712 713 /* 714 * This is our waitqueue callback handler, registered through __folio_lock_async() 715 * when we initially tried to do the IO with the iocb armed our waitqueue. 716 * This gets called when the page is unlocked, and we generally expect that to 717 * happen when the page IO is completed and the page is now uptodate. This will 718 * queue a task_work based retry of the operation, attempting to copy the data 719 * again. If the latter fails because the page was NOT uptodate, then we will 720 * do a thread based blocking retry of the operation. That's the unexpected 721 * slow path. 722 */ 723 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, 724 int sync, void *arg) 725 { 726 struct wait_page_queue *wpq; 727 struct io_kiocb *req = wait->private; 728 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 729 struct wait_page_key *key = arg; 730 731 wpq = container_of(wait, struct wait_page_queue, wait); 732 733 if (!wake_page_match(wpq, key)) 734 return 0; 735 736 rw->kiocb.ki_flags &= ~IOCB_WAITQ; 737 list_del_init(&wait->entry); 738 io_req_task_queue(req); 739 return 1; 740 } 741 742 /* 743 * This controls whether a given IO request should be armed for async page 744 * based retry. If we return false here, the request is handed to the async 745 * worker threads for retry. If we're doing buffered reads on a regular file, 746 * we prepare a private wait_page_queue entry and retry the operation. This 747 * will either succeed because the page is now uptodate and unlocked, or it 748 * will register a callback when the page is unlocked at IO completion. Through 749 * that callback, io_uring uses task_work to setup a retry of the operation. 750 * That retry will attempt the buffered read again. The retry will generally 751 * succeed, or in rare cases where it fails, we then fall back to using the 752 * async worker threads for a blocking retry. 753 */ 754 static bool io_rw_should_retry(struct io_kiocb *req) 755 { 756 struct io_async_rw *io = req->async_data; 757 struct wait_page_queue *wait = &io->wpq; 758 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 759 struct kiocb *kiocb = &rw->kiocb; 760 761 /* 762 * Never retry for NOWAIT or a request with metadata, we just complete 763 * with -EAGAIN. 764 */ 765 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA)) 766 return false; 767 768 /* Only for buffered IO */ 769 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) 770 return false; 771 772 /* 773 * just use poll if we can, and don't attempt if the fs doesn't 774 * support callback based unlocks 775 */ 776 if (io_file_can_poll(req) || 777 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC)) 778 return false; 779 780 wait->wait.func = io_async_buf_func; 781 wait->wait.private = req; 782 wait->wait.flags = 0; 783 INIT_LIST_HEAD(&wait->wait.entry); 784 kiocb->ki_flags |= IOCB_WAITQ; 785 kiocb->ki_flags &= ~IOCB_NOWAIT; 786 kiocb->ki_waitq = wait; 787 return true; 788 } 789 790 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) 791 { 792 struct file *file = rw->kiocb.ki_filp; 793 794 if (likely(file->f_op->read_iter)) 795 return file->f_op->read_iter(&rw->kiocb, iter); 796 else if (file->f_op->read) 797 return loop_rw_iter(READ, rw, iter); 798 else 799 return -EINVAL; 800 } 801 802 static bool need_complete_io(struct io_kiocb *req) 803 { 804 return req->flags & REQ_F_ISREG || 805 S_ISBLK(file_inode(req->file)->i_mode); 806 } 807 808 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type) 809 { 810 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 811 struct kiocb *kiocb = &rw->kiocb; 812 struct io_ring_ctx *ctx = req->ctx; 813 struct file *file = req->file; 814 int ret; 815 816 if (unlikely(!(file->f_mode & mode))) 817 return -EBADF; 818 819 if (!