1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/blk-mq.h> 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/fsnotify.h> 10 #include <linux/poll.h> 11 #include <linux/nospec.h> 12 #include <linux/compat.h> 13 #include <linux/io_uring/cmd.h> 14 #include <linux/indirect_call_wrapper.h> 15 16 #include <uapi/linux/io_uring.h> 17 18 #include "filetable.h" 19 #include "io_uring.h" 20 #include "opdef.h" 21 #include "kbuf.h" 22 #include "alloc_cache.h" 23 #include "rsrc.h" 24 #include "poll.h" 25 #include "rw.h" 26 27 static void io_complete_rw(struct kiocb *kiocb, long res); 28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res); 29 30 struct io_rw { 31 /* NOTE: kiocb has the file as the first member, so don't do it here */ 32 struct kiocb kiocb; 33 u64 addr; 34 u32 len; 35 rwf_t flags; 36 }; 37 38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask) 39 { 40 /* If FMODE_NOWAIT is set for a file, we're golden */ 41 if (req->flags & REQ_F_SUPPORT_NOWAIT) 42 return true; 43 /* No FMODE_NOWAIT, if we can poll, check the status */ 44 if (io_file_can_poll(req)) { 45 struct poll_table_struct pt = { ._key = mask }; 46 47 return vfs_poll(req->file, &pt) & mask; 48 } 49 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */ 50 return false; 51 } 52 53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw) 54 { 55 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr); 56 struct compat_iovec iov; 57 58 if (copy_from_user(&iov, uiov, sizeof(iov))) 59 return -EFAULT; 60 rw->len = iov.iov_len; 61 return 0; 62 } 63 64 static int io_iov_buffer_select_prep(struct io_kiocb *req) 65 { 66 struct iovec __user *uiov; 67 struct iovec iov; 68 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 69 70 if (rw->len != 1) 71 return -EINVAL; 72 73 if (io_is_compat(req->ctx)) 74 return io_iov_compat_buffer_select_prep(rw); 75 76 uiov = u64_to_user_ptr(rw->addr); 77 if (copy_from_user(&iov, uiov, sizeof(*uiov))) 78 return -EFAULT; 79 rw->len = iov.iov_len; 80 return 0; 81 } 82 83 static int io_import_vec(int ddir, struct io_kiocb *req, 84 struct io_async_rw *io, 85 const struct iovec __user *uvec, 86 size_t uvec_segs) 87 { 88 int ret, nr_segs; 89 struct iovec *iov; 90 91 if (io->vec.iovec) { 92 nr_segs = io->vec.nr; 93 iov = io->vec.iovec; 94 } else { 95 nr_segs = 1; 96 iov = &io->fast_iov; 97 } 98 99 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter, 100 io_is_compat(req->ctx)); 101 if (unlikely(ret < 0)) 102 return ret; 103 if (iov) { 104 req->flags |= REQ_F_NEED_CLEANUP; 105 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs); 106 } 107 return 0; 108 } 109 110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req, 111 struct io_async_rw *io, struct io_br_sel *sel, 112 unsigned int issue_flags) 113 { 114 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 115 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 116 size_t sqe_len = rw->len; 117 118 sel->addr = u64_to_user_ptr(rw->addr); 119 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT)) 120 return io_import_vec(ddir, req, io, sel->addr, sqe_len); 121 122 if (io_do_buffer_select(req)) { 123 *sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags); 124 if (!sel->addr) 125 return -ENOBUFS; 126 rw->addr = (unsigned long) sel->addr; 127 rw->len = sqe_len; 128 } 129 return import_ubuf(ddir, sel->addr, sqe_len, &io->iter); 130 } 131 132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req, 133 struct io_async_rw *io, 134 struct io_br_sel *sel, 135 unsigned int issue_flags) 136 { 137 int ret; 138 139 ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags); 140 if (unlikely(ret < 0)) 141 return ret; 142 143 iov_iter_save_state(&io->iter, &io->iter_state); 144 return 0; 145 } 146 147 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) 148 { 149 struct io_async_rw *rw = req->async_data; 150 151 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 152 return; 153 154 io_alloc_cache_vec_kasan(&rw->vec); 155 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP) 156 io_vec_free(&rw->vec); 157 158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) 159 io_req_async_data_clear(req, 0); 160 } 161 162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) 163 { 164 /* 165 * Disable quick recycling for anything that's gone through io-wq. 166 * In theory, this should be fine to cleanup. However, some read or 167 * write iter handling touches the iovec AFTER having called into the 168 * handler, eg to reexpand or revert. This means we can have: 169 * 170 * task io-wq 171 * issue 172 * punt to io-wq 173 * issue 174 * blkdev_write_iter() 175 * ->ki_complete() 176 * io_complete_rw() 177 * queue tw complete 178 * run tw 179 * req_rw_cleanup 180 * iov_iter_count() <- look at iov_iter again 181 * 182 * which can lead to a UAF. This is only possible for io-wq offload 183 * as the cleanup can run in parallel. As io-wq is not the fast path, 184 * just leave cleanup to the end. 185 * 186 * This is really a bug in the core code that does this, any issue 187 * path should assume that a successful (or -EIOCBQUEUED) return can 188 * mean that the underlying data can be gone at any time. But that 189 * should be fixed seperately, and then this check could be killed. 