xref: /linux/io_uring/rw.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26 
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29 
30 struct io_rw {
31 	/* NOTE: kiocb has the file as the first member, so don't do it here */
32 	struct kiocb			kiocb;
33 	u64				addr;
34 	u32				len;
35 	rwf_t				flags;
36 };
37 
38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 	/* If FMODE_NOWAIT is set for a file, we're golden */
41 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 		return true;
43 	/* No FMODE_NOWAIT, if we can poll, check the status */
44 	if (io_file_can_poll(req)) {
45 		struct poll_table_struct pt = { ._key = mask };
46 
47 		return vfs_poll(req->file, &pt) & mask;
48 	}
49 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 	return false;
51 }
52 
53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 	struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 	struct compat_iovec iov;
57 
58 	if (copy_from_user(&iov, uiov, sizeof(iov)))
59 		return -EFAULT;
60 	rw->len = iov.iov_len;
61 	return 0;
62 }
63 
64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 	struct iovec __user *uiov;
67 	struct iovec iov;
68 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69 
70 	if (rw->len != 1)
71 		return -EINVAL;
72 
73 	if (io_is_compat(req->ctx))
74 		return io_iov_compat_buffer_select_prep(rw);
75 
76 	uiov = u64_to_user_ptr(rw->addr);
77 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 		return -EFAULT;
79 	rw->len = iov.iov_len;
80 	return 0;
81 }
82 
83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 			 struct io_async_rw *io,
85 			 const struct iovec __user *uvec,
86 			 size_t uvec_segs)
87 {
88 	int ret, nr_segs;
89 	struct iovec *iov;
90 
91 	if (io->vec.iovec) {
92 		nr_segs = io->vec.nr;
93 		iov = io->vec.iovec;
94 	} else {
95 		nr_segs = 1;
96 		iov = &io->fast_iov;
97 	}
98 
99 	ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 			     io_is_compat(req->ctx));
101 	if (unlikely(ret < 0))
102 		return ret;
103 	if (iov) {
104 		req->flags |= REQ_F_NEED_CLEANUP;
105 		io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 	}
107 	return 0;
108 }
109 
110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 				 struct io_async_rw *io, struct io_br_sel *sel,
112 				 unsigned int issue_flags)
113 {
114 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 	size_t sqe_len = rw->len;
117 
118 	sel->addr = u64_to_user_ptr(rw->addr);
119 	if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 		return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121 
122 	if (io_do_buffer_select(req)) {
123 		*sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 		if (!sel->addr)
125 			return -ENOBUFS;
126 		rw->addr = (unsigned long) sel->addr;
127 		rw->len = sqe_len;
128 	}
129 	return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131 
132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 				      struct io_async_rw *io,
134 				      struct io_br_sel *sel,
135 				      unsigned int issue_flags)
136 {
137 	int ret;
138 
139 	ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 	if (unlikely(ret < 0))
141 		return ret;
142 
143 	iov_iter_save_state(&io->iter, &io->iter_state);
144 	return 0;
145 }
146 
147 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 	struct io_async_rw *rw = req->async_data;
150 
151 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 		return;
153 
154 	io_alloc_cache_vec_kasan(&rw->vec);
155 	if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 		io_vec_free(&rw->vec);
157 
158 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw))
159 		io_req_async_data_clear(req, 0);
160 }
161 
162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 	/*
165 	 * Disable quick recycling for anything that's gone through io-wq.
166 	 * In theory, this should be fine to cleanup. However, some read or
167 	 * write iter handling touches the iovec AFTER having called into the
168 	 * handler, eg to reexpand or revert. This means we can have:
169 	 *
170 	 * task			io-wq
171 	 *   issue
172 	 *     punt to io-wq
173 	 *			issue
174 	 *			  blkdev_write_iter()
175 	 *			    ->ki_complete()
176 	 *			      io_complete_rw()
177 	 *			        queue tw complete
178 	 *  run tw
179 	 *    req_rw_cleanup
180 	 *			iov_iter_count() <- look at iov_iter again
181 	 *
182 	 * which can lead to a UAF. This is only possible for io-wq offload
183 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 	 * just leave cleanup to the end.
185 	 *
186 	 * This is really a bug in the core code that does this, any issue
187 	 * path should assume that a successful (or -EIOCBQUEUED) return can
188 	 * mean that the underlying data can be gone at any time. But that
189 	 * should be fixed separately, and then this check could be killed.
