1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/blk-mq.h> 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/fsnotify.h> 10 #include <linux/poll.h> 11 #include <linux/nospec.h> 12 #include <linux/compat.h> 13 #include <linux/io_uring/cmd.h> 14 #include <linux/indirect_call_wrapper.h> 15 16 #include <uapi/linux/io_uring.h> 17 18 #include "io_uring.h" 19 #include "opdef.h" 20 #include "kbuf.h" 21 #include "alloc_cache.h" 22 #include "rsrc.h" 23 #include "poll.h" 24 #include "rw.h" 25 26 struct io_rw { 27 /* NOTE: kiocb has the file as the first member, so don't do it here */ 28 struct kiocb kiocb; 29 u64 addr; 30 u32 len; 31 rwf_t flags; 32 }; 33 34 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask) 35 { 36 /* If FMODE_NOWAIT is set for a file, we're golden */ 37 if (req->flags & REQ_F_SUPPORT_NOWAIT) 38 return true; 39 /* No FMODE_NOWAIT, if we can poll, check the status */ 40 if (io_file_can_poll(req)) { 41 struct poll_table_struct pt = { ._key = mask }; 42 43 return vfs_poll(req->file, &pt) & mask; 44 } 45 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */ 46 return false; 47 } 48 49 #ifdef CONFIG_COMPAT 50 static int io_iov_compat_buffer_select_prep(struct io_rw *rw) 51 { 52 struct compat_iovec __user *uiov; 53 compat_ssize_t clen; 54 55 uiov = u64_to_user_ptr(rw->addr); 56 if (!access_ok(uiov, sizeof(*uiov))) 57 return -EFAULT; 58 if (__get_user(clen, &uiov->iov_len)) 59 return -EFAULT; 60 if (clen < 0) 61 return -EINVAL; 62 63 rw->len = clen; 64 return 0; 65 } 66 #endif 67 68 static int io_iov_buffer_select_prep(struct io_kiocb *req) 69 { 70 struct iovec __user *uiov; 71 struct iovec iov; 72 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 73 74 if (rw->len != 1) 75 return -EINVAL; 76 77 #ifdef CONFIG_COMPAT 78 if (req->ctx->compat) 79 return io_iov_compat_buffer_select_prep(rw); 80 #endif 81 82 uiov = u64_to_user_ptr(rw->addr); 83 if (copy_from_user(&iov, uiov, sizeof(*uiov))) 84 return -EFAULT; 85 rw->len = iov.iov_len; 86 return 0; 87 } 88 89 static int __io_import_iovec(int ddir, struct io_kiocb *req, 90 struct io_async_rw *io, 91 unsigned int issue_flags) 92 { 93 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 94 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 95 struct iovec *iov; 96 void __user *buf; 97 int nr_segs, ret; 98 size_t sqe_len; 99 100 buf = u64_to_user_ptr(rw->addr); 101 sqe_len = rw->len; 102 103 if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) { 104 if (io_do_buffer_select(req)) { 105 buf = io_buffer_select(req, &sqe_len, issue_flags); 106 if (!buf) 107 return -ENOBUFS; 108 rw->addr = (unsigned long) buf; 109 rw->len = sqe_len; 110 } 111 112 return import_ubuf(ddir, buf, sqe_len, &io->iter); 113 } 114 115 if (io->free_iovec) { 116 nr_segs = io->free_iov_nr; 117 iov = io->free_iovec; 118 } else { 119 iov = &io->fast_iov; 120 nr_segs = 1; 121 } 122 ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter, 123 req->ctx->compat); 124 if (unlikely(ret < 0)) 125 return ret; 126 if (iov) { 127 req->flags |= REQ_F_NEED_CLEANUP; 128 io->free_iov_nr = io->iter.nr_segs; 129 kfree(io->free_iovec); 130 io->free_iovec = iov; 131 } 132 return 0; 133 } 134 135 static inline int io_import_iovec(int rw, struct io_kiocb *req, 136 struct io_async_rw *io, 137 unsigned int issue_flags) 138 { 139 int ret; 140 141 ret = __io_import_iovec(rw, req, io, issue_flags); 142 if (unlikely(ret < 0)) 143 return ret; 144 145 iov_iter_save_state(&io->iter, &io->iter_state); 146 return 0; 147 } 148 149 static void io_rw_iovec_free(struct io_async_rw *rw) 150 { 151 if (rw->free_iovec) { 152 kfree(rw->free_iovec); 153 rw->free_iov_nr = 0; 154 rw->free_iovec = NULL; 155 } 156 } 157 158 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) 159 { 160 struct io_async_rw *rw = req->async_data; 161 struct iovec *iov; 162 163 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) { 164 io_rw_iovec_free(rw); 165 return; 166 } 167 iov = rw->free_iovec; 168 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) { 169 if (iov) 170 kasan_mempool_poison_object(iov); 171 req->async_data = NULL; 172 req->flags &= ~REQ_F_ASYNC_DATA; 173 } 174 } 175 176 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) 177 { 178 /* 179 * Disable quick recycling for anything that's gone through io-wq. 180 * In theory, this should be fine to cleanup. However, some read or 181 * write iter handling touches the iovec AFTER having called into the 182 * handler, eg to reexpand or revert. This means we can have: 183 * 184 * task io-wq 185 * issue 186 * punt to io-wq 187 * issue 188 * blkdev_write_iter() 189 * ->ki_complete() 190 * io_complete_rw() 191 * queue tw complete 192 * run tw 193 * req_rw_cleanup 194 * iov_iter_count() <- look at iov_iter again 195 * 196 * which can lead to a UAF. This is only possible for io-wq offload 197 * as the cleanup can run in parallel. As io-wq is not the fast path, 198 * just leave cleanup to the end. 199 * 200 * This is really a bug in the core code that does this, any issue 201 * path should assume that a successful (or -EIOCBQUEUED) return can 202 * mean that the underlying data can be gone at any time. But that 203 * should be fixed seperately, and then this check could be killed. 