xref: /linux/io_uring/rw.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "io_uring.h"
19 #include "opdef.h"
20 #include "kbuf.h"
21 #include "alloc_cache.h"
22 #include "rsrc.h"
23 #include "poll.h"
24 #include "rw.h"
25 
26 struct io_rw {
27 	/* NOTE: kiocb has the file as the first member, so don't do it here */
28 	struct kiocb			kiocb;
29 	u64				addr;
30 	u32				len;
31 	rwf_t				flags;
32 };
33 
34 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
35 {
36 	/* If FMODE_NOWAIT is set for a file, we're golden */
37 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
38 		return true;
39 	/* No FMODE_NOWAIT, if we can poll, check the status */
40 	if (io_file_can_poll(req)) {
41 		struct poll_table_struct pt = { ._key = mask };
42 
43 		return vfs_poll(req->file, &pt) & mask;
44 	}
45 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
46 	return false;
47 }
48 
49 #ifdef CONFIG_COMPAT
50 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
51 {
52 	struct compat_iovec __user *uiov;
53 	compat_ssize_t clen;
54 
55 	uiov = u64_to_user_ptr(rw->addr);
56 	if (!access_ok(uiov, sizeof(*uiov)))
57 		return -EFAULT;
58 	if (__get_user(clen, &uiov->iov_len))
59 		return -EFAULT;
60 	if (clen < 0)
61 		return -EINVAL;
62 
63 	rw->len = clen;
64 	return 0;
65 }
66 #endif
67 
68 static int io_iov_buffer_select_prep(struct io_kiocb *req)
69 {
70 	struct iovec __user *uiov;
71 	struct iovec iov;
72 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
73 
74 	if (rw->len != 1)
75 		return -EINVAL;
76 
77 #ifdef CONFIG_COMPAT
78 	if (req->ctx->compat)
79 		return io_iov_compat_buffer_select_prep(rw);
80 #endif
81 
82 	uiov = u64_to_user_ptr(rw->addr);
83 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
84 		return -EFAULT;
85 	rw->len = iov.iov_len;
86 	return 0;
87 }
88 
89 static int __io_import_iovec(int ddir, struct io_kiocb *req,
90 			     struct io_async_rw *io,
91 			     unsigned int issue_flags)
92 {
93 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
94 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
95 	struct iovec *iov;
96 	void __user *buf;
97 	int nr_segs, ret;
98 	size_t sqe_len;
99 
100 	buf = u64_to_user_ptr(rw->addr);
101 	sqe_len = rw->len;
102 
103 	if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) {
104 		if (io_do_buffer_select(req)) {
105 			buf = io_buffer_select(req, &sqe_len, issue_flags);
106 			if (!buf)
107 				return -ENOBUFS;
108 			rw->addr = (unsigned long) buf;
109 			rw->len = sqe_len;
110 		}
111 
112 		return import_ubuf(ddir, buf, sqe_len, &io->iter);
113 	}
114 
115 	if (io->free_iovec) {
116 		nr_segs = io->free_iov_nr;
117 		iov = io->free_iovec;
118 	} else {
119 		iov = &io->fast_iov;
120 		nr_segs = 1;
121 	}
122 	ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter,
123 				req->ctx->compat);
124 	if (unlikely(ret < 0))
125 		return ret;
126 	if (iov) {
127 		req->flags |= REQ_F_NEED_CLEANUP;
128 		io->free_iov_nr = io->iter.nr_segs;
129 		kfree(io->free_iovec);
130 		io->free_iovec = iov;
131 	}
132 	return 0;
133 }
134 
135 static inline int io_import_iovec(int rw, struct io_kiocb *req,
136 				  struct io_async_rw *io,
137 				  unsigned int issue_flags)
138 {
139 	int ret;
140 
141 	ret = __io_import_iovec(rw, req, io, issue_flags);
142 	if (unlikely(ret < 0))
143 		return ret;
144 
145 	iov_iter_save_state(&io->iter, &io->iter_state);
146 	return 0;
147 }
148 
149 static void io_rw_iovec_free(struct io_async_rw *rw)
150 {
151 	if (rw->free_iovec) {
152 		kfree(rw->free_iovec);
153 		rw->free_iov_nr = 0;
154 		rw->free_iovec = NULL;
155 	}
156 }
157 
158 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
159 {
160 	struct io_async_rw *rw = req->async_data;
161 	struct iovec *iov;
162 
163 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) {
164 		io_rw_iovec_free(rw);
165 		return;
166 	}
167 	iov = rw->free_iovec;
168 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
169 		if (iov)
170 			kasan_mempool_poison_object(iov);
171 		req->async_data = NULL;
172 		req->flags &= ~REQ_F_ASYNC_DATA;
173 	}
174 }
175 
176 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
177 {
178 	/*
179 	 * Disable quick recycling for anything that's gone through io-wq.