190 	 */
191 	if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 		req->flags &= ~REQ_F_NEED_CLEANUP;
193 		io_rw_recycle(req, issue_flags);
194 	}
195 }
196 
197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 	struct io_ring_ctx *ctx = req->ctx;
200 	struct io_async_rw *rw;
201 
202 	rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 	if (!rw)
204 		return -ENOMEM;
205 	if (rw->vec.iovec)
206 		req->flags |= REQ_F_NEED_CLEANUP;
207 	rw->bytes_done = 0;
208 	return 0;
209 }
210 
211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 	io->meta_state.seed = io->meta.seed;
214 	iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216 
217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 	if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 		io->meta.seed = io->meta_state.seed;
221 		iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 	}
223 }
224 
225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 			 u64 attr_ptr, u64 attr_type_mask)
227 {
228 	struct io_uring_attr_pi pi_attr;
229 	struct io_async_rw *io;
230 	int ret;
231 
232 	if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 	    sizeof(pi_attr)))
234 		return -EFAULT;
235 
236 	if (pi_attr.rsvd)
237 		return -EINVAL;
238 
239 	io = req->async_data;
240 	io->meta.flags = pi_attr.flags;
241 	io->meta.app_tag = pi_attr.app_tag;
242 	io->meta.seed = pi_attr.seed;
243 	ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 			  pi_attr.len, &io->meta.iter);
245 	if (unlikely(ret < 0))
246 		return ret;
247 	req->flags |= REQ_F_HAS_METADATA;
248 	io_meta_save_state(io);
249 	return ret;
250 }
251 
252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 			int ddir)
254 {
255 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 	struct io_async_rw *io;
257 	unsigned ioprio;
258 	u64 attr_type_mask;
259 	int ret;
260 
261 	if (io_rw_alloc_async(req))
262 		return -ENOMEM;
263 	io = req->async_data;
264 
265 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
266 	/* used for fixed read/write too - just read unconditionally */
267 	req->buf_index = READ_ONCE(sqe->buf_index);
268 	io->buf_group = req->buf_index;
269 
270 	ioprio = READ_ONCE(sqe->ioprio);
271 	if (ioprio) {
272 		ret = ioprio_check_cap(ioprio);
273 		if (ret)
274 			return ret;
275 
276 		rw->kiocb.ki_ioprio = ioprio;
277 	} else {
278 		rw->kiocb.ki_ioprio = get_current_ioprio();
279 	}
280 	rw->kiocb.ki_flags = 0;
281 	rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
282 
283 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
284 		rw->kiocb.ki_complete = io_complete_rw_iopoll;
285 	else
286 		rw->kiocb.ki_complete = io_complete_rw;
287 
288 	rw->addr = READ_ONCE(sqe->addr);
289 	rw->len = READ_ONCE(sqe->len);
290 	rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
291 
292 	attr_type_mask = READ_ONCE(sqe->attr_type_mask);
293 	if (attr_type_mask) {
294 		u64 attr_ptr;
295 
296 		/* only PI attribute is supported currently */
297 		if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
298 			return -EINVAL;
299 
300 		attr_ptr = READ_ONCE(sqe->attr_ptr);
301 		return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
302 	}
303 	return 0;
304 }
305 
306 static int io_rw_do_import(struct io_kiocb *req, int ddir)
307 {
308 	struct io_br_sel sel = { };
309 
310 	if (io_do_buffer_select(req))
311 		return 0;
312 
313 	return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
314 }
315 
316 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
317 		      int ddir)
318 {
319 	int ret;
320 
321 	ret = __io_prep_rw(req, sqe, ddir);
322 	if (unlikely(ret))
323 		return ret;
324 
325 	return io_rw_do_import(req, ddir);
326 }
327 
328 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
329 {
330 	return io_prep_rw(req, sqe, ITER_DEST);
331 }
332 
333 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
334 {
335 	return io_prep_rw(req, sqe, ITER_SOURCE);
336 }
337 
338 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
339 		       int ddir)
340 {
341 	int ret;
342 
343 	ret = io_prep_rw(req, sqe, ddir);
344 	if (unlikely(ret))
345 		return ret;
346 	if (!(req->flags & REQ_F_BUFFER_SELECT))
347 		return 0;
348 
349 	/*
350 	 * Have to do this validation here, as this is in io_read() rw->len
351 	 * might have changed due to buffer selection
352 	 */
353 	return io_iov_buffer_select_prep(req);
354 }
355 
356 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
357 {
358 	return io_prep_rwv(req, sqe, ITER_DEST);
359 }
360 
361 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
362 {
363 	return io_prep_rwv(req, sqe, ITER_SOURCE);
364 }
365 
366 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
367 			    int ddir)
368 {
369 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
370 	struct io_async_rw *io = req->async_data;
371 	int ret;
372 
373 	if (io->bytes_done)
374 		return 0;
375 
376 	ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
377 				issue_flags);
378 	iov_iter_save_state(&io->iter, &io->iter_state);
379 	return ret;
380 }
381 
382 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
383 {
384 	return __io_prep_rw(req, sqe, ITER_DEST);
385 }
386 
387 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
388 {
389 	return __io_prep_rw(req, sqe, ITER_SOURCE);
390 }
391 
392 static int io_rw_import_reg_vec(struct io_kiocb *req,
393 				struct io_async_rw *io,
394 				int ddir, unsigned int issue_flags)
395 {
396 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
397 	unsigned uvec_segs = rw->len;
398 	int ret;
399 
400 	ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
401 				uvec_segs, issue_flags);
402 	if (unlikely(ret))
403 		return ret;
404 	iov_iter_save_state(&io->iter, &io->iter_state);
405 	req->flags &= ~REQ_F_IMPORT_BUFFER;
406 	return 0;
407 }
408 
409 static int io_rw_prep_reg_vec(struct io_kiocb *req)
410 {
411 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
412 	struct io_async_rw *io = req->async_data;
413 	const struct iovec __user *uvec;
414 
415 	uvec = u64_to_user_ptr(rw->addr);
416 	return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
417 }
418 
419 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
420 {
421 	int ret;
422 
423 	ret = __io_prep_rw(req, sqe, ITER_DEST);
424 	if (unlikely(ret))
425 		return ret;
426 	return io_rw_prep_reg_vec(req);
427 }
428 
429 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
430 {
431 	int ret;
432 
433 	ret = __io_prep_rw(req, sqe, ITER_SOURCE);
434 	if (unlikely(ret))
435 		return ret;
436 	return io_rw_prep_reg_vec(req);
437 }
438 
439 /*
440  * Multishot read is prepared just like a normal read/write request, only
441  * difference is that we set the MULTISHOT flag.