204 */ 205 if (!(req->flags & REQ_F_REFCOUNT)) { 206 req->flags &= ~REQ_F_NEED_CLEANUP; 207 io_rw_recycle(req, issue_flags); 208 } 209 } 210 211 static int io_rw_alloc_async(struct io_kiocb *req) 212 { 213 struct io_ring_ctx *ctx = req->ctx; 214 struct io_async_rw *rw; 215 216 rw = io_alloc_cache_get(&ctx->rw_cache); 217 if (rw) { 218 if (rw->free_iovec) { 219 kasan_mempool_unpoison_object(rw->free_iovec, 220 rw->free_iov_nr * sizeof(struct iovec)); 221 req->flags |= REQ_F_NEED_CLEANUP; 222 } 223 req->flags |= REQ_F_ASYNC_DATA; 224 req->async_data = rw; 225 goto done; 226 } 227 228 if (!io_alloc_async_data(req)) { 229 rw = req->async_data; 230 rw->free_iovec = NULL; 231 rw->free_iov_nr = 0; 232 done: 233 rw->bytes_done = 0; 234 return 0; 235 } 236 237 return -ENOMEM; 238 } 239 240 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import) 241 { 242 struct io_async_rw *rw; 243 int ret; 244 245 if (io_rw_alloc_async(req)) 246 return -ENOMEM; 247 248 if (!do_import || io_do_buffer_select(req)) 249 return 0; 250 251 rw = req->async_data; 252 ret = io_import_iovec(ddir, req, rw, 0); 253 if (unlikely(ret < 0)) 254 return ret; 255 256 iov_iter_save_state(&rw->iter, &rw->iter_state); 257 return 0; 258 } 259 260 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 261 int ddir, bool do_import) 262 { 263 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 264 unsigned ioprio; 265 int ret; 266 267 rw->kiocb.ki_pos = READ_ONCE(sqe->off); 268 /* used for fixed read/write too - just read unconditionally */ 269 req->buf_index = READ_ONCE(sqe->buf_index); 270 271 ioprio = READ_ONCE(sqe->ioprio); 272 if (ioprio) { 273 ret = ioprio_check_cap(ioprio); 274 if (ret) 275 return ret; 276 277 rw->kiocb.ki_ioprio = ioprio; 278 } else { 279 rw->kiocb.ki_ioprio = get_current_ioprio(); 280 } 281 rw->kiocb.dio_complete = NULL; 282 283 rw->addr = READ_ONCE(sqe->addr); 284 rw->len = READ_ONCE(sqe->len); 285 rw->flags = READ_ONCE(sqe->rw_flags); 286 return io_prep_rw_setup(req, ddir, do_import); 287 } 288 289 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) 290 { 291 return io_prep_rw(req, sqe, ITER_DEST, true); 292 } 293 294 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) 295 { 296 return io_prep_rw(req, sqe, ITER_SOURCE, true); 297 } 298 299 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, 300 int ddir) 301 { 302 const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT); 303 int ret; 304 305 ret = io_prep_rw(req, sqe, ddir, do_import); 306 if (unlikely(ret)) 307 return ret; 308 if (do_import) 309 return 0; 310 311 /* 312 * Have to do this validation here, as this is in io_read() rw->len 313 * might have chanaged due to buffer selection 314 */ 315 return io_iov_buffer_select_prep(req); 316 } 317 318 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) 319 { 320 return io_prep_rwv(req, sqe, ITER_DEST); 321 } 322 323 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) 324 { 325 return io_prep_rwv(req, sqe, ITER_SOURCE); 326 } 327 328 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe, 329 int ddir) 330 { 331 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 332 struct io_ring_ctx *ctx = req->ctx; 333 struct io_rsrc_node *node; 334 struct io_async_rw *io; 335 int ret; 336 337 ret = io_prep_rw(req, sqe, ddir, false); 338 if (unlikely(ret)) 339 return ret; 340 341 node = io_rsrc_node_lookup(&ctx->buf_table, req->buf_index); 342 if (!node) 343 return -EFAULT; 344 io_req_assign_buf_node(req, node); 345 346 io = req->async_data; 347 ret = io_import_fixed(ddir, &io->iter, node->buf, rw->addr, rw->len); 348 iov_iter_save_state(&io->iter, &io->iter_state); 349 return ret; 350 } 351 352 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 353 { 354 return io_prep_rw_fixed(req, sqe, ITER_DEST); 355 } 356 357 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 358 { 359 return io_prep_rw_fixed(req, sqe, ITER_SOURCE); 360 } 361 362 /* 363 * Multishot read is prepared just like a normal read/write request, only 364 * difference is that we set the MULTISHOT flag. 365 */ 366 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 367 { 368 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 369 int ret; 370 371 /* must be used with provided buffers */ 372 if (!