190 */ 191 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) { 192 req->flags &= ~REQ_F_NEED_CLEANUP; 193 io_rw_recycle(req, issue_flags); 194 } 195 } 196 197 static int io_rw_alloc_async(struct io_kiocb *req) 198 { 199 struct io_ring_ctx *ctx = req->ctx; 200 struct io_async_rw *rw; 201 202 rw = io_uring_alloc_async_data(&ctx->rw_cache, req); 203 if (!rw) 204 return -ENOMEM; 205 if (rw->vec.iovec) 206 req->flags |= REQ_F_NEED_CLEANUP; 207 rw->bytes_done = 0; 208 return 0; 209 } 210 211 static inline void io_meta_save_state(struct io_async_rw *io) 212 { 213 io->meta_state.seed = io->meta.seed; 214 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta); 215 } 216 217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb) 218 { 219 if (kiocb->ki_flags & IOCB_HAS_METADATA) { 220 io->meta.seed = io->meta_state.seed; 221 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta); 222 } 223 } 224 225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir, 226 u64 attr_ptr, u64 attr_type_mask) 227 { 228 struct io_uring_attr_pi pi_attr; 229 struct io_async_rw *io; 230 int ret; 231 232 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr), 233 sizeof(pi_attr))) 234 return -EFAULT; 235 236 if (pi_attr.rsvd) 237 return -EINVAL; 238 239 io = req->async_data; 240 io->meta.flags = pi_attr.flags; 241 io->meta.app_tag = pi_attr.app_tag; 242 io->meta.seed = pi_attr.seed; 243 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr), 244 pi_attr.len, &io->meta.iter); 245 if (unlikely(ret < 0)) 246 return ret; 247 req->flags |= REQ_F_HAS_METADATA; 248 io_meta_save_state(io); 249 return ret; 250 } 251 252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 253 int ddir) 254 { 255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 256 struct io_async_rw *io; 257 unsigned ioprio; 258 u64 attr_type_mask; 259 int ret; 260 261 if (io_rw_alloc_async(req)) 262 return -ENOMEM; 263 io = req->async_data; 264 265 rw->kiocb.ki_pos = READ_ONCE(sqe->off); 266 /* used for fixed read/write too - just read unconditionally */ 267 req->buf_index = READ_ONCE(sqe->buf_index); 268 io->buf_group = req->buf_index; 269 270 ioprio = READ_ONCE(sqe->ioprio); 271 if (ioprio) { 272 ret = ioprio_check_cap(ioprio); 273 if (ret) 274 return ret; 275 276 rw->kiocb.ki_ioprio = ioprio; 277 } else { 278 rw->kiocb.ki_ioprio = get_current_ioprio(); 279 } 280 rw->kiocb.ki_flags = 0; 281 rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream); 282 283 if (req->ctx->flags & IORING_SETUP_IOPOLL) 284 rw->kiocb.ki_complete = io_complete_rw_iopoll; 285 else 286 rw->kiocb.ki_complete = io_complete_rw; 287 288 rw->addr = READ_ONCE(sqe->addr); 289 rw->len = READ_ONCE(sqe->len); 290 rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags); 291 292 attr_type_mask = READ_ONCE(sqe->attr_type_mask); 293 if (attr_type_mask) { 294 u64 attr_ptr; 295 296 /* only PI attribute is supported currently */ 297 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI) 298 return -EINVAL; 299 300 attr_ptr = READ_ONCE(sqe->attr_ptr); 301 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask); 302 } 303 return 0; 304 } 305 306 static int io_rw_do_import(struct io_kiocb *req, int ddir) 307 { 308 struct io_br_sel sel = { }; 309 310 if (io_do_buffer_select(req)) 311 return 0; 312 313 return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0); 314 } 315 316 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 317 int ddir) 318 { 319 int ret; 320 321 ret = __io_prep_rw(req, sqe, ddir); 322 if (unlikely(ret)) 323 return ret; 324 325 return io_rw_do_import(req, ddir); 326 } 327 328 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) 329 { 330 return io_prep_rw(req, sqe, ITER_DEST); 331 } 332 333 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) 334 { 335 return io_prep_rw(req, sqe, ITER_SOURCE); 336 } 337 338 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, 339 int ddir) 340 { 341 int ret; 342 343 ret = io_prep_rw(req, sqe, ddir); 344 if (unlikely(ret)) 345 return ret; 346 if (!