442  */
443 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
444 {
445 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
446 	int ret;
447 
448 	/* must be used with provided buffers */
449 	if (!(req->flags & REQ_F_BUFFER_SELECT))
450 		return -EINVAL;
451 
452 	ret = __io_prep_rw(req, sqe, ITER_DEST);
453 	if (unlikely(ret))
454 		return ret;
455 
456 	if (rw->addr || rw->len)
457 		return -EINVAL;
458 
459 	req->flags |= REQ_F_APOLL_MULTISHOT;
460 	return 0;
461 }
462 
463 void io_readv_writev_cleanup(struct io_kiocb *req)
464 {
465 	struct io_async_rw *rw = req->async_data;
466 
467 	lockdep_assert_held(&req->ctx->uring_lock);
468 	io_vec_free(&rw->vec);
469 	io_rw_recycle(req, 0);
470 }
471 
472 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
473 {
474 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
475 
476 	if (rw->kiocb.ki_pos != -1)
477 		return &rw->kiocb.ki_pos;
478 
479 	if (!(req->file->f_mode & FMODE_STREAM)) {
480 		req->flags |= REQ_F_CUR_POS;
481 		rw->kiocb.ki_pos = req->file->f_pos;
482 		return &rw->kiocb.ki_pos;
483 	}
484 
485 	rw->kiocb.ki_pos = 0;
486 	return NULL;
487 }
488 
489 static bool io_rw_should_reissue(struct io_kiocb *req)
490 {
491 #ifdef CONFIG_BLOCK
492 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
493 	umode_t mode = file_inode(req->file)->i_mode;
494 	struct io_async_rw *io = req->async_data;
495 	struct io_ring_ctx *ctx = req->ctx;
496 
497 	if (!S_ISBLK(mode) && !S_ISREG(mode))
498 		return false;
499 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
500 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
501 		return false;
502 	/*
503 	 * If ref is dying, we might be running poll reap from the exit work.
504 	 * Don't attempt to reissue from that path, just let it fail with
505 	 * -EAGAIN.
506 	 */
507 	if (percpu_ref_is_dying(&ctx->refs))
508 		return false;
509 
510 	io_meta_restore(io, &rw->kiocb);
511 	iov_iter_restore(&io->iter, &io->iter_state);
512 	return true;
513 #else
514 	return false;
515 #endif
516 }
517 
518 static void io_req_end_write(struct io_kiocb *req)
519 {
520 	if (req->flags & REQ_F_ISREG) {
521 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
522 
523 		kiocb_end_write(&rw->kiocb);
524 	}
525 }
526 
527 /*
528  * Trigger the notifications after having done some IO, and finish the write
529  * accounting, if any.
530  */
531 static void io_req_io_end(struct io_kiocb *req)
532 {
533 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
534 
535 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
536 		io_req_end_write(req);
537 		fsnotify_modify(req->file);
538 	} else {
539 		fsnotify_access(req->file);
540 	}
541 }
542 
543 static void __io_complete_rw_common(struct io_kiocb *req, long res)
544 {
545 	if (res == req->cqe.res)
546 		return;
547 	if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
548 		req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
549 	} else {
550 		req_set_fail(req);
551 		req->cqe.res = res;
552 	}
553 }
554 
555 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
556 {
557 	struct io_async_rw *io = req->async_data;
558 
559 	/* add previously done IO, if any */
560 	if (req_has_async_data(req) && io->bytes_done > 0) {
561 		if (res < 0)
562 			res = io->bytes_done;
563 		else
564 			res += io->bytes_done;
565 	}
566 	return res;
567 }
568 
569 void io_req_rw_complete(struct io_tw_req tw_req, io_tw_token_t tw)
570 {
571 	struct io_kiocb *req = tw_req.req;
572 
573 	io_req_io_end(req);
574 
575 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
576 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
577 
578 	io_req_rw_cleanup(req, 0);
579 	io_req_task_complete(tw_req, tw);
580 }
581 
582 static void io_complete_rw(struct kiocb *kiocb, long res)
583 {
584 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
585 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
586 
587 	__io_complete_rw_common(req, res);
588 	io_req_set_res(req, io_fixup_rw_res(req, res), 0);
589 	req->io_task_work.func = io_req_rw_complete;
590 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
591 }
592 
593 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
594 {
595 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
596 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
597 
598 	if (kiocb->ki_flags & IOCB_WRITE)
599 		io_req_end_write(req);
600 	if (unlikely(res != req->cqe.res)) {
601 		if (res == -EAGAIN && io_rw_should_reissue(req))
602 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
603 		else
604 			req->cqe.res = res;
605 	}
606 
607 	/* order with io_iopoll_complete() checking ->iopoll_completed */
608 	smp_store_release(&req->iopoll_completed, 1);
609 }
610 
611 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
612 {
613 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
614 
615 	/* IO was queued async, completion will happen later */
616 	if (ret == -EIOCBQUEUED)
617 		return;
618 
619 	/* transform internal restart error codes */
620 	if (unlikely(ret < 0)) {
621 		switch (ret) {
622 		case -ERESTARTSYS:
623 		case -ERESTARTNOINTR:
624 		case -ERESTARTNOHAND:
625 		case -ERESTART_RESTARTBLOCK:
626 			/*
627 			 * We can't just restart the syscall, since previously
628 			 * submitted sqes may already be in progress. Just fail
629 			 * this IO with EINTR.