180 	 * In theory, this should be fine to cleanup. However, some read or
181 	 * write iter handling touches the iovec AFTER having called into the
182 	 * handler, eg to reexpand or revert. This means we can have:
183 	 *
184 	 * task			io-wq
185 	 *   issue
186 	 *     punt to io-wq
187 	 *			issue
188 	 *			  blkdev_write_iter()
189 	 *			    ->ki_complete()
190 	 *			      io_complete_rw()
191 	 *			        queue tw complete
192 	 *  run tw
193 	 *    req_rw_cleanup
194 	 *			iov_iter_count() <- look at iov_iter again
195 	 *
196 	 * which can lead to a UAF. This is only possible for io-wq offload
197 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
198 	 * just leave cleanup to the end.
199 	 *
200 	 * This is really a bug in the core code that does this, any issue
201 	 * path should assume that a successful (or -EIOCBQUEUED) return can
202 	 * mean that the underlying data can be gone at any time. But that
203 	 * should be fixed seperately, and then this check could be killed.
204 	 */
205 	if (!(req->flags & REQ_F_REFCOUNT)) {
206 		req->flags &= ~REQ_F_NEED_CLEANUP;
207 		io_rw_recycle(req, issue_flags);
208 	}
209 }
210 
211 static int io_rw_alloc_async(struct io_kiocb *req)
212 {
213 	struct io_ring_ctx *ctx = req->ctx;
214 	struct io_async_rw *rw;
215 
216 	rw = io_alloc_cache_get(&ctx->rw_cache);
217 	if (rw) {
218 		if (rw->free_iovec) {
219 			kasan_mempool_unpoison_object(rw->free_iovec,
220 				rw->free_iov_nr * sizeof(struct iovec));
221 			req->flags |= REQ_F_NEED_CLEANUP;
222 		}
223 		req->flags |= REQ_F_ASYNC_DATA;
224 		req->async_data = rw;
225 		goto done;
226 	}
227 
228 	if (!io_alloc_async_data(req)) {
229 		rw = req->async_data;
230 		rw->free_iovec = NULL;
231 		rw->free_iov_nr = 0;
232 done:
233 		rw->bytes_done = 0;
234 		return 0;
235 	}
236 
237 	return -ENOMEM;
238 }
239 
240 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import)
241 {
242 	struct io_async_rw *rw;
243 	int ret;
244 
245 	if (io_rw_alloc_async(req))
246 		return -ENOMEM;
247 
248 	if (!do_import || io_do_buffer_select(req))
249 		return 0;
250 
251 	rw = req->async_data;
252 	ret = io_import_iovec(ddir, req, rw, 0);
253 	if (unlikely(ret < 0))
254 		return ret;
255 
256 	iov_iter_save_state(&rw->iter, &rw->iter_state);
257 	return 0;
258 }
259 
260 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
261 		      int ddir, bool do_import)
262 {
263 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
264 	unsigned ioprio;
265 	int ret;
266 
267 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
268 	/* used for fixed read/write too - just read unconditionally */
269 	req->buf_index = READ_ONCE(sqe->buf_index);
270 
271 	ioprio = READ_ONCE(sqe->ioprio);
272 	if (ioprio) {
273 		ret = ioprio_check_cap(ioprio);
274 		if (ret)
275 			return ret;
276 
277 		rw->kiocb.ki_ioprio = ioprio;
278 	} else {
279 		rw->kiocb.ki_ioprio = get_current_ioprio();
280 	}
281 	rw->kiocb.dio_complete = NULL;
282 
283 	rw->addr = READ_ONCE(sqe->addr);
284 	rw->len = READ_ONCE(sqe->len);
285 	rw->flags = READ_ONCE(sqe->rw_flags);
286 	return io_prep_rw_setup(req, ddir, do_import);
287 }
288 
289 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
290 {
291 	return io_prep_rw(req, sqe, ITER_DEST, true);
292 }
293 
294 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
295 {
296 	return io_prep_rw(req, sqe, ITER_SOURCE, true);
297 }
298 
299 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
300 		       int ddir)
301 {
302 	const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT);
303 	int ret;
304 
305 	ret = io_prep_rw(req, sqe, ddir, do_import);
306 	if (unlikely(ret))
307 		return ret;
308 	if (do_import)
309 		return 0;
310 
311 	/*
312 	 * Have to do this validation here, as this is in io_read() rw->len
313 	 * might have chanaged due to buffer selection
314 	 */
315 	return io_iov_buffer_select_prep(req);
316 }
317 
318 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
319 {
320 	return io_prep_rwv(req, sqe, ITER_DEST);
321 }
322 
323 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
324 {
325 	return io_prep_rwv(req, sqe, ITER_SOURCE);
326 }
327 
328 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe,
329 			    int ddir)
330 {
331 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
332 	struct io_ring_ctx *ctx = req->ctx;
333 	struct io_rsrc_node *node;
334 	struct io_async_rw *io;
335 	int ret;
336 
337 	ret = io_prep_rw(req, sqe, ddir, false);
338 	if (unlikely(ret))
339 		return ret;
340 
341 	node = io_rsrc_node_lookup(&ctx->buf_table, req->buf_index);
342 	if (!node)
343 		return -EFAULT;
344 	io_req_assign_buf_node(req, node);
345 
346 	io = req->async_data;
347 	ret = io_import_fixed(ddir, &io->iter, node->buf, rw->addr, rw->len);
348 	iov_iter_save_state(&io->iter, &io->iter_state);
349 	return ret;
350 }
351 
352 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
353 {
354 	return io_prep_rw_fixed(req, sqe, ITER_DEST);
355 }
356 
357 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
358 {
359 	return io_prep_rw_fixed(req, sqe, ITER_SOURCE);
360 }
361 
362 /*
363  * Multishot read is prepared just like a normal read/write request, only
364  * difference is that we set the MULTISHOT flag.