(req->flags & REQ_F_BUFFER_SELECT)) 373 return -EINVAL; 374 375 ret = io_prep_rw(req, sqe, ITER_DEST, false); 376 if (unlikely(ret)) 377 return ret; 378 379 if (rw->addr || rw->len) 380 return -EINVAL; 381 382 req->flags |= REQ_F_APOLL_MULTISHOT; 383 return 0; 384 } 385 386 void io_readv_writev_cleanup(struct io_kiocb *req) 387 { 388 io_rw_iovec_free(req->async_data); 389 } 390 391 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) 392 { 393 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 394 395 if (rw->kiocb.ki_pos != -1) 396 return &rw->kiocb.ki_pos; 397 398 if (!(req->file->f_mode & FMODE_STREAM)) { 399 req->flags |= REQ_F_CUR_POS; 400 rw->kiocb.ki_pos = req->file->f_pos; 401 return &rw->kiocb.ki_pos; 402 } 403 404 rw->kiocb.ki_pos = 0; 405 return NULL; 406 } 407 408 #ifdef CONFIG_BLOCK 409 static void io_resubmit_prep(struct io_kiocb *req) 410 { 411 struct io_async_rw *io = req->async_data; 412 413 iov_iter_restore(&io->iter, &io->iter_state); 414 } 415 416 static bool io_rw_should_reissue(struct io_kiocb *req) 417 { 418 umode_t mode = file_inode(req->file)->i_mode; 419 struct io_ring_ctx *ctx = req->ctx; 420 421 if (!S_ISBLK(mode) && !S_ISREG(mode)) 422 return false; 423 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && 424 !(ctx->flags & IORING_SETUP_IOPOLL))) 425 return false; 426 /* 427 * If ref is dying, we might be running poll reap from the exit work. 428 * Don't attempt to reissue from that path, just let it fail with 429 * -EAGAIN. 430 */ 431 if (percpu_ref_is_dying(&ctx->refs)) 432 return false; 433 /* 434 * Play it safe and assume not safe to re-import and reissue if we're 435 * not in the original thread group (or in task context). 436 */ 437 if (!same_thread_group(req->tctx->task, current) || !in_task()) 438 return false; 439 return true; 440 } 441 #else 442 static void io_resubmit_prep(struct io_kiocb *req) 443 { 444 } 445 static bool io_rw_should_reissue(struct io_kiocb *req) 446 { 447 return false; 448 } 449 #endif 450 451 static void io_req_end_write(struct io_kiocb *req) 452 { 453 if (req->flags & REQ_F_ISREG) { 454 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 455 456 kiocb_end_write(&rw->kiocb); 457 } 458 } 459 460 /* 461 * Trigger the notifications after having done some IO, and finish the write 462 * accounting, if any. 463 */ 464 static void io_req_io_end(struct io_kiocb *req) 465 { 466 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 467 468 if (rw->kiocb.ki_flags & IOCB_WRITE) { 469 io_req_end_write(req); 470 fsnotify_modify(req->file); 471 } else { 472 fsnotify_access(req->file); 473 } 474 } 475 476 static bool __io_complete_rw_common(struct io_kiocb *req, long res) 477 { 478 if (unlikely(res != req->cqe.res)) { 479 if (res == -EAGAIN && io_rw_should_reissue(req)) { 480 /* 481 * Reissue will start accounting again, finish the 482 * current cycle. 483 */ 484 io_req_io_end(req); 485 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 486 return true; 487 } 488 req_set_fail(req); 489 req->cqe.res = res; 490 } 491 return false; 492 } 493 494 static inline int io_fixup_rw_res(struct io_kiocb *req, long res) 495 { 496 struct io_async_rw *io = req->async_data; 497 498 /* add previously done IO, if any */ 499 if (req_has_async_data(req) && io->bytes_done > 0) { 500 if (res < 0) 501 res = io->bytes_done; 502 else 503 res += io->bytes_done; 504 } 505 return res; 506 } 507 508 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts) 509 { 510 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 511 struct kiocb *kiocb = &rw->kiocb; 512 513 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) { 514 long res = kiocb->dio_complete(rw->kiocb.private); 515 516 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 517 } 518 519 io_req_io_end(req); 520 521 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) 522 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0); 523 524 io_req_rw_cleanup(req, 0); 525 io_req_task_complete(req, ts); 526 } 527 528 static void io_complete_rw(struct kiocb *kiocb, long res) 529 { 530 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 531 struct io_kiocb *req = cmd_to_io_kiocb(rw); 532 533 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) { 534 if (__io_complete_rw_common(req, res)) 