(req->flags & REQ_F_FIXED_FILE)) 820 req->flags |= io_file_get_flags(file); 821 822 kiocb->ki_flags = file->f_iocb_flags; 823 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type); 824 if (unlikely(ret)) 825 return ret; 826 kiocb->ki_flags |= IOCB_ALLOC_CACHE; 827 828 /* 829 * If the file is marked O_NONBLOCK, still allow retry for it if it 830 * supports async. Otherwise it's impossible to use O_NONBLOCK files 831 * reliably. If not, or it IOCB_NOWAIT is set, don't retry. 832 */ 833 if (kiocb->ki_flags & IOCB_NOWAIT || 834 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT)))) 835 req->flags |= REQ_F_NOWAIT; 836 837 if (ctx->flags & IORING_SETUP_IOPOLL) { 838 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) 839 return -EOPNOTSUPP; 840 841 kiocb->private = NULL; 842 kiocb->ki_flags |= IOCB_HIPRI; 843 kiocb->ki_complete = io_complete_rw_iopoll; 844 req->iopoll_completed = 0; 845 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) { 846 /* make sure every req only blocks once*/ 847 req->flags &= ~REQ_F_IOPOLL_STATE; 848 req->iopoll_start = ktime_get_ns(); 849 } 850 } else { 851 if (kiocb->ki_flags & IOCB_HIPRI) 852 return -EINVAL; 853 kiocb->ki_complete = io_complete_rw; 854 } 855 856 if (req->flags & REQ_F_HAS_METADATA) { 857 struct io_async_rw *io = req->async_data; 858 859 /* 860 * We have a union of meta fields with wpq used for buffered-io 861 * in io_async_rw, so fail it here. 862 */ 863 if (!(req->file->f_flags & O_DIRECT)) 864 return -EOPNOTSUPP; 865 kiocb->ki_flags |= IOCB_HAS_METADATA; 866 kiocb->private = &io->meta; 867 } 868 869 return 0; 870 } 871 872 static int __io_read(struct io_kiocb *req, unsigned int issue_flags) 873 { 874 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 875 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 876 struct io_async_rw *io = req->async_data; 877 struct kiocb *kiocb = &rw->kiocb; 878 ssize_t ret; 879 loff_t *ppos; 880 881 if (io_do_buffer_select(req)) { 882 ret = io_import_iovec(ITER_DEST, req, io, issue_flags); 883 if (unlikely(ret < 0)) 884 return ret; 885 } 886 ret = io_rw_init_file(req, FMODE_READ, READ); 887 if (unlikely(ret)) 888 return ret; 889 req->cqe.res = iov_iter_count(&io->iter); 890 891 if (force_nonblock) { 892 /* If the file doesn't support async, just async punt */ 893 if (unlikely(!io_file_supports_nowait(req, EPOLLIN))) 894 return -EAGAIN; 895 kiocb->ki_flags |= IOCB_NOWAIT; 896 } else { 897 /* Ensure we clear previously set non-block flag */ 898 kiocb->ki_flags &= ~IOCB_NOWAIT; 899 } 900 901 ppos = io_kiocb_update_pos(req); 902 903 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); 904 if (unlikely(ret)) 905 return ret; 906 907 ret = io_iter_do_read(rw, &io->iter); 908 909 /* 910 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT 911 * issue, even though they should be returning -EAGAIN. To be safe, 912 * retry from blocking context for either. 913 */ 914 if (ret == -EOPNOTSUPP && force_nonblock) 915 ret = -EAGAIN; 916 917 if (ret == -EAGAIN) { 918 /* If we can poll, just do that. */ 919 if (io_file_can_poll(req)) 920 return -EAGAIN; 921 /* IOPOLL retry should happen for io-wq threads */ 922 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) 923 goto done; 924 /* no retry on NONBLOCK nor RWF_NOWAIT */ 925 if (req->flags & REQ_F_NOWAIT) 926 goto done; 927 ret = 0; 928 } else if (ret == -EIOCBQUEUED) { 929 return IOU_ISSUE_SKIP_COMPLETE; 930 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || 931 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) { 932 /* read all, failed, already did sync or don't want to retry */ 933 goto done; 934 } 935 936 /* 937 * Don't depend on the iter state matching what was consumed, or being 938 * untouched in case of error. Restore it and we'll advance it 939 * manually if we need to. 940 */ 941 iov_iter_restore(&io->iter, &io->iter_state); 942 io_meta_restore(io, kiocb); 943 944 do { 945 /* 946 * We end up here because of a partial read, either from 947 * above or inside this loop. Advance the iter by the bytes 948 * that were consumed. 