365  */
366 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
367 {
368 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
369 	int ret;
370 
371 	/* must be used with provided buffers */
372 	if (!(req->flags & REQ_F_BUFFER_SELECT))
373 		return -EINVAL;
374 
375 	ret = io_prep_rw(req, sqe, ITER_DEST, false);
376 	if (unlikely(ret))
377 		return ret;
378 
379 	if (rw->addr || rw->len)
380 		return -EINVAL;
381 
382 	req->flags |= REQ_F_APOLL_MULTISHOT;
383 	return 0;
384 }
385 
386 void io_readv_writev_cleanup(struct io_kiocb *req)
387 {
388 	io_rw_iovec_free(req->async_data);
389 }
390 
391 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
392 {
393 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
394 
395 	if (rw->kiocb.ki_pos != -1)
396 		return &rw->kiocb.ki_pos;
397 
398 	if (!(req->file->f_mode & FMODE_STREAM)) {
399 		req->flags |= REQ_F_CUR_POS;
400 		rw->kiocb.ki_pos = req->file->f_pos;
401 		return &rw->kiocb.ki_pos;
402 	}
403 
404 	rw->kiocb.ki_pos = 0;
405 	return NULL;
406 }
407 
408 #ifdef CONFIG_BLOCK
409 static void io_resubmit_prep(struct io_kiocb *req)
410 {
411 	struct io_async_rw *io = req->async_data;
412 
413 	iov_iter_restore(&io->iter, &io->iter_state);
414 }
415 
416 static bool io_rw_should_reissue(struct io_kiocb *req)
417 {
418 	umode_t mode = file_inode(req->file)->i_mode;
419 	struct io_ring_ctx *ctx = req->ctx;
420 
421 	if (!S_ISBLK(mode) && !S_ISREG(mode))
422 		return false;
423 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
424 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
425 		return false;
426 	/*
427 	 * If ref is dying, we might be running poll reap from the exit work.
428 	 * Don't attempt to reissue from that path, just let it fail with
429 	 * -EAGAIN.
430 	 */
431 	if (percpu_ref_is_dying(&ctx->refs))
432 		return false;
433 	/*
434 	 * Play it safe and assume not safe to re-import and reissue if we're
435 	 * not in the original thread group (or in task context).
436 	 */
437 	if (!same_thread_group(req->tctx->task, current) || !in_task())
438 		return false;
439 	return true;
440 }
441 #else
442 static void io_resubmit_prep(struct io_kiocb *req)
443 {
444 }
445 static bool io_rw_should_reissue(struct io_kiocb *req)
446 {
447 	return false;
448 }
449 #endif
450 
451 static void io_req_end_write(struct io_kiocb *req)
452 {
453 	if (req->flags & REQ_F_ISREG) {
454 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
455 
456 		kiocb_end_write(&rw->kiocb);
457 	}
458 }
459 
460 /*
461  * Trigger the notifications after having done some IO, and finish the write
462  * accounting, if any.
463  */
464 static void io_req_io_end(struct io_kiocb *req)
465 {
466 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
467 
468 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
469 		io_req_end_write(req);
470 		fsnotify_modify(req->file);
471 	} else {
472 		fsnotify_access(req->file);
473 	}
474 }
475 
476 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
477 {
478 	if (unlikely(res != req->cqe.res)) {
479 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
480 			/*
481 			 * Reissue will start accounting again, finish the
482 			 * current cycle.