535 return; 536 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 537 } 538 req->io_task_work.func = io_req_rw_complete; 539 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); 540 } 541 542 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) 543 { 544 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 545 struct io_kiocb *req = cmd_to_io_kiocb(rw); 546 547 if (kiocb->ki_flags & IOCB_WRITE) 548 io_req_end_write(req); 549 if (unlikely(res != req->cqe.res)) { 550 if (res == -EAGAIN && io_rw_should_reissue(req)) { 551 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 552 return; 553 } 554 req->cqe.res = res; 555 } 556 557 /* order with io_iopoll_complete() checking ->iopoll_completed */ 558 smp_store_release(&req->iopoll_completed, 1); 559 } 560 561 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) 562 { 563 /* IO was queued async, completion will happen later */ 564 if (ret == -EIOCBQUEUED) 565 return; 566 567 /* transform internal restart error codes */ 568 if (unlikely(ret < 0)) { 569 switch (ret) { 570 case -ERESTARTSYS: 571 case -ERESTARTNOINTR: 572 case -ERESTARTNOHAND: 573 case -ERESTART_RESTARTBLOCK: 574 /* 575 * We can't just restart the syscall, since previously 576 * submitted sqes may already be in progress. Just fail 577 * this IO with EINTR. 578 */ 579 ret = -EINTR; 580 break; 581 } 582 } 583 584 INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll, 585 io_complete_rw, kiocb, ret); 586 } 587 588 static int kiocb_done(struct io_kiocb *req, ssize_t ret, 589 unsigned int issue_flags) 590 { 591 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 592 unsigned final_ret = io_fixup_rw_res(req, ret); 593 594 if (ret >= 0 && req->flags & REQ_F_CUR_POS) 595 req->file->f_pos = rw->kiocb.ki_pos; 596 if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) { 597 if (!__io_complete_rw_common(req, ret)) { 598 /* 599 * Safe to call io_end from here as we're inline 600 * from the submission path. 601 */ 602 io_req_io_end(req); 603 io_req_set_res(req, final_ret, 604 io_put_kbuf(req, ret, issue_flags)); 605 io_req_rw_cleanup(req, issue_flags); 606 return IOU_OK; 607 } 608 } else { 609 io_rw_done(&rw->kiocb, ret); 610 } 611 612 if (req->flags & REQ_F_REISSUE) { 613 req->flags &= ~REQ_F_REISSUE; 614 io_resubmit_prep(req); 615 return -EAGAIN; 616 } 617 return IOU_ISSUE_SKIP_COMPLETE; 618 } 619 620 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) 621 { 622 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; 623 } 624 625 /* 626 * For files that don't have ->read_iter() and ->write_iter(), handle them 627 * by looping over ->read() or ->write() manually. 628 */ 629 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) 630 { 631 struct kiocb *kiocb = &rw->kiocb; 632 struct file *file = kiocb->ki_filp; 633 ssize_t ret = 0; 634 loff_t *ppos; 635 636 /* 637 * Don't support polled IO through this interface, and we can't 638 * support non-blocking either. For the latter, this just causes 639 * the kiocb to be handled from an async context. 640 */ 641 if (kiocb->ki_flags & IOCB_HIPRI) 642 return -EOPNOTSUPP; 643 if ((kiocb->ki_flags & IOCB_NOWAIT) && 644 !(kiocb->ki_filp->f_flags & O_NONBLOCK)) 645 return -EAGAIN; 646 647 ppos = io_kiocb_ppos(kiocb); 648 649 while (iov_iter_count(iter)) { 650 void __user *addr; 651 size_t len; 652 ssize_t nr; 653 654 if (iter_is_ubuf(iter)) { 655 addr = iter->ubuf + iter->iov_offset; 656 len = iov_iter_count(iter); 657 } else if (!iov_iter_is_bvec(iter)) { 658 addr = iter_iov_addr(iter); 659 len = iter_iov_len(iter); 660 } else { 661 addr = u64_to_user_ptr(rw->addr); 662 len = rw->len; 663 } 664 665 if (ddir == READ) 666 nr = file->f_op->read(file, addr, len, ppos); 667 else 668 nr = file->f_op->write(file, addr, len, ppos); 669 670 if (nr < 0) { 671 if (!ret) 672 ret = nr; 673 break; 674 } 675 ret += nr; 676 if (!iov_iter_is_bvec(iter)) { 677 iov_iter_advance(iter, nr); 678 } else { 679 rw->addr += nr; 680 rw->len -= nr; 681 if (!rw->len) 682 break; 683 } 684 if (nr != len) 685 break; 686 } 687 688 return ret; 689 } 690 691 /* 692 * This is our waitqueue callback handler, registered through __folio_lock_async() 693 * when we initially tried to do the IO with the iocb armed our waitqueue. 