630 			 */
631 			ret = -EINTR;
632 			break;
633 		}
634 	}
635 
636 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
637 		io_complete_rw_iopoll(&rw->kiocb, ret);
638 	else
639 		io_complete_rw(&rw->kiocb, ret);
640 }
641 
642 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
643 		      struct io_br_sel *sel, unsigned int issue_flags)
644 {
645 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
646 	unsigned final_ret = io_fixup_rw_res(req, ret);
647 
648 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
649 		req->file->f_pos = rw->kiocb.ki_pos;
650 	if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
651 		u32 cflags = 0;
652 
653 		__io_complete_rw_common(req, ret);
654 		/*
655 		 * Safe to call io_end from here as we're inline
656 		 * from the submission path.
657 		 */
658 		io_req_io_end(req);
659 		if (sel)
660 			cflags = io_put_kbuf(req, ret, sel->buf_list);
661 		io_req_set_res(req, final_ret, cflags);
662 		io_req_rw_cleanup(req, issue_flags);
663 		return IOU_COMPLETE;
664 	} else {
665 		io_rw_done(req, ret);
666 	}
667 
668 	return IOU_ISSUE_SKIP_COMPLETE;
669 }
670 
671 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
672 {
673 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
674 }
675 
676 /*
677  * For files that don't have ->read_iter() and ->write_iter(), handle them
678  * by looping over ->read() or ->write() manually.
679  */
680 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
681 {
682 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
683 	struct kiocb *kiocb = &rw->kiocb;
684 	struct file *file = kiocb->ki_filp;
685 	ssize_t ret = 0;
686 	loff_t *ppos;
687 
688 	/*
689 	 * Don't support polled IO through this interface, and we can't
690 	 * support non-blocking either. For the latter, this just causes
691 	 * the kiocb to be handled from an async context.
692 	 */
693 	if (kiocb->ki_flags & IOCB_HIPRI)
694 		return -EOPNOTSUPP;
695 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
696 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
697 		return -EAGAIN;
698 	if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
699 		return -EFAULT;
700 
701 	ppos = io_kiocb_ppos(kiocb);
702 
703 	while (iov_iter_count(iter)) {
704 		void __user *addr;
705 		size_t len;
706 		ssize_t nr;
707 
708 		if (iter_is_ubuf(iter)) {
709 			addr = iter->ubuf + iter->iov_offset;
710 			len = iov_iter_count(iter);
711 		} else if (!iov_iter_is_bvec(iter)) {
712 			addr = iter_iov_addr(iter);
713 			len = iter_iov_len(iter);
714 		} else {
715 			addr = u64_to_user_ptr(rw->addr);
716 			len = rw->len;
717 		}
718 
719 		if (ddir == READ)
720 			nr = file->f_op->read(file, addr, len, ppos);
721 		else
722 			nr = file->f_op->write(file, addr, len, ppos);
723 
724 		if (nr < 0) {
725 			if (!ret)
726 				ret = nr;
727 			break;
728 		}
729 		ret += nr;
730 		if (!iov_iter_is_bvec(iter)) {
731 			iov_iter_advance(iter, nr);
732 		} else {
733 			rw->addr += nr;
734 			rw->len -= nr;
735 			if (!rw->len)
736 				break;
737 		}
738 		if (nr != len)
739 			break;
740 	}
741 
742 	return ret;
743 }
744 
745 /*
746  * This is our waitqueue callback handler, registered through __folio_lock_async()
747  * when we initially tried to do the IO with the iocb armed our waitqueue.
748  * This gets called when the page is unlocked, and we generally expect that to
749  * happen when the page IO is completed and the page is now uptodate. This will
750  * queue a task_work based retry of the operation, attempting to copy the data
751  * again. If the latter fails because the page was NOT uptodate, then we will
752  * do a thread based blocking retry of the operation. That's the unexpected
753  * slow path.