483 			 */
484 			io_req_io_end(req);
485 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
486 			return true;
487 		}
488 		req_set_fail(req);
489 		req->cqe.res = res;
490 	}
491 	return false;
492 }
493 
494 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
495 {
496 	struct io_async_rw *io = req->async_data;
497 
498 	/* add previously done IO, if any */
499 	if (req_has_async_data(req) && io->bytes_done > 0) {
500 		if (res < 0)
501 			res = io->bytes_done;
502 		else
503 			res += io->bytes_done;
504 	}
505 	return res;
506 }
507 
508 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts)
509 {
510 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
511 	struct kiocb *kiocb = &rw->kiocb;
512 
513 	if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
514 		long res = kiocb->dio_complete(rw->kiocb.private);
515 
516 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
517 	}
518 
519 	io_req_io_end(req);
520 
521 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
522 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
523 
524 	io_req_rw_cleanup(req, 0);
525 	io_req_task_complete(req, ts);
526 }
527 
528 static void io_complete_rw(struct kiocb *kiocb, long res)
529 {
530 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
531 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
532 
533 	if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
534 		if (__io_complete_rw_common(req, res))
535 			return;
536 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
537 	}
538 	req->io_task_work.func = io_req_rw_complete;
539 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
540 }
541 
542 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
543 {
544 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
545 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
546 
547 	if (kiocb->ki_flags & IOCB_WRITE)
548 		io_req_end_write(req);
549 	if (unlikely(res != req->cqe.res)) {
550 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
551 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
552 			return;
553 		}
554 		req->cqe.res = res;
555 	}
556 
557 	/* order with io_iopoll_complete() checking ->iopoll_completed */
558 	smp_store_release(&req->iopoll_completed, 1);
559 }
560 
561 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
562 {
563 	/* IO was queued async, completion will happen later */
564 	if (ret == -EIOCBQUEUED)
565 		return;
566 
567 	/* transform internal restart error codes */
568 	if (unlikely(ret < 0)) {
569 		switch (ret) {
570 		case -ERESTARTSYS:
571 		case -ERESTARTNOINTR:
572 		case -ERESTARTNOHAND:
573 		case -ERESTART_RESTARTBLOCK:
574 			/*
575 			 * We can't just restart the syscall, since previously
576 			 * submitted sqes may already be in progress. Just fail
577 			 * this IO with EINTR.
578 			 */
579 			ret = -EINTR;
580 			break;
581 		}
582 	}
583 
584 	INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll,
585 			io_complete_rw, kiocb, ret);
586 }
587 
588 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
589 		       unsigned int issue_flags)
590 {
591 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
592 	unsigned final_ret = io_fixup_rw_res(req, ret);
593 
594 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
595 		req->file->f_pos = rw->kiocb.ki_pos;
596 	if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) {
597 		if (!__io_complete_rw_common(req, ret)) {
598 			/*
599 			 * Safe to call io_end from here as we're inline
600 			 * from the submission path.
601 			 */
602 			io_req_io_end(req);
603 			io_req_set_res(req, final_ret,
604 				       io_put_kbuf(req, ret, issue_flags));
605 			io_req_rw_cleanup(req, issue_flags);
606 			return IOU_OK;
607 		}
608 	} else {
609 		io_rw_done(&rw->kiocb, ret);
610 	}
611 
612 	if (req->flags & REQ_F_REISSUE) {
613 		req->flags &= ~REQ_F_REISSUE;
614 		io_resubmit_prep(req);
615 		return -EAGAIN;
616 	}
617 	return IOU_ISSUE_SKIP_COMPLETE;
618 }
619 
620 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
621 {
622 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
623 }
624 
625 /*
626  * For files that don't have ->read_iter() and ->write_iter(), handle them
627  * by looping over ->read() or ->write() manually.
628  */
629 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
630 {
631 	struct kiocb *kiocb = &rw->kiocb;
632 	struct file *file = kiocb->ki_filp;
633 	ssize_t ret = 0;
634 	loff_t *ppos;
635 
636 	/*
637 	 * Don't support polled IO through this interface, and we can't
638 	 * support non-blocking either. For the latter, this just causes
639 	 * the kiocb to be handled from an async context.
640 	 */
641 	if (kiocb->ki_flags & IOCB_HIPRI)
642 		return -EOPNOTSUPP;
643 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
644 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
645 		return -EAGAIN;
646 
647 	ppos = io_kiocb_ppos(kiocb);
648 
649 	while (iov_iter_count(iter)) {
650 		void __user *addr;
651 		size_t len;
652 		ssize_t nr;
653 
654 		if (iter_is_ubuf(iter)) {
655 			addr = iter->ubuf + iter->iov_offset;
656 			len = iov_iter_count(iter);
657 		} else if (!iov_iter_is_bvec(iter)) {
658 			addr = iter_iov_addr(iter);
659 			len = iter_iov_len(iter);
660 		} else {
661 			addr = u64_to_user_ptr(rw->addr);
662 			len = rw->len;
663 		}
664 
665 		if (ddir == READ)
666 			nr = file->f_op->read(file, addr, len, ppos);
667 		else
668 			nr = file->f_op->write(file, addr, len, ppos);
669 
670 		if (nr < 0) {
671 			if (!ret)
672 				ret = nr;
673 			break;
674 		}
675 		ret += nr;
676 		if (!iov_iter_is_bvec(iter)) {
677 			iov_iter_advance(iter, nr);
678 		} else {
679 			rw->addr += nr;
680 			rw->len -= nr;
681 			if (!rw->len)
682 				break;
683 		}
684 		if (nr != len)
685 			break;
686 	}
687 
688 	return ret;
689 }
690 
691 /*
692  * This is our waitqueue callback handler, registered through __folio_lock_async()
693  * when we initially tried to do the IO with the iocb armed our waitqueue.