694 * This gets called when the page is unlocked, and we generally expect that to 695 * happen when the page IO is completed and the page is now uptodate. This will 696 * queue a task_work based retry of the operation, attempting to copy the data 697 * again. If the latter fails because the page was NOT uptodate, then we will 698 * do a thread based blocking retry of the operation. That's the unexpected 699 * slow path. 700 */ 701 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, 702 int sync, void *arg) 703 { 704 struct wait_page_queue *wpq; 705 struct io_kiocb *req = wait->private; 706 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 707 struct wait_page_key *key = arg; 708 709 wpq = container_of(wait, struct wait_page_queue, wait); 710 711 if (!wake_page_match(wpq, key)) 712 return 0; 713 714 rw->kiocb.ki_flags &= ~IOCB_WAITQ; 715 list_del_init(&wait->entry); 716 io_req_task_queue(req); 717 return 1; 718 } 719 720 /* 721 * This controls whether a given IO request should be armed for async page 722 * based retry. If we return false here, the request is handed to the async 723 * worker threads for retry. If we're doing buffered reads on a regular file, 724 * we prepare a private wait_page_queue entry and retry the operation. This 725 * will either succeed because the page is now uptodate and unlocked, or it 726 * will register a callback when the page is unlocked at IO completion. Through 727 * that callback, io_uring uses task_work to setup a retry of the operation. 728 * That retry will attempt the buffered read again. The retry will generally 729 * succeed, or in rare cases where it fails, we then fall back to using the 730 * async worker threads for a blocking retry. 731 */ 732 static bool io_rw_should_retry(struct io_kiocb *req) 733 { 734 struct io_async_rw *io = req->async_data; 735 struct wait_page_queue *wait = &io->wpq; 736 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 737 struct kiocb *kiocb = &rw->kiocb; 738 739 /* never retry for NOWAIT, we just complete with -EAGAIN */ 740 if (req->flags & REQ_F_NOWAIT) 741 return false; 742 743 /* Only for buffered IO */ 744 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) 745 return false; 746 747 /* 748 * just use poll if we can, and don't attempt if the fs doesn't 749 * support callback based unlocks 750 */ 751 if (io_file_can_poll(req) || 752 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC)) 753 return false; 754 755 wait->wait.func = io_async_buf_func; 756 wait->wait.private = req; 757 wait->wait.flags = 0; 758 INIT_LIST_HEAD(&wait->wait.entry); 759 kiocb->ki_flags |= IOCB_WAITQ; 760 kiocb->ki_flags &= ~IOCB_NOWAIT; 761 kiocb->ki_waitq = wait; 762 return true; 763 } 764 765 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) 766 { 767 struct file *file = rw->kiocb.ki_filp; 768 769 if (likely(file->f_op->read_iter)) 770 return file->f_op->read_iter(&rw->kiocb, iter); 771 else if (file->f_op->read) 772 return loop_rw_iter(READ, rw, iter); 773 else 774 return -EINVAL; 775 } 776 777 static bool need_complete_io(struct io_kiocb *req) 778 { 779 return req->flags & REQ_F_ISREG || 780 S_ISBLK(file_inode(req->file)->i_mode); 781 } 782 783 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type) 784 { 785 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 786 struct kiocb *kiocb = &rw->kiocb; 787 struct io_ring_ctx *ctx = req->ctx; 788 struct file *file = req->file; 789 int ret; 790 791 if (unlikely(!(file->f_mode & mode))) 792 return -EBADF; 793 794 if (!(req->flags & REQ_F_FIXED_FILE)) 795 req->flags |= io_file_get_flags(file); 796 797 kiocb->ki_flags = file->f_iocb_flags; 798 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type); 799 if (unlikely(ret)) 800 return ret; 801 kiocb->ki_flags |= IOCB_ALLOC_CACHE; 802 803 /* 804 * If the file is marked O_NONBLOCK, still allow retry for it if it 805 * supports async. Otherwise it's impossible to use O_NONBLOCK files 806 * reliably. If not, or it IOCB_NOWAIT is set, don't retry. 807 */ 808 if (kiocb->ki_flags & IOCB_NOWAIT || 809 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT)))) 810 req->flags |= REQ_F_NOWAIT; 811 812 if (ctx->flags & IORING_SETUP_IOPOLL) { 813 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) 814 return -EOPNOTSUPP; 815 816 kiocb->private = NULL; 817 kiocb->ki_flags |= IOCB_HIPRI; 818 kiocb->ki_complete = io_complete_rw_iopoll; 819 req->iopoll_completed = 0; 820 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) { 821 /* make sure every req only blocks once*/ 822 req->flags &= ~REQ_F_IOPOLL_STATE; 823 req->iopoll_start = ktime_get_ns(); 824 } 825 } else { 826 if (kiocb->ki_flags & IOCB_HIPRI) 827 return -EINVAL; 828 kiocb->ki_complete = io_complete_rw; 829 } 830 831 return 0; 832 } 833 834 static int __io_read(struct io_kiocb *req, unsigned int issue_flags) 835 { 836 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 837 