949 */ 950 iov_iter_advance(&io->iter, ret); 951 if (!iov_iter_count(&io->iter)) 952 break; 953 io->bytes_done += ret; 954 iov_iter_save_state(&io->iter, &io->iter_state); 955 956 /* if we can retry, do so with the callbacks armed */ 957 if (!io_rw_should_retry(req)) { 958 kiocb->ki_flags &= ~IOCB_WAITQ; 959 return -EAGAIN; 960 } 961 962 req->cqe.res = iov_iter_count(&io->iter); 963 /* 964 * Now retry read with the IOCB_WAITQ parts set in the iocb. If 965 * we get -EIOCBQUEUED, then we'll get a notification when the 966 * desired page gets unlocked. We can also get a partial read 967 * here, and if we do, then just retry at the new offset. 968 */ 969 ret = io_iter_do_read(rw, &io->iter); 970 if (ret == -EIOCBQUEUED) 971 return IOU_ISSUE_SKIP_COMPLETE; 972 /* we got some bytes, but not all. retry. */ 973 kiocb->ki_flags &= ~IOCB_WAITQ; 974 iov_iter_restore(&io->iter, &io->iter_state); 975 } while (ret > 0); 976 done: 977 /* it's faster to check here then delegate to kfree */ 978 return ret; 979 } 980 981 int io_read(struct io_kiocb *req, unsigned int issue_flags) 982 { 983 int ret; 984 985 ret = __io_read(req, issue_flags); 986 if (ret >= 0) 987 return kiocb_done(req, ret, issue_flags); 988 989 return ret; 990 } 991 992 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) 993 { 994 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 995 unsigned int cflags = 0; 996 int ret; 997 998 /* 999 * Multishot MUST be used on a pollable file 1000 */ 1001 if (!io_file_can_poll(req)) 1002 return -EBADFD; 1003 1004 ret = __io_read(req, issue_flags); 1005 1006 /* 1007 * If we get -EAGAIN, recycle our buffer and just let normal poll 1008 * handling arm it. 1009 */ 1010 if (ret == -EAGAIN) { 1011 /* 1012 * Reset rw->len to 0 again to avoid clamping future mshot 1013 * reads, in case the buffer size varies. 1014 */ 1015 if (io_kbuf_recycle(req, issue_flags)) 1016 rw->len = 0; 1017 if (issue_flags & IO_URING_F_MULTISHOT) 1018 return IOU_ISSUE_SKIP_COMPLETE; 1019 return -EAGAIN; 1020 } else if (ret <= 0) { 1021 io_kbuf_recycle(req, issue_flags); 1022 if (ret < 0) 1023 req_set_fail(req); 1024 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) { 1025 cflags = io_put_kbuf(req, ret, issue_flags); 1026 } else { 1027 /* 1028 * Any successful return value will keep the multishot read 1029 * armed, if it's still set. Put our buffer and post a CQE. If 1030 * we fail to post a CQE, or multishot is no longer set, then 1031 * jump to the termination path. This request is then done. 1032 */ 1033 cflags = io_put_kbuf(req, ret, issue_flags); 1034 rw->len = 0; /* similarly to above, reset len to 0 */ 1035 1036 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { 1037 if (issue_flags & IO_URING_F_MULTISHOT) { 1038 /* 1039 * Force retry, as we might have more data to 1040 * be read and otherwise it won't get retried 1041 * until (if ever) another poll is triggered. 1042 */ 1043 io_poll_multishot_retry(req); 1044 return IOU_ISSUE_SKIP_COMPLETE; 1045 } 1046 return -EAGAIN; 1047 } 1048 } 1049 1050 /* 1051 * Either an error, or we've hit overflow posting the CQE. For any 1052 * multishot request, hitting overflow will terminate it. 1053 */ 1054 io_req_set_res(req, ret, cflags); 1055 io_req_rw_cleanup(req, issue_flags); 1056 if (issue_flags & IO_URING_F_MULTISHOT) 1057 return IOU_STOP_MULTISHOT; 1058 return IOU_OK; 1059 } 1060 1061 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb) 1062 { 1063 struct inode *inode; 1064 bool ret; 1065 1066 if (!(req->flags & REQ_F_ISREG)) 1067 return true; 1068 if (!