754  */
755 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
756 			     int sync, void *arg)
757 {
758 	struct wait_page_queue *wpq;
759 	struct io_kiocb *req = wait->private;
760 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
761 	struct wait_page_key *key = arg;
762 
763 	wpq = container_of(wait, struct wait_page_queue, wait);
764 
765 	if (!wake_page_match(wpq, key))
766 		return 0;
767 
768 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
769 	list_del_init(&wait->entry);
770 	io_req_task_queue(req);
771 	return 1;
772 }
773 
774 /*
775  * This controls whether a given IO request should be armed for async page
776  * based retry. If we return false here, the request is handed to the async
777  * worker threads for retry. If we're doing buffered reads on a regular file,
778  * we prepare a private wait_page_queue entry and retry the operation. This
779  * will either succeed because the page is now uptodate and unlocked, or it
780  * will register a callback when the page is unlocked at IO completion. Through
781  * that callback, io_uring uses task_work to setup a retry of the operation.
782  * That retry will attempt the buffered read again. The retry will generally
783  * succeed, or in rare cases where it fails, we then fall back to using the
784  * async worker threads for a blocking retry.
785  */
786 static bool io_rw_should_retry(struct io_kiocb *req)
787 {
788 	struct io_async_rw *io = req->async_data;
789 	struct wait_page_queue *wait = &io->wpq;
790 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
791 	struct kiocb *kiocb = &rw->kiocb;
792 
793 	/*
794 	 * Never retry for NOWAIT or a request with metadata, we just complete
795 	 * with -EAGAIN.
796 	 */
797 	if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
798 		return false;
799 
800 	/* Only for buffered IO */
801 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
802 		return false;
803 
804 	/*
805 	 * just use poll if we can, and don't attempt if the fs doesn't
806 	 * support callback based unlocks
807 	 */
808 	if (io_file_can_poll(req) ||
809 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
810 		return false;
811 
812 	wait->wait.func = io_async_buf_func;
813 	wait->wait.private = req;
814 	wait->wait.flags = 0;
815 	INIT_LIST_HEAD(&wait->wait.entry);
816 	kiocb->ki_flags |= IOCB_WAITQ;
817 	kiocb->ki_flags &= ~IOCB_NOWAIT;
818 	kiocb->ki_waitq = wait;
819 	return true;
820 }
821 
822 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
823 {
824 	struct file *file = rw->kiocb.ki_filp;
825 
826 	if (likely(file->f_op->read_iter))
827 		return file->f_op->read_iter(&rw->kiocb, iter);
828 	else if (file->f_op->read)
829 		return loop_rw_iter(READ, rw, iter);
830 	else
831 		return -EINVAL;
832 }
833 
834 static bool need_complete_io(struct io_kiocb *req)
835 {
836 	return req->flags & REQ_F_ISREG ||
837 		S_ISBLK(file_inode(req->file)->i_mode);
838 }
839 
840 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
841 {
842 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
843 	struct kiocb *kiocb = &rw->kiocb;
844 	struct io_ring_ctx *ctx = req->ctx;
845 	struct file *file = req->file;
846 	int ret;
847 
848 	if (unlikely(!(file->f_mode & mode)))
849 		return -EBADF;
850 
851 	if (!(req->flags & REQ_F_FIXED_FILE))
852 		req->flags |= io_file_get_flags(file);
853 
854 	kiocb->ki_flags = file->f_iocb_flags;
855 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
856 	if (unlikely(ret))
857 		return ret;
858 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
859 
860 	/*
861 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
862 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
863 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
864 	 */
865 	if (kiocb->ki_flags & IOCB_NOWAIT ||
866 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
867 		req->flags |= REQ_F_NOWAIT;
868 
869 	if (ctx->flags & IORING_SETUP_IOPOLL) {
870 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
871 			return -EOPNOTSUPP;
872 		kiocb->private = NULL;
873 		kiocb->ki_flags |= IOCB_HIPRI;
874 		req->iopoll_completed = 0;
875 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
876 			/* make sure every req only blocks once*/
877 			req->flags &= ~REQ_F_IOPOLL_STATE;
878 			req->iopoll_start = ktime_get_ns();
879 		}
880 	} else {
881 		if (kiocb->ki_flags & IOCB_HIPRI)
882 			return -EINVAL;
883 	}
884 
885 	if (req->flags & REQ_F_HAS_METADATA) {
886 		struct io_async_rw *io = req->async_data;
887 
888 		if (!(file->f_mode & FMODE_HAS_METADATA))
889 			return -EINVAL;
890 
891 		/*
892 		 * We have a union of meta fields with wpq used for buffered-io
893 		 * in io_async_rw, so fail it here.