(req->flags & REQ_F_BUFFER_SELECT)) 347 return 0; 348 349 /* 350 * Have to do this validation here, as this is in io_read() rw->len 351 * might have chanaged due to buffer selection 352 */ 353 return io_iov_buffer_select_prep(req); 354 } 355 356 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) 357 { 358 return io_prep_rwv(req, sqe, ITER_DEST); 359 } 360 361 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) 362 { 363 return io_prep_rwv(req, sqe, ITER_SOURCE); 364 } 365 366 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags, 367 int ddir) 368 { 369 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 370 struct io_async_rw *io = req->async_data; 371 int ret; 372 373 if (io->bytes_done) 374 return 0; 375 376 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir, 377 issue_flags); 378 iov_iter_save_state(&io->iter, &io->iter_state); 379 return ret; 380 } 381 382 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 383 { 384 return __io_prep_rw(req, sqe, ITER_DEST); 385 } 386 387 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 388 { 389 return __io_prep_rw(req, sqe, ITER_SOURCE); 390 } 391 392 static int io_rw_import_reg_vec(struct io_kiocb *req, 393 struct io_async_rw *io, 394 int ddir, unsigned int issue_flags) 395 { 396 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 397 unsigned uvec_segs = rw->len; 398 int ret; 399 400 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec, 401 uvec_segs, issue_flags); 402 if (unlikely(ret)) 403 return ret; 404 iov_iter_save_state(&io->iter, &io->iter_state); 405 req->flags &= ~REQ_F_IMPORT_BUFFER; 406 return 0; 407 } 408 409 static int io_rw_prep_reg_vec(struct io_kiocb *req) 410 { 411 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 412 struct io_async_rw *io = req->async_data; 413 const struct iovec __user *uvec; 414 415 uvec = u64_to_user_ptr(rw->addr); 416 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len); 417 } 418 419 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 420 { 421 int ret; 422 423 ret = __io_prep_rw(req, sqe, ITER_DEST); 424 if (unlikely(ret)) 425 return ret; 426 return io_rw_prep_reg_vec(req); 427 } 428 429 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 430 { 431 int ret; 432 433 ret = __io_prep_rw(req, sqe, ITER_SOURCE); 434 if (unlikely(ret)) 435 return ret; 436 return io_rw_prep_reg_vec(req); 437 } 438 439 /* 440 * Multishot read is prepared just like a normal read/write request, only 441 * difference is that we set the MULTISHOT flag. 442 */ 443 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 444 { 445 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 446 int ret; 447 448 /* must be used with provided buffers */ 449 if (!(req->flags & REQ_F_BUFFER_SELECT)) 450 return -EINVAL; 451 452 ret = __io_prep_rw(req, sqe, ITER_DEST); 453 if (unlikely(ret)) 454 return ret; 455 456 if (rw->addr || rw->len) 457 return -EINVAL; 458 459 req->flags |= REQ_F_APOLL_MULTISHOT; 460 return 0; 461 } 462 463 void io_readv_writev_cleanup(struct io_kiocb *req) 464 { 465 struct io_async_rw *rw = req->async_data; 466 467 lockdep_assert_held(&req->ctx->uring_lock); 468 io_vec_free(&rw->vec); 469 io_rw_recycle(req, 0); 470 } 471 472 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) 473 { 474 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 475 476 if (rw->kiocb.ki_pos != -1) 477 return &rw->kiocb.ki_pos; 478 479 if (!(req->file->f_mode & FMODE_STREAM)) { 480 req->flags |= REQ_F_CUR_POS; 481 rw->kiocb.ki_pos = req->file->f_pos; 482 return &rw->kiocb.ki_pos; 483 } 484 485 rw->kiocb.ki_pos = 0; 486 return NULL; 487 } 488 489 static bool io_rw_should_reissue(struct io_kiocb *req) 490 { 491 #ifdef CONFIG_BLOCK 492 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 493 umode_t mode = file_inode(req->file)->i_mode; 494 struct io_async_rw *io = req->async_data; 495 struct io_ring_ctx *ctx = req->ctx; 496 497 if (!S_ISBLK(mode) && !S_ISREG(mode)) 498 return false; 499 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && 500 !(ctx->flags & IORING_SETUP_IOPOLL))) 501 return false; 502 /* 503 * If ref is dying, we might be running poll reap from the exit work. 504 * Don't attempt to reissue from that path, just let it fail with 505 * -EAGAIN. 506 */ 507 if (percpu_ref_is_dying(&ctx->refs)) 508 return false; 509 510 io_meta_restore(io, &rw->kiocb); 511 iov_iter_restore(&io->iter, &io->iter_state); 512 return true; 513 #else 514 return false; 515 #endif 516 } 517 518 static void io_req_end_write(struct io_kiocb *req) 519 { 520 if (req->flags & REQ_F_ISREG) { 521 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 522 523 kiocb_end_write(&rw->kiocb); 524 } 525 } 526 527 /* 528 * Trigger the notifications after having done some IO, and finish the write 529 * accounting, if any. 530 */ 531 static void io_req_io_end(struct io_kiocb *req) 532 { 533 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 534 535 if (rw->kiocb.ki_flags & IOCB_WRITE) { 536 io_req_end_write(req); 537 fsnotify_modify(req->file); 538 } else { 539 fsnotify_access(req->file); 540 } 541 } 542 543 static void __io_complete_rw_common(struct io_kiocb *req, long res) 544 { 545 if (res == req->cqe.res) 546 return; 547 if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) { 548 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 549 } else { 550 req_set_fail(req); 551 req->cqe.res = res; 552 } 553 } 554 555 static inline int io_fixup_rw_res(struct io_kiocb *req, long res) 556 { 557 struct io_async_rw *io = req->async_data; 558 559 /* add previously done IO, if any */ 560 if (req_has_async_data(req) && io->bytes_done > 0) { 561 if (res < 0) 562 res = io->bytes_done; 563 else 564 res += io->bytes_done; 565 } 566 return res; 