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 838 struct io_async_rw *io = req->async_data; 839 struct kiocb *kiocb = &rw->kiocb; 840 ssize_t ret; 841 loff_t *ppos; 842 843 if (io_do_buffer_select(req)) { 844 ret = io_import_iovec(ITER_DEST, req, io, issue_flags); 845 if (unlikely(ret < 0)) 846 return ret; 847 } 848 ret = io_rw_init_file(req, FMODE_READ, READ); 849 if (unlikely(ret)) 850 return ret; 851 req->cqe.res = iov_iter_count(&io->iter); 852 853 if (force_nonblock) { 854 /* If the file doesn't support async, just async punt */ 855 if (unlikely(!io_file_supports_nowait(req, EPOLLIN))) 856 return -EAGAIN; 857 kiocb->ki_flags |= IOCB_NOWAIT; 858 } else { 859 /* Ensure we clear previously set non-block flag */ 860 kiocb->ki_flags &= ~IOCB_NOWAIT; 861 } 862 863 ppos = io_kiocb_update_pos(req); 864 865 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); 866 if (unlikely(ret)) 867 return ret; 868 869 ret = io_iter_do_read(rw, &io->iter); 870 871 /* 872 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT 873 * issue, even though they should be returning -EAGAIN. To be safe, 874 * retry from blocking context for either. 875 */ 876 if (ret == -EOPNOTSUPP && force_nonblock) 877 ret = -EAGAIN; 878 879 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) { 880 req->flags &= ~REQ_F_REISSUE; 881 /* If we can poll, just do that. */ 882 if (io_file_can_poll(req)) 883 return -EAGAIN; 884 /* IOPOLL retry should happen for io-wq threads */ 885 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) 886 goto done; 887 /* no retry on NONBLOCK nor RWF_NOWAIT */ 888 if (req->flags & REQ_F_NOWAIT) 889 goto done; 890 ret = 0; 891 } else if (ret == -EIOCBQUEUED) { 892 return IOU_ISSUE_SKIP_COMPLETE; 893 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || 894 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) { 895 /* read all, failed, already did sync or don't want to retry */ 896 goto done; 897 } 898 899 /* 900 * Don't depend on the iter state matching what was consumed, or being 901 * untouched in case of error. Restore it and we'll advance it 902 * manually if we need to. 903 */ 904 iov_iter_restore(&io->iter, &io->iter_state); 905 906 do { 907 /* 908 * We end up here because of a partial read, either from 909 * above or inside this loop. Advance the iter by the bytes 910 * that were consumed. 911 */ 912 iov_iter_advance(&io->iter, ret); 913 if (!iov_iter_count(&io->iter)) 914 break; 915 io->bytes_done += ret; 916 iov_iter_save_state(&io->iter, &io->iter_state); 917 918 /* if we can retry, do so with the callbacks armed */ 919 if (!io_rw_should_retry(req)) { 920 kiocb->ki_flags &= ~IOCB_WAITQ; 921 return -EAGAIN; 922 } 923 924 req->cqe.res = iov_iter_count(&io->iter); 925 /* 926 * Now retry read with the IOCB_WAITQ parts set in the iocb. If 927 * we get -EIOCBQUEUED, then we'll get a notification when the 928 * desired page gets unlocked. We can also get a partial read 929 * here, and if we do, then just retry at the new offset. 930 */ 931 ret = io_iter_do_read(rw, &io->iter); 932 if (ret == -EIOCBQUEUED) 933 return IOU_ISSUE_SKIP_COMPLETE; 934 /* we got some bytes, but not all. retry. */ 935 kiocb->ki_flags &= ~IOCB_WAITQ; 936 iov_iter_restore(&io->iter, &io->iter_state); 937 } while (ret > 0); 938 done: 939 /* it's faster to check here then delegate to kfree */ 940 return ret; 941 } 942 943 int io_read(struct io_kiocb *req, unsigned int issue_flags) 944 { 945 int ret; 946 947 ret = __io_read(req, issue_flags); 948 if (ret >= 0) 949 return kiocb_done(req, ret, issue_flags); 950 951 return ret; 952 } 953 954 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) 955 { 956 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 957 unsigned int cflags = 0; 958 int ret; 959 960 /* 961 * Multishot MUST be used on a pollable file 962 */ 963 if (!io_file_can_poll(req)) 964 return -EBADFD; 965 966 ret = __io_read(req, issue_flags); 967 968 /* 969 * If we get -EAGAIN, recycle our buffer and just let normal poll 970 * handling arm it. 971 */ 972 if (ret == -EAGAIN) { 973 /* 974 * Reset rw->len to 0 again to avoid clamping future mshot 975 * reads, in case the buffer size varies. 