694  * This gets called when the page is unlocked, and we generally expect that to
695  * happen when the page IO is completed and the page is now uptodate. This will
696  * queue a task_work based retry of the operation, attempting to copy the data
697  * again. If the latter fails because the page was NOT uptodate, then we will
698  * do a thread based blocking retry of the operation. That's the unexpected
699  * slow path.
700  */
701 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
702 			     int sync, void *arg)
703 {
704 	struct wait_page_queue *wpq;
705 	struct io_kiocb *req = wait->private;
706 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
707 	struct wait_page_key *key = arg;
708 
709 	wpq = container_of(wait, struct wait_page_queue, wait);
710 
711 	if (!wake_page_match(wpq, key))
712 		return 0;
713 
714 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
715 	list_del_init(&wait->entry);
716 	io_req_task_queue(req);
717 	return 1;
718 }
719 
720 /*
721  * This controls whether a given IO request should be armed for async page
722  * based retry. If we return false here, the request is handed to the async
723  * worker threads for retry. If we're doing buffered reads on a regular file,
724  * we prepare a private wait_page_queue entry and retry the operation. This
725  * will either succeed because the page is now uptodate and unlocked, or it
726  * will register a callback when the page is unlocked at IO completion. Through
727  * that callback, io_uring uses task_work to setup a retry of the operation.
728  * That retry will attempt the buffered read again. The retry will generally
729  * succeed, or in rare cases where it fails, we then fall back to using the
730  * async worker threads for a blocking retry.
731  */
732 static bool io_rw_should_retry(struct io_kiocb *req)
733 {
734 	struct io_async_rw *io = req->async_data;
735 	struct wait_page_queue *wait = &io->wpq;
736 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
737 	struct kiocb *kiocb = &rw->kiocb;
738 
739 	/* never retry for NOWAIT, we just complete with -EAGAIN */
740 	if (req->flags & REQ_F_NOWAIT)
741 		return false;
742 
743 	/* Only for buffered IO */
744 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
745 		return false;
746 
747 	/*
748 	 * just use poll if we can, and don't attempt if the fs doesn't
749 	 * support callback based unlocks
750 	 */
751 	if (io_file_can_poll(req) ||
752 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
753 		return false;
754 
755 	wait->wait.func = io_async_buf_func;
756 	wait->wait.private = req;
757 	wait->wait.flags = 0;
758 	INIT_LIST_HEAD(&wait->wait.entry);
759 	kiocb->ki_flags |= IOCB_WAITQ;
760 	kiocb->ki_flags &= ~IOCB_NOWAIT;
761 	kiocb->ki_waitq = wait;
762 	return true;
763 }
764 
765 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
766 {
767 	struct file *file = rw->kiocb.ki_filp;
768 
769 	if (likely(file->f_op->read_iter))
770 		return file->f_op->read_iter(&rw->kiocb, iter);
771 	else if (file->f_op->read)
772 		return loop_rw_iter(READ, rw, iter);
773 	else
774 		return -EINVAL;
775 }
776 
777 static bool need_complete_io(struct io_kiocb *req)
778 {
779 	return req->flags & REQ_F_ISREG ||
780 		S_ISBLK(file_inode(req->file)->i_mode);
781 }
782 
783 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
784 {
785 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
786 	struct kiocb *kiocb = &rw->kiocb;
787 	struct io_ring_ctx *ctx = req->ctx;
788 	struct file *file = req->file;
789 	int ret;
790 
791 	if (unlikely(!(file->f_mode & mode)))
792 		return -EBADF;
793 
794 	if (!(req->flags & REQ_F_FIXED_FILE))
795 		req->flags |= io_file_get_flags(file);
796 
797 	kiocb->ki_flags = file->f_iocb_flags;
798 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
799 	if (unlikely(ret))
800 		return ret;
801 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
802 
803 	/*
804 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
805 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
806 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
807 	 */
808 	if (kiocb->ki_flags & IOCB_NOWAIT ||
809 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
810 		req->flags |= REQ_F_NOWAIT;
811 
812 	if (ctx->flags & IORING_SETUP_IOPOLL) {
813 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
814 			return -EOPNOTSUPP;
815 
816 		kiocb->private = NULL;
817 		kiocb->ki_flags |= IOCB_HIPRI;
818 		kiocb->ki_complete = io_complete_rw_iopoll;
819 		req->iopoll_completed = 0;
820 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
821 			/* make sure every req only blocks once*/
822 			req->flags &= ~REQ_F_IOPOLL_STATE;
823 			req->iopoll_start = ktime_get_ns();
824 		}
825 	} else {
826 		if (kiocb->ki_flags & IOCB_HIPRI)
827 			return -EINVAL;
828 		kiocb->ki_complete = io_complete_rw;
829 	}
830 
831 	return 0;
832 }
833 
834 static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
835 {
836 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
837 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
838 	struct io_async_rw *io = req->async_data;
839 	struct kiocb *kiocb = &rw->kiocb;
840 	ssize_t ret;
841 	loff_t *ppos;
842 
843 	if (io_do_buffer_select(req)) {
844 		ret = io_import_iovec(ITER_DEST, req, io, issue_flags);
845 		if (unlikely(ret < 0))
846 			return ret;
847 	}
848 	ret = io_rw_init_file(req, FMODE_READ, READ);
849 	if (unlikely(ret))
850 		return ret;
851 	req->cqe.res = iov_iter_count(&io->iter);
852 
853 	if (force_nonblock) {
854 		/* If the file doesn't support async, just async punt */
855 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
856 			return -EAGAIN;
857 		kiocb->ki_flags |= IOCB_NOWAIT;
858 	} else {
859 		/* Ensure we clear previously set non-block flag */
860 		kiocb->ki_flags &= ~IOCB_NOWAIT;
861 	}
862 
863 	ppos = io_kiocb_update_pos(req);
864 
865 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
866 	if (unlikely(ret))
867 		return ret;
868 
869 	ret = io_iter_do_read(rw, &io->iter);
870 
871 	/*
872 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
873 	 * issue, even though they should be returning -EAGAIN. To be safe,
874 	 * retry from blocking context for either.