567 } 568 569 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw) 570 { 571 io_req_io_end(req); 572 573 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) 574 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL); 575 576 io_req_rw_cleanup(req, 0); 577 io_req_task_complete(req, tw); 578 } 579 580 static void io_complete_rw(struct kiocb *kiocb, long res) 581 { 582 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 583 struct io_kiocb *req = cmd_to_io_kiocb(rw); 584 585 __io_complete_rw_common(req, res); 586 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 587 req->io_task_work.func = io_req_rw_complete; 588 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); 589 } 590 591 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) 592 { 593 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 594 struct io_kiocb *req = cmd_to_io_kiocb(rw); 595 596 if (kiocb->ki_flags & IOCB_WRITE) 597 io_req_end_write(req); 598 if (unlikely(res != req->cqe.res)) { 599 if (res == -EAGAIN && io_rw_should_reissue(req)) 600 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 601 else 602 req->cqe.res = res; 603 } 604 605 /* order with io_iopoll_complete() checking ->iopoll_completed */ 606 smp_store_release(&req->iopoll_completed, 1); 607 } 608 609 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret) 610 { 611 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 612 613 /* IO was queued async, completion will happen later */ 614 if (ret == -EIOCBQUEUED) 615 return; 616 617 /* transform internal restart error codes */ 618 if (unlikely(ret < 0)) { 619 switch (ret) { 620 case -ERESTARTSYS: 621 case -ERESTARTNOINTR: 622 case -ERESTARTNOHAND: 623 case -ERESTART_RESTARTBLOCK: 624 /* 625 * We can't just restart the syscall, since previously 626 * submitted sqes may already be in progress. Just fail 627 * this IO with EINTR. 628 */ 629 ret = -EINTR; 630 break; 631 } 632 } 633 634 if (req->ctx->flags & IORING_SETUP_IOPOLL) 635 io_complete_rw_iopoll(&rw->kiocb, ret); 636 else 637 io_complete_rw(&rw->kiocb, ret); 638 } 639 640 static int kiocb_done(struct io_kiocb *req, ssize_t ret, 641 struct io_br_sel *sel, unsigned int issue_flags) 642 { 643 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 644 unsigned final_ret = io_fixup_rw_res(req, ret); 645 646 if (ret >= 0 && req->flags & REQ_F_CUR_POS) 647 req->file->f_pos = rw->kiocb.ki_pos; 648 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 649 u32 cflags = 0; 650 651 __io_complete_rw_common(req, ret); 652 /* 653 * Safe to call io_end from here as we're inline 654 * from the submission path. 655 */ 656 io_req_io_end(req); 657 if (sel) 658 cflags = io_put_kbuf(req, ret, sel->buf_list); 659 io_req_set_res(req, final_ret, cflags); 660 io_req_rw_cleanup(req, issue_flags); 661 return IOU_COMPLETE; 662 } else { 663 io_rw_done(req, ret); 664 } 665 666 return IOU_ISSUE_SKIP_COMPLETE; 667 } 668 669 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) 670 { 671 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; 672 } 673 674 /* 675 * For files that don't have ->read_iter() and ->write_iter(), handle them 676 * by looping over ->read() or ->write() manually. 677 */ 678 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) 679 { 680 struct io_kiocb *req = cmd_to_io_kiocb(rw); 681 struct kiocb *kiocb = &rw->kiocb; 682 struct file *file = kiocb->ki_filp; 683 ssize_t ret = 0; 684 loff_t *ppos; 685 686 /* 687 * Don't support polled IO through this interface, and we can't 688 * support non-blocking either. For the latter, this just causes 689 * the kiocb to be handled from an async context. 690 */ 691 if (kiocb->ki_flags & IOCB_HIPRI) 692 return -EOPNOTSUPP; 693 if ((kiocb->ki_flags & IOCB_NOWAIT) && 694 !(kiocb->ki_filp->f_flags & O_NONBLOCK)) 695 return -EAGAIN; 696 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf) 697 return -EFAULT; 698 699 ppos = io_kiocb_ppos(kiocb); 700 701 while (iov_iter_count(iter)) { 702 void __user *addr; 703 size_t len; 704 ssize_t nr; 705 706 if (iter_is_ubuf(iter)) { 707 addr = iter->ubuf + iter->iov_offset; 708 len = iov_iter_count(iter); 709 } else if (!iov_iter_is_bvec(iter)) { 710 addr = iter_iov_addr(iter); 711 len = iter_iov_len(iter); 712 } else { 713 addr = u64_to_user_ptr(rw->addr); 714 len = rw->len; 715 } 716 717 if (ddir == READ) 718 nr = file->f_op->read(file, addr, len, ppos); 719 else 720 nr = file->f_op->write(file, addr, len, ppos); 721 722 if (nr < 0) { 723 if (!ret) 724 ret = nr; 725 break; 726 } 727 ret += nr; 728 if (!iov_iter_is_bvec(iter)) { 729 iov_iter_advance(iter, nr); 730 } else { 731 rw->addr += nr; 732 rw->len -= nr; 733 if (!rw->len) 734 break; 735 } 736 if (nr != len) 737 break; 738 } 739 740 return ret; 741 } 742 743 /* 744 * This is our waitqueue callback handler, registered through __folio_lock_async() 745 * when we initially tried to do the IO with the iocb armed our waitqueue. 