976 */ 977 if (io_kbuf_recycle(req, issue_flags)) 978 rw->len = 0; 979 if (issue_flags & IO_URING_F_MULTISHOT) 980 return IOU_ISSUE_SKIP_COMPLETE; 981 return -EAGAIN; 982 } else if (ret <= 0) { 983 io_kbuf_recycle(req, issue_flags); 984 if (ret < 0) 985 req_set_fail(req); 986 } else { 987 /* 988 * Any successful return value will keep the multishot read 989 * armed, if it's still set. Put our buffer and post a CQE. If 990 * we fail to post a CQE, or multishot is no longer set, then 991 * jump to the termination path. This request is then done. 992 */ 993 cflags = io_put_kbuf(req, ret, issue_flags); 994 rw->len = 0; /* similarly to above, reset len to 0 */ 995 996 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { 997 if (issue_flags & IO_URING_F_MULTISHOT) { 998 /* 999 * Force retry, as we might have more data to 1000 * be read and otherwise it won't get retried 1001 * until (if ever) another poll is triggered. 1002 */ 1003 io_poll_multishot_retry(req); 1004 return IOU_ISSUE_SKIP_COMPLETE; 1005 } 1006 return -EAGAIN; 1007 } 1008 } 1009 1010 /* 1011 * Either an error, or we've hit overflow posting the CQE. For any 1012 * multishot request, hitting overflow will terminate it. 1013 */ 1014 io_req_set_res(req, ret, cflags); 1015 io_req_rw_cleanup(req, issue_flags); 1016 if (issue_flags & IO_URING_F_MULTISHOT) 1017 return IOU_STOP_MULTISHOT; 1018 return IOU_OK; 1019 } 1020 1021 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb) 1022 { 1023 struct inode *inode; 1024 bool ret; 1025 1026 if (!(req->flags & REQ_F_ISREG)) 1027 return true; 1028 if (!(kiocb->ki_flags & IOCB_NOWAIT)) { 1029 kiocb_start_write(kiocb); 1030 return true; 1031 } 1032 1033 inode = file_inode(kiocb->ki_filp); 1034 ret = sb_start_write_trylock(inode->i_sb); 1035 if (ret) 1036 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 1037 return ret; 1038 } 1039 1040 int io_write(struct io_kiocb *req, unsigned int issue_flags) 1041 { 1042 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 1043 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1044 struct io_async_rw *io = req->async_data; 1045 struct kiocb *kiocb = &rw->kiocb; 1046 ssize_t ret, ret2; 1047 loff_t *ppos; 1048 1049 ret = io_rw_init_file(req, FMODE_WRITE, WRITE); 1050 if (unlikely(ret)) 1051 return ret; 1052 req->cqe.res = iov_iter_count(&io->iter); 1053 1054 if (force_nonblock) { 1055 /* If the file doesn't support async, just async punt */ 1056 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT))) 1057 goto ret_eagain; 1058 1059 /* Check if we can support NOWAIT. */ 1060 if (!(kiocb->ki_flags & IOCB_DIRECT) && 1061 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) && 1062 (req->flags & REQ_F_ISREG)) 1063 goto ret_eagain; 1064 1065 kiocb->ki_flags |= IOCB_NOWAIT; 1066 } else { 1067 /* Ensure we clear previously set non-block flag */ 1068 kiocb->ki_flags &= ~IOCB_NOWAIT; 1069 } 1070 1071 ppos = io_kiocb_update_pos(req); 1072 1073 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); 1074 if (unlikely(ret)) 1075 return ret; 1076 1077 if (unlikely(!io_kiocb_start_write(req, kiocb))) 1078 return -EAGAIN; 1079 kiocb->ki_flags |= IOCB_WRITE; 1080 1081 if (likely(req->file->f_op->write_iter)) 1082 ret2 = req->file->f_op->write_iter(kiocb, &io->iter); 1083 else if (req->file->f_op->write) 1084 ret2 = loop_rw_iter(WRITE, rw, &io->iter); 1085 else 1086 ret2 = -EINVAL; 1087 1088 if (req->flags & REQ_F_REISSUE) { 1089 req->flags &= ~REQ_F_REISSUE; 1090 ret2 = -EAGAIN; 1091 } 1092 1093 /* 1094 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just 1095 * retry them without IOCB_NOWAIT. 1096 */ 1097 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) 1098 ret2 = -EAGAIN; 1099 /* no retry on NONBLOCK nor RWF_NOWAIT */ 1100 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) 1101 goto done; 1102 if (!force_nonblock || ret2 != -EAGAIN) { 1103 /* IOPOLL retry should happen for io-wq threads */ 1104 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) 1105 goto ret_eagain; 1106 1107 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { 1108 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, 1109 req->cqe.res, ret2); 1110 1111 /* This is a partial write. The file pos has already been 1112 * updated, setup the async struct to complete the request 1113 * in the worker. Also update bytes_done to account for 1114 * the bytes already written. 