894 		 */
895 		if (!(req->file->f_flags & O_DIRECT))
896 			return -EOPNOTSUPP;
897 		kiocb->ki_flags |= IOCB_HAS_METADATA;
898 		kiocb->private = &io->meta;
899 	}
900 
901 	return 0;
902 }
903 
904 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
905 		     unsigned int issue_flags)
906 {
907 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
908 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
909 	struct io_async_rw *io = req->async_data;
910 	struct kiocb *kiocb = &rw->kiocb;
911 	ssize_t ret;
912 	loff_t *ppos;
913 
914 	if (req->flags & REQ_F_IMPORT_BUFFER) {
915 		ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
916 		if (unlikely(ret))
917 			return ret;
918 	} else if (io_do_buffer_select(req)) {
919 		ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
920 		if (unlikely(ret < 0))
921 			return ret;
922 	}
923 	ret = io_rw_init_file(req, FMODE_READ, READ);
924 	if (unlikely(ret))
925 		return ret;
926 	req->cqe.res = iov_iter_count(&io->iter);
927 
928 	if (force_nonblock) {
929 		/* If the file doesn't support async, just async punt */
930 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
931 			return -EAGAIN;
932 		kiocb->ki_flags |= IOCB_NOWAIT;
933 	} else {
934 		/* Ensure we clear previously set non-block flag */
935 		kiocb->ki_flags &= ~IOCB_NOWAIT;
936 	}
937 
938 	ppos = io_kiocb_update_pos(req);
939 
940 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
941 	if (unlikely(ret))
942 		return ret;
943 
944 	ret = io_iter_do_read(rw, &io->iter);
945 
946 	/*
947 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
948 	 * issue, even though they should be returning -EAGAIN. To be safe,
949 	 * retry from blocking context for either.
950 	 */
951 	if (ret == -EOPNOTSUPP && force_nonblock)
952 		ret = -EAGAIN;
953 
954 	if (ret == -EAGAIN) {
955 		/* If we can poll, just do that. */
956 		if (io_file_can_poll(req))
957 			return -EAGAIN;
958 		/* IOPOLL retry should happen for io-wq threads */
959 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
960 			goto done;
961 		/* no retry on NONBLOCK nor RWF_NOWAIT */
962 		if (req->flags & REQ_F_NOWAIT)
963 			goto done;
964 		ret = 0;
965 	} else if (ret == -EIOCBQUEUED) {
966 		return IOU_ISSUE_SKIP_COMPLETE;
967 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
968 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
969 		   (issue_flags & IO_URING_F_MULTISHOT)) {
970 		/* read all, failed, already did sync or don't want to retry */
971 		goto done;
972 	}
973 
974 	/*
975 	 * Don't depend on the iter state matching what was consumed, or being
976 	 * untouched in case of error. Restore it and we'll advance it
977 	 * manually if we need to.
978 	 */
979 	iov_iter_restore(&io->iter, &io->iter_state);
980 	io_meta_restore(io, kiocb);
981 
982 	do {
983 		/*
984 		 * We end up here because of a partial read, either from
985 		 * above or inside this loop. Advance the iter by the bytes
986 		 * that were consumed.
987 		 */
988 		iov_iter_advance(&io->iter, ret);
989 		if (!iov_iter_count(&io->iter))
990 			break;
991 		io->bytes_done += ret;
992 		iov_iter_save_state(&io->iter, &io->iter_state);
993 
994 		/* if we can retry, do so with the callbacks armed */
995 		if (!io_rw_should_retry(req)) {
996 			kiocb->ki_flags &= ~IOCB_WAITQ;
997 			return -EAGAIN;
998 		}
999 
1000 		req->cqe.res = iov_iter_count(&io->iter);
1001 		/*
1002 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1003 		 * we get -EIOCBQUEUED, then we'll get a notification when the
1004 		 * desired page gets unlocked. We can also get a partial read
1005 		 * here, and if we do, then just retry at the new offset.
1006 		 */
1007 		ret = io_iter_do_read(rw, &io->iter);
1008 		if (ret == -EIOCBQUEUED)
1009 			return IOU_ISSUE_SKIP_COMPLETE;
1010 		/* we got some bytes, but not all. retry. */
1011 		kiocb->ki_flags &= ~IOCB_WAITQ;
1012 		iov_iter_restore(&io->iter, &io->iter_state);
1013 	} while (ret > 0);
1014 done:
1015 	/* it's faster to check here than delegate to kfree */
1016 	return ret;
1017 }
1018 
1019 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1020 {
1021 	struct io_br_sel sel = { };
1022 	int ret;
1023 
1024 	ret = __io_read(req, &sel, issue_flags);
1025 	if (ret >= 0)
1026 		return kiocb_done(req, ret, &sel, issue_flags);
1027 
1028 	if (req->flags & REQ_F_BUFFERS_COMMIT)
1029 		io_kbuf_recycle(req, sel.buf_list, issue_flags);
1030 	return ret;
1031 }
1032 
1033 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1034 {
1035 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1036 	struct io_br_sel sel = { };
1037 	unsigned int cflags = 0;
1038 	int ret;
1039 
1040 	/*
1041 	 * Multishot MUST be used on a pollable file
1042 	 */
1043 	if (!io_file_can_poll(req))
1044 		return -EBADFD;
1045 
1046 	/* make it sync, multishot doesn't support async execution */
1047 	rw->kiocb.ki_complete = NULL;
1048 	ret = __io_read(req, &sel, issue_flags);
1049 
1050 	/*
1051 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
1052 	 * handling arm it.
1053 	 */
1054 	if (ret == -EAGAIN) {
1055 		/*
1056 		 * Reset rw->len to 0 again to avoid clamping future mshot
1057 		 * reads, in case the buffer size varies.