746 * This gets called when the page is unlocked, and we generally expect that to 747 * happen when the page IO is completed and the page is now uptodate. This will 748 * queue a task_work based retry of the operation, attempting to copy the data 749 * again. If the latter fails because the page was NOT uptodate, then we will 750 * do a thread based blocking retry of the operation. That's the unexpected 751 * slow path. 752 */ 753 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, 754 int sync, void *arg) 755 { 756 struct wait_page_queue *wpq; 757 struct io_kiocb *req = wait->private; 758 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 759 struct wait_page_key *key = arg; 760 761 wpq = container_of(wait, struct wait_page_queue, wait); 762 763 if (!wake_page_match(wpq, key)) 764 return 0; 765 766 rw->kiocb.ki_flags &= ~IOCB_WAITQ; 767 list_del_init(&wait->entry); 768 io_req_task_queue(req); 769 return 1; 770 } 771 772 /* 773 * This controls whether a given IO request should be armed for async page 774 * based retry. If we return false here, the request is handed to the async 775 * worker threads for retry. If we're doing buffered reads on a regular file, 776 * we prepare a private wait_page_queue entry and retry the operation. This 777 * will either succeed because the page is now uptodate and unlocked, or it 778 * will register a callback when the page is unlocked at IO completion. Through 779 * that callback, io_uring uses task_work to setup a retry of the operation. 780 * That retry will attempt the buffered read again. The retry will generally 781 * succeed, or in rare cases where it fails, we then fall back to using the 782 * async worker threads for a blocking retry. 783 */ 784 static bool io_rw_should_retry(struct io_kiocb *req) 785 { 786 struct io_async_rw *io = req->async_data; 787 struct wait_page_queue *wait = &io->wpq; 788 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 789 struct kiocb *kiocb = &rw->kiocb; 790 791 /* 792 * Never retry for NOWAIT or a request with metadata, we just complete 793 * with -EAGAIN. 794 */ 795 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA)) 796 return false; 797 798 /* Only for buffered IO */ 799 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) 800 return false; 801 802 /* 803 * just use poll if we can, and don't attempt if the fs doesn't 804 * support callback based unlocks 805 */ 806 if (io_file_can_poll(req) || 807 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC)) 808 return false; 809 810 wait->wait.func = io_async_buf_func; 811 wait->wait.private = req; 812 wait->wait.flags = 0; 813 INIT_LIST_HEAD(&wait->wait.entry); 814 kiocb->ki_flags |= IOCB_WAITQ; 815 kiocb->ki_flags &= ~IOCB_NOWAIT; 816 kiocb->ki_waitq = wait; 817 return true; 818 } 819 820 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) 821 { 822 struct file *file = rw->kiocb.ki_filp; 823 824 if (likely(file->f_op->read_iter)) 825 return file->f_op->read_iter(&rw->kiocb, iter); 826 else if (file->f_op->read) 827 return loop_rw_iter(READ, rw, iter); 828 else 829 return -EINVAL; 830 } 831 832 static bool need_complete_io(struct io_kiocb *req) 833 { 834 return req->flags & REQ_F_ISREG || 835 S_ISBLK(file_inode(req->file)->i_mode); 836 } 837 838 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type) 839 { 840 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 841 struct kiocb *kiocb = &rw->kiocb; 842 struct io_ring_ctx *ctx = req->ctx; 843 struct file *file = req->file; 844 int ret; 845 846 if (unlikely(!(file->f_mode & mode))) 847 return -EBADF; 848 849 if (!(req->flags & REQ_F_FIXED_FILE)) 850 req->flags |= io_file_get_flags(file); 851 852 kiocb->ki_flags = file->f_iocb_flags; 853 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type); 854 if (unlikely(ret)) 855 return ret; 856 kiocb->ki_flags |= IOCB_ALLOC_CACHE; 857 858 /* 859 * If the file is marked O_NONBLOCK, still allow retry for it if it 860 * supports async. Otherwise it's impossible to use O_NONBLOCK files 861 * reliably. If not, or it IOCB_NOWAIT is set, don't retry. 862 */ 863 if (kiocb->ki_flags & IOCB_NOWAIT || 864 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT)))) 865 req->flags |= REQ_F_NOWAIT; 866 867 if (ctx->flags & IORING_SETUP_IOPOLL) { 868 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) 869 return -EOPNOTSUPP; 870 kiocb->private = NULL; 871 kiocb->ki_flags |= IOCB_HIPRI; 872 req->iopoll_completed = 0; 873 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) { 874 /* make sure every req only blocks once*/ 875 req->flags &= ~REQ_F_IOPOLL_STATE; 876 req->iopoll_start = ktime_get_ns(); 877 } 878 } else { 879 if (kiocb->ki_flags & IOCB_HIPRI) 880 return -EINVAL; 881 } 882 883 if (req->flags & REQ_F_HAS_METADATA) { 884 struct io_async_rw *io = req->async_data; 885 886 if (!(file->f_mode & FMODE_HAS_METADATA)) 887 return -EINVAL; 888 889 /* 890 * We have a union of meta fields with wpq used for buffered-io 891 * in io_async_rw, so fail it here. 892 */ 893 if (!