1115 */ 1116 iov_iter_save_state(&io->iter, &io->iter_state); 1117 io->bytes_done += ret2; 1118 1119 if (kiocb->ki_flags & IOCB_WRITE) 1120 io_req_end_write(req); 1121 return -EAGAIN; 1122 } 1123 done: 1124 return kiocb_done(req, ret2, issue_flags); 1125 } else { 1126 ret_eagain: 1127 iov_iter_restore(&io->iter, &io->iter_state); 1128 if (kiocb->ki_flags & IOCB_WRITE) 1129 io_req_end_write(req); 1130 return -EAGAIN; 1131 } 1132 } 1133 1134 void io_rw_fail(struct io_kiocb *req) 1135 { 1136 int res; 1137 1138 res = io_fixup_rw_res(req, req->cqe.res); 1139 io_req_set_res(req, res, req->cqe.flags); 1140 } 1141 1142 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob, 1143 unsigned int poll_flags) 1144 { 1145 struct file *file = req->file; 1146 1147 if (req->opcode == IORING_OP_URING_CMD) { 1148 struct io_uring_cmd *ioucmd; 1149 1150 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); 1151 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags); 1152 } else { 1153 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1154 1155 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags); 1156 } 1157 } 1158 1159 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req) 1160 { 1161 struct hrtimer_sleeper timer; 1162 enum hrtimer_mode mode; 1163 ktime_t kt; 1164 u64 sleep_time; 1165 1166 if (req->flags & REQ_F_IOPOLL_STATE) 1167 return 0; 1168 1169 if (ctx->hybrid_poll_time == LLONG_MAX) 1170 return 0; 1171 1172 /* Using half the running time to do schedule */ 1173 sleep_time = ctx->hybrid_poll_time / 2; 1174 1175 kt = ktime_set(0, sleep_time); 1176 req->flags |= REQ_F_IOPOLL_STATE; 1177 1178 mode = HRTIMER_MODE_REL; 1179 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode); 1180 hrtimer_set_expires(&timer.timer, kt); 1181 set_current_state(TASK_INTERRUPTIBLE); 1182 hrtimer_sleeper_start_expires(&timer, mode); 1183 1184 if (timer.task) 1185 io_schedule(); 1186 1187 hrtimer_cancel(&timer.timer); 1188 __set_current_state(TASK_RUNNING); 1189 destroy_hrtimer_on_stack(&timer.timer); 1190 return sleep_time; 1191 } 1192 1193 static int io_uring_hybrid_poll(struct io_kiocb *req, 1194 struct io_comp_batch *iob, unsigned int poll_flags) 1195 { 1196 struct io_ring_ctx *ctx = req->ctx; 1197 u64 runtime, sleep_time; 1198 int ret; 1199 1200 sleep_time = io_hybrid_iopoll_delay(ctx, req); 1201 ret = io_uring_classic_poll(req, iob, poll_flags); 1202 runtime = ktime_get_ns() - req->iopoll_start - sleep_time; 1203 1204 /* 1205 * Use minimum sleep time if we're polling devices with different 1206 * latencies. We could get more completions from the faster ones. 1207 */ 1208 if (ctx->hybrid_poll_time > runtime) 1209 ctx->hybrid_poll_time = runtime; 1210 1211 return ret; 1212 } 1213 1214 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) 1215 { 1216 struct io_wq_work_node *pos, *start, *prev; 1217 unsigned int poll_flags = 0; 1218 DEFINE_IO_COMP_BATCH(iob); 1219 int nr_events = 0; 1220 1221 /* 1222 * Only spin for completions if we don't have multiple devices hanging 1223 * off our complete list. 1224 */ 1225 if (ctx->poll_multi_queue || force_nonspin) 1226 poll_flags |= BLK_POLL_ONESHOT; 1227 1228 wq_list_for_each(pos, start, &ctx->iopoll_list) { 1229 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1230 int ret; 1231 1232 /* 1233 * Move completed and retryable entries to our local lists. 1234 * If we find a request that requires polling, break out 1235 * and complete those lists first, if we have entries there. 1236 */ 1237 if (READ_ONCE(req->iopoll_completed)) 1238 break; 1239 1240 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) 1241 ret = io_uring_hybrid_poll(req, &iob, poll_flags); 1242 else 1243 ret = io_uring_classic_poll(req, &iob, poll_flags); 1244 1245 if (unlikely(ret < 0)) 1246 return ret; 1247 else if (ret) 1248 poll_flags |= BLK_POLL_ONESHOT; 1249 1250 /* iopoll may have completed current req */ 1251 if (!rq_list_empty(&iob.req_list) || 1252 READ_ONCE(req->iopoll_completed)) 1253 break; 1254 } 1255 1256 if (!rq_list_empty(&iob.req_list)) 1257 iob.complete(&iob); 1258 else if (!pos) 1259 return 0; 1260 1261 prev = start; 1262 wq_list_for_each_resume(pos, prev) { 1263 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1264 1265 /* order with io_complete_rw_iopoll(), e.g. ->result updates */ 1266 if (!smp_load_acquire(&req->iopoll_completed)) 1267 break; 1268 nr_events++; 1269 req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0); 1270 if (req->opcode != IORING_OP_URING_CMD) 1271 io_req_rw_cleanup(req, 0); 1272 } 1273 if (unlikely(!nr_events)) 1274 return 0; 1275 1276 pos = start ? start->next : ctx->iopoll_list.first; 1277 wq_list_cut(&ctx->iopoll_list, prev, start); 1278 1279 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) 1280 return 0; 1281 ctx->submit_state.compl_reqs.first = pos; 1282 __io_submit_flush_completions(ctx); 1283 return nr_events; 1284 } 1285 1286 void io_rw_cache_free(const void *entry) 1287 { 1288 struct io_async_rw *rw = (struct io_async_rw *) entry; 1289 1290 if (rw->free_iovec) { 1291 kasan_mempool_unpoison_object(rw->free_iovec, 1292 rw->free_iov_nr * sizeof(struct iovec)); 1293 io_rw_iovec_free(rw); 1294 } 1295 kfree(rw); 1296 } 1297