875 	 */
876 	if (ret == -EOPNOTSUPP && force_nonblock)
877 		ret = -EAGAIN;
878 
879 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
880 		req->flags &= ~REQ_F_REISSUE;
881 		/* If we can poll, just do that. */
882 		if (io_file_can_poll(req))
883 			return -EAGAIN;
884 		/* IOPOLL retry should happen for io-wq threads */
885 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
886 			goto done;
887 		/* no retry on NONBLOCK nor RWF_NOWAIT */
888 		if (req->flags & REQ_F_NOWAIT)
889 			goto done;
890 		ret = 0;
891 	} else if (ret == -EIOCBQUEUED) {
892 		return IOU_ISSUE_SKIP_COMPLETE;
893 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
894 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) {
895 		/* read all, failed, already did sync or don't want to retry */
896 		goto done;
897 	}
898 
899 	/*
900 	 * Don't depend on the iter state matching what was consumed, or being
901 	 * untouched in case of error. Restore it and we'll advance it
902 	 * manually if we need to.
903 	 */
904 	iov_iter_restore(&io->iter, &io->iter_state);
905 
906 	do {
907 		/*
908 		 * We end up here because of a partial read, either from
909 		 * above or inside this loop. Advance the iter by the bytes
910 		 * that were consumed.
911 		 */
912 		iov_iter_advance(&io->iter, ret);
913 		if (!iov_iter_count(&io->iter))
914 			break;
915 		io->bytes_done += ret;
916 		iov_iter_save_state(&io->iter, &io->iter_state);
917 
918 		/* if we can retry, do so with the callbacks armed */
919 		if (!io_rw_should_retry(req)) {
920 			kiocb->ki_flags &= ~IOCB_WAITQ;
921 			return -EAGAIN;
922 		}
923 
924 		req->cqe.res = iov_iter_count(&io->iter);
925 		/*
926 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
927 		 * we get -EIOCBQUEUED, then we'll get a notification when the
928 		 * desired page gets unlocked. We can also get a partial read
929 		 * here, and if we do, then just retry at the new offset.
930 		 */
931 		ret = io_iter_do_read(rw, &io->iter);
932 		if (ret == -EIOCBQUEUED)
933 			return IOU_ISSUE_SKIP_COMPLETE;
934 		/* we got some bytes, but not all. retry. */
935 		kiocb->ki_flags &= ~IOCB_WAITQ;
936 		iov_iter_restore(&io->iter, &io->iter_state);
937 	} while (ret > 0);
938 done:
939 	/* it's faster to check here then delegate to kfree */
940 	return ret;
941 }
942 
943 int io_read(struct io_kiocb *req, unsigned int issue_flags)
944 {
945 	int ret;
946 
947 	ret = __io_read(req, issue_flags);
948 	if (ret >= 0)
949 		return kiocb_done(req, ret, issue_flags);
950 
951 	return ret;
952 }
953 
954 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
955 {
956 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
957 	unsigned int cflags = 0;
958 	int ret;
959 
960 	/*
961 	 * Multishot MUST be used on a pollable file
962 	 */
963 	if (!io_file_can_poll(req))
964 		return -EBADFD;
965 
966 	ret = __io_read(req, issue_flags);
967 
968 	/*
969 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
970 	 * handling arm it.
971 	 */
972 	if (ret == -EAGAIN) {
973 		/*
974 		 * Reset rw->len to 0 again to avoid clamping future mshot
975 		 * reads, in case the buffer size varies.
976 		 */
977 		if (io_kbuf_recycle(req, issue_flags))
978 			rw->len = 0;
979 		if (issue_flags & IO_URING_F_MULTISHOT)
980 			return IOU_ISSUE_SKIP_COMPLETE;
981 		return -EAGAIN;
982 	} else if (ret <= 0) {
983 		io_kbuf_recycle(req, issue_flags);
984 		if (ret < 0)
985 			req_set_fail(req);
986 	} else {
987 		/*
988 		 * Any successful return value will keep the multishot read
989 		 * armed, if it's still set. Put our buffer and post a CQE. If
990 		 * we fail to post a CQE, or multishot is no longer set, then
991 		 * jump to the termination path. This request is then done.