1058 		 */
1059 		if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1060 			rw->len = 0;
1061 		return IOU_RETRY;
1062 	} else if (ret <= 0) {
1063 		io_kbuf_recycle(req, sel.buf_list, issue_flags);
1064 		if (ret < 0)
1065 			req_set_fail(req);
1066 	} else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1067 		cflags = io_put_kbuf(req, ret, sel.buf_list);
1068 	} else {
1069 		/*
1070 		 * Any successful return value will keep the multishot read
1071 		 * armed, if it's still set. Put our buffer and post a CQE. If
1072 		 * we fail to post a CQE, or multishot is no longer set, then
1073 		 * jump to the termination path. This request is then done.
1074 		 */
1075 		cflags = io_put_kbuf(req, ret, sel.buf_list);
1076 		rw->len = 0; /* similarly to above, reset len to 0 */
1077 
1078 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1079 			if (issue_flags & IO_URING_F_MULTISHOT)
1080 				/*
1081 				 * Force retry, as we might have more data to
1082 				 * be read and otherwise it won't get retried
1083 				 * until (if ever) another poll is triggered.
1084 				 */
1085 				io_poll_multishot_retry(req);
1086 
1087 			return IOU_RETRY;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Either an error, or we've hit overflow posting the CQE. For any
1093 	 * multishot request, hitting overflow will terminate it.
1094 	 */
1095 	io_req_set_res(req, ret, cflags);
1096 	io_req_rw_cleanup(req, issue_flags);
1097 	return IOU_COMPLETE;
1098 }
1099 
1100 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1101 {
1102 	struct inode *inode;
1103 	bool ret;
1104 
1105 	if (!(req->flags & REQ_F_ISREG))
1106 		return true;
1107 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1108 		kiocb_start_write(kiocb);
1109 		return true;
1110 	}
1111 
1112 	inode = file_inode(kiocb->ki_filp);
1113 	ret = sb_start_write_trylock(inode->i_sb);
1114 	if (ret)
1115 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1116 	return ret;
1117 }
1118 
1119 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1120 {
1121 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1122 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1123 	struct io_async_rw *io = req->async_data;
1124 	struct kiocb *kiocb = &rw->kiocb;
1125 	ssize_t ret, ret2;
1126 	loff_t *ppos;
1127 
1128 	if (req->flags & REQ_F_IMPORT_BUFFER) {
1129 		ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1130 		if (unlikely(ret))
1131 			return ret;
1132 	}
1133 
1134 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1135 	if (unlikely(ret))
1136 		return ret;
1137 	req->cqe.res = iov_iter_count(&io->iter);
1138 
1139 	if (force_nonblock) {
1140 		/* If the file doesn't support async, just async punt */
1141 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1142 			goto ret_eagain;
1143 
1144 		/* Check if we can support NOWAIT. */
1145 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1146 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1147 		    (req->flags & REQ_F_ISREG))
1148 			goto ret_eagain;
1149 
1150 		kiocb->ki_flags |= IOCB_NOWAIT;
1151 	} else {
1152 		/* Ensure we clear previously set non-block flag */
1153 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1154 	}
1155 
1156 	ppos = io_kiocb_update_pos(req);
1157 
1158 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1159 	if (unlikely(ret))
1160 		return ret;
1161 
1162 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1163 		return -EAGAIN;
1164 	kiocb->ki_flags |= IOCB_WRITE;
1165 
1166 	if (likely(req->file->f_op->write_iter))
1167 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1168 	else if (req->file->f_op->write)
1169 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1170 	else
1171 		ret2 = -EINVAL;
1172 
1173 	/*
1174 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1175 	 * retry them without IOCB_NOWAIT.
1176 	 */
1177 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1178 		ret2 = -EAGAIN;
1179 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1180 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1181 		goto done;
1182 	if (!force_nonblock || ret2 != -EAGAIN) {
1183 		/* IOPOLL retry should happen for io-wq threads */
1184 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1185 			goto ret_eagain;
1186 
1187 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1188 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1189 						req->cqe.res, ret2);
1190 
1191 			/* This is a partial write. The file pos has already been
1192 			 * updated, setup the async struct to complete the request
1193 			 * in the worker. Also update bytes_done to account for
1194 			 * the bytes already written.