(req->file->f_flags & O_DIRECT)) 894 return -EOPNOTSUPP; 895 kiocb->ki_flags |= IOCB_HAS_METADATA; 896 kiocb->private = &io->meta; 897 } 898 899 return 0; 900 } 901 902 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel, 903 unsigned int issue_flags) 904 { 905 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 906 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 907 struct io_async_rw *io = req->async_data; 908 struct kiocb *kiocb = &rw->kiocb; 909 ssize_t ret; 910 loff_t *ppos; 911 912 if (req->flags & REQ_F_IMPORT_BUFFER) { 913 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags); 914 if (unlikely(ret)) 915 return ret; 916 } else if (io_do_buffer_select(req)) { 917 ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags); 918 if (unlikely(ret < 0)) 919 return ret; 920 } 921 ret = io_rw_init_file(req, FMODE_READ, READ); 922 if (unlikely(ret)) 923 return ret; 924 req->cqe.res = iov_iter_count(&io->iter); 925 926 if (force_nonblock) { 927 /* If the file doesn't support async, just async punt */ 928 if (unlikely(!io_file_supports_nowait(req, EPOLLIN))) 929 return -EAGAIN; 930 kiocb->ki_flags |= IOCB_NOWAIT; 931 } else { 932 /* Ensure we clear previously set non-block flag */ 933 kiocb->ki_flags &= ~IOCB_NOWAIT; 934 } 935 936 ppos = io_kiocb_update_pos(req); 937 938 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); 939 if (unlikely(ret)) 940 return ret; 941 942 ret = io_iter_do_read(rw, &io->iter); 943 944 /* 945 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT 946 * issue, even though they should be returning -EAGAIN. To be safe, 947 * retry from blocking context for either. 948 */ 949 if (ret == -EOPNOTSUPP && force_nonblock) 950 ret = -EAGAIN; 951 952 if (ret == -EAGAIN) { 953 /* If we can poll, just do that. */ 954 if (io_file_can_poll(req)) 955 return -EAGAIN; 956 /* IOPOLL retry should happen for io-wq threads */ 957 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) 958 goto done; 959 /* no retry on NONBLOCK nor RWF_NOWAIT */ 960 if (req->flags & REQ_F_NOWAIT) 961 goto done; 962 ret = 0; 963 } else if (ret == -EIOCBQUEUED) { 964 return IOU_ISSUE_SKIP_COMPLETE; 965 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || 966 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) || 967 (issue_flags & IO_URING_F_MULTISHOT)) { 968 /* read all, failed, already did sync or don't want to retry */ 969 goto done; 970 } 971 972 /* 973 * Don't depend on the iter state matching what was consumed, or being 974 * untouched in case of error. Restore it and we'll advance it 975 * manually if we need to. 976 */ 977 iov_iter_restore(&io->iter, &io->iter_state); 978 io_meta_restore(io, kiocb); 979 980 do { 981 /* 982 * We end up here because of a partial read, either from 983 * above or inside this loop. Advance the iter by the bytes 984 * that were consumed. 985 */ 986 iov_iter_advance(&io->iter, ret); 987 if (!iov_iter_count(&io->iter)) 988 break; 989 io->bytes_done += ret; 990 iov_iter_save_state(&io->iter, &io->iter_state); 991 992 /* if we can retry, do so with the callbacks armed */ 993 if (!io_rw_should_retry(req)) { 994 kiocb->ki_flags &= ~IOCB_WAITQ; 995 return -EAGAIN; 996 } 997 998 req->cqe.res = iov_iter_count(&io->iter); 999 /* 1000 * Now retry read with the IOCB_WAITQ parts set in the iocb. If 1001 * we get -EIOCBQUEUED, then we'll get a notification when the 1002 * desired page gets unlocked. We can also get a partial read 1003 * here, and if we do, then just retry at the new offset. 1004 */ 1005 ret = io_iter_do_read(rw, &io->iter); 1006 if (ret == -EIOCBQUEUED) 1007 return IOU_ISSUE_SKIP_COMPLETE; 1008 /* we got some bytes, but not all. retry. */ 1009 kiocb->ki_flags &= ~IOCB_WAITQ; 1010 iov_iter_restore(&io->iter, &io->iter_state); 1011 } while (ret > 0); 1012 done: 1013 /* it's faster to check here then delegate to kfree */ 1014 return ret; 1015 } 1016 1017 int io_read(struct io_kiocb *req, unsigned int issue_flags) 1018 { 1019 struct io_br_sel sel = { }; 1020 int ret; 1021 1022 ret = __io_read(req, &sel, issue_flags); 1023 if (ret >= 0) 1024 return kiocb_done(req, ret, &sel, issue_flags); 1025 1026 if (req->flags & REQ_F_BUFFERS_COMMIT) 1027 io_kbuf_recycle(req, sel.buf_list, issue_flags); 1028 return ret; 1029 } 1030 1031 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) 1032 { 1033 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1034 struct io_br_sel sel = { }; 1035 unsigned int cflags = 0; 1036 int ret; 1037 1038 /* 1039 * Multishot MUST be used on a pollable file 1040 */ 1041 if (!io_file_can_poll(req)) 1042 return -EBADFD; 1043 1044 /* make it sync, multishot doesn't support async execution */ 1045 rw->kiocb.ki_complete = NULL; 1046 ret = __io_read(req, &sel, issue_flags); 1047 1048 /* 1049 * If we get -EAGAIN, recycle our buffer and just let normal poll 1050 * handling arm it. 1051 */ 1052 if (ret == -EAGAIN) { 1053 /* 1054 * Reset rw->len to 0 again to avoid clamping future mshot 1055 * reads, in case the buffer size varies. 