992 		 */
993 		cflags = io_put_kbuf(req, ret, issue_flags);
994 		rw->len = 0; /* similarly to above, reset len to 0 */
995 
996 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
997 			if (issue_flags & IO_URING_F_MULTISHOT) {
998 				/*
999 				 * Force retry, as we might have more data to
1000 				 * be read and otherwise it won't get retried
1001 				 * until (if ever) another poll is triggered.
1002 				 */
1003 				io_poll_multishot_retry(req);
1004 				return IOU_ISSUE_SKIP_COMPLETE;
1005 			}
1006 			return -EAGAIN;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Either an error, or we've hit overflow posting the CQE. For any
1012 	 * multishot request, hitting overflow will terminate it.
1013 	 */
1014 	io_req_set_res(req, ret, cflags);
1015 	io_req_rw_cleanup(req, issue_flags);
1016 	if (issue_flags & IO_URING_F_MULTISHOT)
1017 		return IOU_STOP_MULTISHOT;
1018 	return IOU_OK;
1019 }
1020 
1021 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1022 {
1023 	struct inode *inode;
1024 	bool ret;
1025 
1026 	if (!(req->flags & REQ_F_ISREG))
1027 		return true;
1028 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1029 		kiocb_start_write(kiocb);
1030 		return true;
1031 	}
1032 
1033 	inode = file_inode(kiocb->ki_filp);
1034 	ret = sb_start_write_trylock(inode->i_sb);
1035 	if (ret)
1036 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1037 	return ret;
1038 }
1039 
1040 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1041 {
1042 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1043 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1044 	struct io_async_rw *io = req->async_data;
1045 	struct kiocb *kiocb = &rw->kiocb;
1046 	ssize_t ret, ret2;
1047 	loff_t *ppos;
1048 
1049 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1050 	if (unlikely(ret))
1051 		return ret;
1052 	req->cqe.res = iov_iter_count(&io->iter);
1053 
1054 	if (force_nonblock) {
1055 		/* If the file doesn't support async, just async punt */
1056 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1057 			goto ret_eagain;
1058 
1059 		/* Check if we can support NOWAIT. */
1060 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1061 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1062 		    (req->flags & REQ_F_ISREG))
1063 			goto ret_eagain;
1064 
1065 		kiocb->ki_flags |= IOCB_NOWAIT;
1066 	} else {
1067 		/* Ensure we clear previously set non-block flag */
1068 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1069 	}
1070 
1071 	ppos = io_kiocb_update_pos(req);
1072 
1073 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1074 	if (unlikely(ret))
1075 		return ret;
1076 
1077 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1078 		return -EAGAIN;
1079 	kiocb->ki_flags |= IOCB_WRITE;
1080 
1081 	if (likely(req->file->f_op->write_iter))
1082 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1083 	else if (req->file->f_op->write)
1084 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1085 	else
1086 		ret2 = -EINVAL;
1087 
1088 	if (req->flags & REQ_F_REISSUE) {
1089 		req->flags &= ~REQ_F_REISSUE;
1090 		ret2 = -EAGAIN;
1091 	}
1092 
1093 	/*
1094 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1095 	 * retry them without IOCB_NOWAIT.
1096 	 */
1097 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1098 		ret2 = -EAGAIN;
1099 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1100 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1101 		goto done;
1102 	if (!force_nonblock || ret2 != -EAGAIN) {
1103 		/* IOPOLL retry should happen for io-wq threads */
1104 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1105 			goto ret_eagain;
1106 
1107 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1108 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1109 						req->cqe.res, ret2);
1110 
1111 			/* This is a partial write. The file pos has already been
1112 			 * updated, setup the async struct to complete the request
1113 			 * in the worker. Also update bytes_done to account for
1114 			 * the bytes already written.