1195 			 */
1196 			iov_iter_save_state(&io->iter, &io->iter_state);
1197 			io->bytes_done += ret2;
1198 
1199 			if (kiocb->ki_flags & IOCB_WRITE)
1200 				io_req_end_write(req);
1201 			return -EAGAIN;
1202 		}
1203 done:
1204 		return kiocb_done(req, ret2, NULL, issue_flags);
1205 	} else {
1206 ret_eagain:
1207 		iov_iter_restore(&io->iter, &io->iter_state);
1208 		io_meta_restore(io, kiocb);
1209 		if (kiocb->ki_flags & IOCB_WRITE)
1210 			io_req_end_write(req);
1211 		return -EAGAIN;
1212 	}
1213 }
1214 
1215 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1216 {
1217 	int ret;
1218 
1219 	ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1220 	if (unlikely(ret))
1221 		return ret;
1222 
1223 	return io_read(req, issue_flags);
1224 }
1225 
1226 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1227 {
1228 	int ret;
1229 
1230 	ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1231 	if (unlikely(ret))
1232 		return ret;
1233 
1234 	return io_write(req, issue_flags);
1235 }
1236 
1237 void io_rw_fail(struct io_kiocb *req)
1238 {
1239 	int res;
1240 
1241 	res = io_fixup_rw_res(req, req->cqe.res);
1242 	io_req_set_res(req, res, req->cqe.flags);
1243 }
1244 
1245 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1246 				unsigned int poll_flags)
1247 {
1248 	struct file *file = req->file;
1249 
1250 	if (req->opcode == IORING_OP_URING_CMD) {
1251 		struct io_uring_cmd *ioucmd;
1252 
1253 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1254 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1255 	} else {
1256 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1257 
1258 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1259 	}
1260 }
1261 
1262 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1263 {
1264 	struct hrtimer_sleeper timer;
1265 	enum hrtimer_mode mode;
1266 	ktime_t kt;
1267 	u64 sleep_time;
1268 
1269 	if (req->flags & REQ_F_IOPOLL_STATE)
1270 		return 0;
1271 
1272 	if (ctx->hybrid_poll_time == LLONG_MAX)
1273 		return 0;
1274 
1275 	/* Using half the running time to do schedule */
1276 	sleep_time = ctx->hybrid_poll_time / 2;
1277 
1278 	kt = ktime_set(0, sleep_time);
1279 	req->flags |= REQ_F_IOPOLL_STATE;
1280 
1281 	mode = HRTIMER_MODE_REL;
1282 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1283 	hrtimer_set_expires(&timer.timer, kt);
1284 	set_current_state(TASK_INTERRUPTIBLE);
1285 	hrtimer_sleeper_start_expires(&timer, mode);
1286 
1287 	if (timer.task)
1288 		io_schedule();
1289 
1290 	hrtimer_cancel(&timer.timer);
1291 	__set_current_state(TASK_RUNNING);
1292 	destroy_hrtimer_on_stack(&timer.timer);
1293 	return sleep_time;
1294 }
1295 
1296 static int io_uring_hybrid_poll(struct io_kiocb *req,
1297 				struct io_comp_batch *iob, unsigned int poll_flags)
1298 {
1299 	struct io_ring_ctx *ctx = req->ctx;
1300 	u64 runtime, sleep_time;
1301 	int ret;
1302 
1303 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1304 	ret = io_uring_classic_poll(req, iob, poll_flags);
1305 	runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1306 
1307 	/*
1308 	 * Use minimum sleep time if we're polling devices with different
1309 	 * latencies. We could get more completions from the faster ones.
1310 	 */
1311 	if (ctx->hybrid_poll_time > runtime)
1312 		ctx->hybrid_poll_time = runtime;
1313 
1314 	return ret;
1315 }
1316 
1317 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1318 {
1319 	struct io_wq_work_node *pos, *start, *prev;
1320 	unsigned int poll_flags = 0;
1321 	DEFINE_IO_COMP_BATCH(iob);
1322 	int nr_events = 0;
1323 
1324 	/*
1325 	 * Only spin for completions if we don't have multiple devices hanging
1326 	 * off our complete list.
1327 	 */
1328 	if (ctx->poll_multi_queue || force_nonspin)
1329 		poll_flags |= BLK_POLL_ONESHOT;
1330 
1331 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1332 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1333 		int ret;
1334 
1335 		/*
1336 		 * Move completed and retryable entries to our local lists.
1337 		 * If we find a request that requires polling, break out
1338 		 * and complete those lists first, if we have entries there.
1339 		 */
1340 		if (READ_ONCE(req->iopoll_completed))
1341 			break;
1342 
1343 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1344 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1345 		else
1346 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1347 
1348 		if (unlikely(ret < 0))
1349 			return ret;
1350 		else if (ret)
1351 			poll_flags |= BLK_POLL_ONESHOT;
1352 
1353 		/* iopoll may have completed current req */
1354 		if (!rq_list_empty(&iob.req_list) ||
1355 		    READ_ONCE(req->iopoll_completed))
1356 			break;
1357 	}
1358 
1359 	if (!rq_list_empty(&iob.req_list))
1360 		iob.complete(&iob);
1361 	else if (!pos)
1362 		return 0;
1363 
1364 	prev = start;
1365 	wq_list_for_each_resume(pos, prev) {
1366 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1367 
1368 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1369 		if (!smp_load_acquire(&req->iopoll_completed))
1370 			break;
1371 		nr_events++;
1372 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1373 		if (req->opcode != IORING_OP_URING_CMD)
1374 			io_req_rw_cleanup(req, 0);
1375 	}
1376 	if (unlikely(!nr_events))
1377 		return 0;
1378 
1379 	pos = start ? start->next : ctx->iopoll_list.first;
1380 	wq_list_cut(&ctx->iopoll_list, prev, start);
1381 
1382 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1383 		return 0;
1384 	ctx->submit_state.compl_reqs.first = pos;
1385 	__io_submit_flush_completions(ctx);
1386 	return nr_events;
1387 }
1388 
1389 void io_rw_cache_free(const void *entry)
1390 {
1391 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1392 
1393 	io_vec_free(&rw->vec);
1394 	kfree(rw);
1395 }
1396