(kiocb->ki_flags & IOCB_NOWAIT)) { 1069 kiocb_start_write(kiocb); 1070 return true; 1071 } 1072 1073 inode = file_inode(kiocb->ki_filp); 1074 ret = sb_start_write_trylock(inode->i_sb); 1075 if (ret) 1076 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 1077 return ret; 1078 } 1079 1080 int io_write(struct io_kiocb *req, unsigned int issue_flags) 1081 { 1082 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 1083 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1084 struct io_async_rw *io = req->async_data; 1085 struct kiocb *kiocb = &rw->kiocb; 1086 ssize_t ret, ret2; 1087 loff_t *ppos; 1088 1089 ret = io_rw_init_file(req, FMODE_WRITE, WRITE); 1090 if (unlikely(ret)) 1091 return ret; 1092 req->cqe.res = iov_iter_count(&io->iter); 1093 1094 if (force_nonblock) { 1095 /* If the file doesn't support async, just async punt */ 1096 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT))) 1097 goto ret_eagain; 1098 1099 /* Check if we can support NOWAIT. */ 1100 if (!(kiocb->ki_flags & IOCB_DIRECT) && 1101 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) && 1102 (req->flags & REQ_F_ISREG)) 1103 goto ret_eagain; 1104 1105 kiocb->ki_flags |= IOCB_NOWAIT; 1106 } else { 1107 /* Ensure we clear previously set non-block flag */ 1108 kiocb->ki_flags &= ~IOCB_NOWAIT; 1109 } 1110 1111 ppos = io_kiocb_update_pos(req); 1112 1113 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); 1114 if (unlikely(ret)) 1115 return ret; 1116 1117 if (unlikely(!io_kiocb_start_write(req, kiocb))) 1118 return -EAGAIN; 1119 kiocb->ki_flags |= IOCB_WRITE; 1120 1121 if (likely(req->file->f_op->write_iter)) 1122 ret2 = req->file->f_op->write_iter(kiocb, &io->iter); 1123 else if (req->file->f_op->write) 1124 ret2 = loop_rw_iter(WRITE, rw, &io->iter); 1125 else 1126 ret2 = -EINVAL; 1127 1128 /* 1129 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just 1130 * retry them without IOCB_NOWAIT. 1131 */ 1132 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) 1133 ret2 = -EAGAIN; 1134 /* no retry on NONBLOCK nor RWF_NOWAIT */ 1135 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) 1136 goto done; 1137 if (!force_nonblock || ret2 != -EAGAIN) { 1138 /* IOPOLL retry should happen for io-wq threads */ 1139 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) 1140 goto ret_eagain; 1141 1142 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { 1143 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, 1144 req->cqe.res, ret2); 1145 1146 /* This is a partial write. The file pos has already been 1147 * updated, setup the async struct to complete the request 1148 * in the worker. Also update bytes_done to account for 1149 * the bytes already written. 1150 */ 1151 iov_iter_save_state(&io->iter, &io->iter_state); 1152 io->bytes_done += ret2; 1153 1154 if (kiocb->ki_flags & IOCB_WRITE) 1155 io_req_end_write(req); 1156 return -EAGAIN; 1157 } 1158 done: 1159 return kiocb_done(req, ret2, issue_flags); 1160 } else { 1161 ret_eagain: 1162 iov_iter_restore(&io->iter, &io->iter_state); 1163 io_meta_restore(io, kiocb); 1164 if (kiocb->ki_flags & IOCB_WRITE) 1165 io_req_end_write(req); 1166 return -EAGAIN; 1167 } 1168 } 1169 1170 void io_rw_fail(struct io_kiocb *req) 1171 { 1172 int res; 1173 1174 res = io_fixup_rw_res(req, req->cqe.res); 1175 io_req_set_res(req, res, req->cqe.flags); 1176 } 1177 1178 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob, 1179 unsigned int poll_flags) 1180 { 1181 struct file *file = req->file; 1182 1183 if (req->opcode == IORING_OP_URING_CMD) { 1184 struct io_uring_cmd *ioucmd; 1185 1186 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); 1187 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags); 1188 } else { 1189 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1190 1191 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags); 1192 } 1193 } 1194 1195 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req) 1196 { 1197 struct hrtimer_sleeper timer; 1198 enum hrtimer_mode mode; 1199 ktime_t kt; 1200 u64 sleep_time; 1201 1202 if (req->flags & REQ_F_IOPOLL_STATE) 1203 return 0; 1204 1205 if (ctx->hybrid_poll_time == LLONG_MAX) 1206 return 0; 1207 1208 /* Using half the running time to do schedule */ 1209 sleep_time = ctx->hybrid_poll_time / 2; 1210 1211 kt = ktime_set(0, sleep_time); 1212 req->flags |= REQ_F_IOPOLL_STATE; 1213 1214 mode = HRTIMER_MODE_REL; 1215 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode); 1216 hrtimer_set_expires(&timer.timer, kt); 1217 set_current_state(TASK_INTERRUPTIBLE); 1218 hrtimer_sleeper_start_expires(&timer, mode); 1219 1220 if (timer.task) 1221 io_schedule(); 1222 1223 hrtimer_cancel(&timer.timer); 1224 __set_current_state(TASK_RUNNING); 1225 destroy_hrtimer_on_stack(&timer.timer); 1226 return sleep_time; 1227 } 1228 1229 static int io_uring_hybrid_poll(struct io_kiocb *req, 1230 struct io_comp_batch *iob, unsigned int poll_flags) 1231 { 1232 struct io_ring_ctx *ctx = req->ctx; 1233 u64 runtime, sleep_time; 1234 int ret; 1235 1236 sleep_time = io_hybrid_iopoll_delay(ctx, req); 1237 ret = io_uring_classic_poll(req, iob, poll_flags); 1238 runtime = ktime_get_ns() - req->iopoll_start - sleep_time; 1239 1240 /* 1241 * Use minimum sleep time if we're polling devices with different 1242 * latencies. We could get more completions from the faster ones. 1243 */ 1244 if (ctx->hybrid_poll_time > runtime) 1245 ctx->hybrid_poll_time = runtime; 1246 1247 return ret; 1248 } 1249 1250 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) 1251 { 1252 struct io_wq_work_node *pos, *start, *prev; 1253 unsigned int poll_flags = 0; 1254 DEFINE_IO_COMP_BATCH(iob); 1255 int nr_events = 0; 1256 1257 /* 1258 * Only spin for completions if we don't have multiple devices hanging 1259 * off our complete list. 1260 */ 1261 if (ctx->poll_multi_queue || force_nonspin) 1262 poll_flags |= BLK_POLL_ONESHOT; 1263 1264 wq_list_for_each(pos, start, &ctx->iopoll_list) { 1265 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1266 int ret; 1267 1268 /* 1269 * Move completed and retryable entries to our local lists. 1270 * If we find a request that requires polling, break out 1271 * and complete those lists first, if we have entries there. 1272 */ 1273 if (READ_ONCE(req->iopoll_completed)) 1274 break; 1275 1276 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) 1277 ret = io_uring_hybrid_poll(req, &iob, poll_flags); 1278 else 1279 ret = io_uring_classic_poll(req, &iob, poll_flags); 1280 1281 if (unlikely(ret < 0)) 1282 return ret; 1283 else if (ret) 1284 poll_flags |= BLK_POLL_ONESHOT; 1285 1286 /* iopoll may have completed current req */ 1287 if (!rq_list_empty(&iob.req_list) || 1288 READ_ONCE(req->iopoll_completed)) 1289 break; 1290 } 1291 1292 if (!rq_list_empty(&iob.req_list)) 1293 iob.complete(&iob); 1294 else if (!pos) 1295 return 0; 1296 1297 prev = start; 1298 wq_list_for_each_resume(pos, prev) { 1299 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1300 1301 /* order with io_complete_rw_iopoll(), e.g. ->result updates */ 1302 if (!smp_load_acquire(&req->iopoll_completed)) 1303 break; 1304 nr_events++; 1305 req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0); 1306 if (req->opcode != IORING_OP_URING_CMD) 1307 io_req_rw_cleanup(req, 0); 1308 } 1309 if (unlikely(!nr_events)) 1310 return 0; 1311 1312 pos = start ? start->next : ctx->iopoll_list.first; 1313 wq_list_cut(&ctx->iopoll_list, prev, start); 1314 1315 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) 1316 return 0; 1317 ctx->submit_state.compl_reqs.first = pos; 1318 __io_submit_flush_completions(ctx); 1319 return nr_events; 1320 } 1321 1322 void io_rw_cache_free(const void *entry) 1323 { 1324 struct io_async_rw *rw = (struct io_async_rw *) entry; 1325 1326 if (rw->free_iovec) { 1327 kasan_mempool_unpoison_object(rw->free_iovec, 1328 rw->free_iov_nr * sizeof(struct iovec)); 1329 io_rw_iovec_free(rw); 1330 } 1331 kfree(rw); 1332 } 1333