1115 			 */
1116 			iov_iter_save_state(&io->iter, &io->iter_state);
1117 			io->bytes_done += ret2;
1118 
1119 			if (kiocb->ki_flags & IOCB_WRITE)
1120 				io_req_end_write(req);
1121 			return -EAGAIN;
1122 		}
1123 done:
1124 		return kiocb_done(req, ret2, issue_flags);
1125 	} else {
1126 ret_eagain:
1127 		iov_iter_restore(&io->iter, &io->iter_state);
1128 		if (kiocb->ki_flags & IOCB_WRITE)
1129 			io_req_end_write(req);
1130 		return -EAGAIN;
1131 	}
1132 }
1133 
1134 void io_rw_fail(struct io_kiocb *req)
1135 {
1136 	int res;
1137 
1138 	res = io_fixup_rw_res(req, req->cqe.res);
1139 	io_req_set_res(req, res, req->cqe.flags);
1140 }
1141 
1142 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1143 				unsigned int poll_flags)
1144 {
1145 	struct file *file = req->file;
1146 
1147 	if (req->opcode == IORING_OP_URING_CMD) {
1148 		struct io_uring_cmd *ioucmd;
1149 
1150 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1151 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1152 	} else {
1153 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1154 
1155 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1156 	}
1157 }
1158 
1159 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1160 {
1161 	struct hrtimer_sleeper timer;
1162 	enum hrtimer_mode mode;
1163 	ktime_t kt;
1164 	u64 sleep_time;
1165 
1166 	if (req->flags & REQ_F_IOPOLL_STATE)
1167 		return 0;
1168 
1169 	if (ctx->hybrid_poll_time == LLONG_MAX)
1170 		return 0;
1171 
1172 	/* Using half the running time to do schedule */
1173 	sleep_time = ctx->hybrid_poll_time / 2;
1174 
1175 	kt = ktime_set(0, sleep_time);
1176 	req->flags |= REQ_F_IOPOLL_STATE;
1177 
1178 	mode = HRTIMER_MODE_REL;
1179 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1180 	hrtimer_set_expires(&timer.timer, kt);
1181 	set_current_state(TASK_INTERRUPTIBLE);
1182 	hrtimer_sleeper_start_expires(&timer, mode);
1183 
1184 	if (timer.task)
1185 		io_schedule();
1186 
1187 	hrtimer_cancel(&timer.timer);
1188 	__set_current_state(TASK_RUNNING);
1189 	destroy_hrtimer_on_stack(&timer.timer);
1190 	return sleep_time;
1191 }
1192 
1193 static int io_uring_hybrid_poll(struct io_kiocb *req,
1194 				struct io_comp_batch *iob, unsigned int poll_flags)
1195 {
1196 	struct io_ring_ctx *ctx = req->ctx;
1197 	u64 runtime, sleep_time;
1198 	int ret;
1199 
1200 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1201 	ret = io_uring_classic_poll(req, iob, poll_flags);
1202 	runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1203 
1204 	/*
1205 	 * Use minimum sleep time if we're polling devices with different
1206 	 * latencies. We could get more completions from the faster ones.
1207 	 */
1208 	if (ctx->hybrid_poll_time > runtime)
1209 		ctx->hybrid_poll_time = runtime;
1210 
1211 	return ret;
1212 }
1213 
1214 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1215 {
1216 	struct io_wq_work_node *pos, *start, *prev;
1217 	unsigned int poll_flags = 0;
1218 	DEFINE_IO_COMP_BATCH(iob);
1219 	int nr_events = 0;
1220 
1221 	/*
1222 	 * Only spin for completions if we don't have multiple devices hanging
1223 	 * off our complete list.
1224 	 */
1225 	if (ctx->poll_multi_queue || force_nonspin)
1226 		poll_flags |= BLK_POLL_ONESHOT;
1227 
1228 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1229 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1230 		int ret;
1231 
1232 		/*
1233 		 * Move completed and retryable entries to our local lists.
1234 		 * If we find a request that requires polling, break out
1235 		 * and complete those lists first, if we have entries there.
1236 		 */
1237 		if (READ_ONCE(req->iopoll_completed))
1238 			break;
1239 
1240 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1241 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1242 		else
1243 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1244 
1245 		if (unlikely(ret < 0))
1246 			return ret;
1247 		else if (ret)
1248 			poll_flags |= BLK_POLL_ONESHOT;
1249 
1250 		/* iopoll may have completed current req */
1251 		if (!rq_list_empty(&iob.req_list) ||
1252 		    READ_ONCE(req->iopoll_completed))
1253 			break;
1254 	}
1255 
1256 	if (!rq_list_empty(&iob.req_list))
1257 		iob.complete(&iob);
1258 	else if (!pos)
1259 		return 0;
1260 
1261 	prev = start;
1262 	wq_list_for_each_resume(pos, prev) {
1263 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1264 
1265 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1266 		if (!smp_load_acquire(&req->iopoll_completed))
1267 			break;
1268 		nr_events++;
1269 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
1270 		if (req->opcode != IORING_OP_URING_CMD)
1271 			io_req_rw_cleanup(req, 0);
1272 	}
1273 	if (unlikely(!nr_events))
1274 		return 0;
1275 
1276 	pos = start ? start->next : ctx->iopoll_list.first;
1277 	wq_list_cut(&ctx->iopoll_list, prev, start);
1278 
1279 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1280 		return 0;
1281 	ctx->submit_state.compl_reqs.first = pos;
1282 	__io_submit_flush_completions(ctx);
1283 	return nr_events;
1284 }
1285 
1286 void io_rw_cache_free(const void *entry)
1287 {
1288 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1289 
1290 	if (rw->free_iovec) {
1291 		kasan_mempool_unpoison_object(rw->free_iovec,
1292 				rw->free_iov_nr * sizeof(struct iovec));
1293 		io_rw_iovec_free(rw);
1294 	}
1295 	kfree(rw);
1296 }
1297