1056 */ 1057 if (io_kbuf_recycle(req, sel.buf_list, issue_flags)) 1058 rw->len = 0; 1059 return IOU_RETRY; 1060 } else if (ret <= 0) { 1061 io_kbuf_recycle(req, sel.buf_list, issue_flags); 1062 if (ret < 0) 1063 req_set_fail(req); 1064 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) { 1065 cflags = io_put_kbuf(req, ret, sel.buf_list); 1066 } else { 1067 /* 1068 * Any successful return value will keep the multishot read 1069 * armed, if it's still set. Put our buffer and post a CQE. If 1070 * we fail to post a CQE, or multishot is no longer set, then 1071 * jump to the termination path. This request is then done. 1072 */ 1073 cflags = io_put_kbuf(req, ret, sel.buf_list); 1074 rw->len = 0; /* similarly to above, reset len to 0 */ 1075 1076 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { 1077 if (issue_flags & IO_URING_F_MULTISHOT) 1078 /* 1079 * Force retry, as we might have more data to 1080 * be read and otherwise it won't get retried 1081 * until (if ever) another poll is triggered. 1082 */ 1083 io_poll_multishot_retry(req); 1084 1085 return IOU_RETRY; 1086 } 1087 } 1088 1089 /* 1090 * Either an error, or we've hit overflow posting the CQE. For any 1091 * multishot request, hitting overflow will terminate it. 1092 */ 1093 io_req_set_res(req, ret, cflags); 1094 io_req_rw_cleanup(req, issue_flags); 1095 return IOU_COMPLETE; 1096 } 1097 1098 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb) 1099 { 1100 struct inode *inode; 1101 bool ret; 1102 1103 if (!(req->flags & REQ_F_ISREG)) 1104 return true; 1105 if (!(kiocb->ki_flags & IOCB_NOWAIT)) { 1106 kiocb_start_write(kiocb); 1107 return true; 1108 } 1109 1110 inode = file_inode(kiocb->ki_filp); 1111 ret = sb_start_write_trylock(inode->i_sb); 1112 if (ret) 1113 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 1114 return ret; 1115 } 1116 1117 int io_write(struct io_kiocb *req, unsigned int issue_flags) 1118 { 1119 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 1120 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1121 struct io_async_rw *io = req->async_data; 1122 struct kiocb *kiocb = &rw->kiocb; 1123 ssize_t ret, ret2; 1124 loff_t *ppos; 1125 1126 if (req->flags & REQ_F_IMPORT_BUFFER) { 1127 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags); 1128 if (unlikely(ret)) 1129 return ret; 1130 } 1131 1132 ret = io_rw_init_file(req, FMODE_WRITE, WRITE); 1133 if (unlikely(ret)) 1134 return ret; 1135 req->cqe.res = iov_iter_count(&io->iter); 1136 1137 if (force_nonblock) { 1138 /* If the file doesn't support async, just async punt */ 1139 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT))) 1140 goto ret_eagain; 1141 1142 /* Check if we can support NOWAIT. */ 1143 if (!(kiocb->ki_flags & IOCB_DIRECT) && 1144 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) && 1145 (req->flags & REQ_F_ISREG)) 1146 goto ret_eagain; 1147 1148 kiocb->ki_flags |= IOCB_NOWAIT; 1149 } else { 1150 /* Ensure we clear previously set non-block flag */ 1151 kiocb->ki_flags &= ~IOCB_NOWAIT; 1152 } 1153 1154 ppos = io_kiocb_update_pos(req); 1155 1156 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); 1157 if (unlikely(ret)) 1158 return ret; 1159 1160 if (unlikely(!io_kiocb_start_write(req, kiocb))) 1161 return -EAGAIN; 1162 kiocb->ki_flags |= IOCB_WRITE; 1163 1164 if (likely(req->file->f_op->write_iter)) 1165 ret2 = req->file->f_op->write_iter(kiocb, &io->iter); 1166 else if (req->file->f_op->write) 1167 ret2 = loop_rw_iter(WRITE, rw, &io->iter); 1168 else 1169 ret2 = -EINVAL; 1170 1171 /* 1172 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just 1173 * retry them without IOCB_NOWAIT. 1174 */ 1175 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) 1176 ret2 = -EAGAIN; 1177 /* no retry on NONBLOCK nor RWF_NOWAIT */ 1178 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) 1179 goto done; 1180 if (!force_nonblock || ret2 != -EAGAIN) { 1181 /* IOPOLL retry should happen for io-wq threads */ 1182 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) 1183 goto ret_eagain; 1184 1185 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { 1186 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, 1187 req->cqe.res, ret2); 1188 1189 /* This is a partial write. The file pos has already been 1190 * updated, setup the async struct to complete the request 1191 * in the worker. Also update bytes_done to account for 1192 * the bytes already written. 1193 */ 1194 iov_iter_save_state(&io->iter, &io->iter_state); 1195 io->bytes_done += ret2; 1196 1197 if (kiocb->ki_flags & IOCB_WRITE) 1198 io_req_end_write(req); 1199 return -EAGAIN; 1200 } 1201 done: 1202 return kiocb_done(req, ret2, NULL, issue_flags); 1203 } else { 1204 ret_eagain: 1205 iov_iter_restore(&io->iter, &io->iter_state); 1206 io_meta_restore(io, kiocb); 1207 if (kiocb->ki_flags & IOCB_WRITE) 1208 io_req_end_write(req); 1209 return -EAGAIN; 1210 } 1211 } 1212 1213 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags) 1214 { 1215 int ret; 1216 1217 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST); 1218 if (unlikely(ret)) 1219 return ret; 1220 1221 return io_read(req, issue_flags); 1222 } 1223 1224 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags) 1225 { 1226 int ret; 1227 1228 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE); 1229 if (unlikely(ret)) 1230 return ret; 1231 1232 return io_write(req, issue_flags); 1233 } 1234 1235 void io_rw_fail(struct io_kiocb *req) 1236 { 1237 int res; 1238 1239 res = io_fixup_rw_res(req, req->cqe.res); 1240 io_req_set_res(req, res, req->cqe.flags); 1241 } 1242 1243 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob, 1244 unsigned int poll_flags) 1245 { 1246 struct file *file = req->file; 1247 1248 if (req->opcode == IORING_OP_URING_CMD) { 1249 struct io_uring_cmd *ioucmd; 1250 1251 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); 1252 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags); 1253 } else { 1254 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1255 1256 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags); 1257 } 1258 } 1259 1260 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req) 1261 { 1262 struct hrtimer_sleeper timer; 1263 enum hrtimer_mode mode; 1264 ktime_t kt; 1265 u64 sleep_time; 1266 1267 if (req->flags & REQ_F_IOPOLL_STATE) 1268 return 0; 1269 1270 if (ctx->hybrid_poll_time == LLONG_MAX) 1271 return 0; 1272 1273 /* Using half the running time to do schedule */ 1274 sleep_time = ctx->hybrid_poll_time / 2; 1275 1276 kt = ktime_set(0, sleep_time); 1277 req->flags |= REQ_F_IOPOLL_STATE; 1278 1279 mode = HRTIMER_MODE_REL; 1280 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode); 1281 hrtimer_set_expires(&timer.timer, kt); 1282 set_current_state(TASK_INTERRUPTIBLE); 1283 hrtimer_sleeper_start_expires(&timer, mode); 1284 1285 if (timer.task) 1286 io_schedule(); 1287 1288 hrtimer_cancel(&timer.timer); 1289 __set_current_state(TASK_RUNNING); 1290 destroy_hrtimer_on_stack(&timer.timer); 1291 return sleep_time; 1292 } 1293 1294 static int io_uring_hybrid_poll(struct io_kiocb *req, 1295 struct io_comp_batch *iob, unsigned int poll_flags) 1296 { 1297 struct io_ring_ctx *ctx = req->ctx; 1298 u64 runtime, sleep_time; 1299 int ret; 1300 1301 sleep_time = io_hybrid_iopoll_delay(ctx, req); 1302 ret = io_uring_classic_poll(req, iob, poll_flags); 1303 runtime = ktime_get_ns() - req->iopoll_start - sleep_time; 1304 1305 /* 1306 * Use minimum sleep time if we're polling devices with different 1307 * latencies. We could get more completions from the faster ones. 1308 */ 1309 if (ctx->hybrid_poll_time > runtime) 1310 ctx->hybrid_poll_time = runtime; 1311 1312 return ret; 1313 } 1314 1315 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) 1316 { 1317 struct io_wq_work_node *pos, *start, *prev; 1318 unsigned int poll_flags = 0; 1319 DEFINE_IO_COMP_BATCH(iob); 1320 int nr_events = 0; 1321 1322 /* 1323 * Only spin for completions if we don't have multiple devices hanging 1324 * off our complete list. 1325 */ 1326 if (ctx->poll_multi_queue || force_nonspin) 1327 poll_flags |= BLK_POLL_ONESHOT; 1328 1329 wq_list_for_each(pos, start, &ctx->iopoll_list) { 1330 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1331 int ret; 1332 1333 /* 1334 * Move completed and retryable entries to our local lists. 1335 * If we find a request that requires polling, break out 1336 * and complete those lists first, if we have entries there. 1337 */ 1338 if (READ_ONCE(req->iopoll_completed)) 1339 break; 1340 1341 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) 1342 ret = io_uring_hybrid_poll(req, &iob, poll_flags); 1343 else 1344 ret = io_uring_classic_poll(req, &iob, poll_flags); 1345 1346 if (unlikely(ret < 0)) 1347 return ret; 1348 else if (ret) 1349 poll_flags |= BLK_POLL_ONESHOT; 1350 1351 /* iopoll may have completed current req */ 1352 if (!rq_list_empty(&iob.req_list) || 1353 READ_ONCE(req->iopoll_completed)) 1354 break; 1355 } 1356 1357 if (!rq_list_empty(&iob.req_list)) 1358 iob.complete(&iob); 1359 else if (!pos) 1360 return 0; 1361 1362 prev = start; 1363 wq_list_for_each_resume(pos, prev) { 1364 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1365 1366 /* order with io_complete_rw_iopoll(), e.g. ->result updates */ 1367 if (!smp_load_acquire(&req->iopoll_completed)) 1368 break; 1369 nr_events++; 1370 req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL); 1371 if (req->opcode != IORING_OP_URING_CMD) 1372 io_req_rw_cleanup(req, 0); 1373 } 1374 if (unlikely(!nr_events)) 1375 return 0; 1376 1377 pos = start ? start->next : ctx->iopoll_list.first; 1378 wq_list_cut(&ctx->iopoll_list, prev, start); 1379 1380 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) 1381 return 0; 1382 ctx->submit_state.compl_reqs.first = pos; 1383 __io_submit_flush_completions(ctx); 1384 return nr_events; 1385 } 1386 1387 void io_rw_cache_free(const void *entry) 1388 { 1389 struct io_async_rw *rw = (struct io_async_rw *) entry; 1390 1391 io_vec_free(&rw->vec); 1392 kfree(rw); 1393 } 1394