xref: /linux/io_uring/rw.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26 
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29 
30 struct io_rw {
31 	/* NOTE: kiocb has the file as the first member, so don't do it here */
32 	struct kiocb			kiocb;
33 	u64				addr;
34 	u32				len;
35 	rwf_t				flags;
36 };
37 
38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 	/* If FMODE_NOWAIT is set for a file, we're golden */
41 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 		return true;
43 	/* No FMODE_NOWAIT, if we can poll, check the status */
44 	if (io_file_can_poll(req)) {
45 		struct poll_table_struct pt = { ._key = mask };
46 
47 		return vfs_poll(req->file, &pt) & mask;
48 	}
49 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 	return false;
51 }
52 
53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 	struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 	struct compat_iovec iov;
57 
58 	if (copy_from_user(&iov, uiov, sizeof(iov)))
59 		return -EFAULT;
60 	rw->len = iov.iov_len;
61 	return 0;
62 }
63 
64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 	struct iovec __user *uiov;
67 	struct iovec iov;
68 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69 
70 	if (rw->len != 1)
71 		return -EINVAL;
72 
73 	if (io_is_compat(req->ctx))
74 		return io_iov_compat_buffer_select_prep(rw);
75 
76 	uiov = u64_to_user_ptr(rw->addr);
77 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 		return -EFAULT;
79 	rw->len = iov.iov_len;
80 	return 0;
81 }
82 
83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 			 struct io_async_rw *io,
85 			 const struct iovec __user *uvec,
86 			 size_t uvec_segs)
87 {
88 	int ret, nr_segs;
89 	struct iovec *iov;
90 
91 	if (io->vec.iovec) {
92 		nr_segs = io->vec.nr;
93 		iov = io->vec.iovec;
94 	} else {
95 		nr_segs = 1;
96 		iov = &io->fast_iov;
97 	}
98 
99 	ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 			     io_is_compat(req->ctx));
101 	if (unlikely(ret < 0))
102 		return ret;
103 	if (iov) {
104 		req->flags |= REQ_F_NEED_CLEANUP;
105 		io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 	}
107 	return 0;
108 }
109 
110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 				 struct io_async_rw *io, struct io_br_sel *sel,
112 				 unsigned int issue_flags)
113 {
114 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 	size_t sqe_len = rw->len;
117 
118 	sel->addr = u64_to_user_ptr(rw->addr);
119 	if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 		return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121 
122 	if (io_do_buffer_select(req)) {
123 		*sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 		if (!sel->addr)
125 			return -ENOBUFS;
126 		rw->addr = (unsigned long) sel->addr;
127 		rw->len = sqe_len;
128 	}
129 	return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131 
132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 				      struct io_async_rw *io,
134 				      struct io_br_sel *sel,
135 				      unsigned int issue_flags)
136 {
137 	int ret;
138 
139 	ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 	if (unlikely(ret < 0))
141 		return ret;
142 
143 	iov_iter_save_state(&io->iter, &io->iter_state);
144 	return 0;
145 }
146 
147 static bool io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 	struct io_async_rw *rw = req->async_data;
150 
151 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 		return false;
153 
154 	io_alloc_cache_vec_kasan(&rw->vec);
155 	if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 		io_vec_free(&rw->vec);
157 
158 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
159 		io_req_async_data_clear(req, 0);
160 		return true;
161 	}
162 	return false;
163 }
164 
165 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
166 {
167 	/*
168 	 * Disable quick recycling for anything that's gone through io-wq.
169 	 * In theory, this should be fine to cleanup. However, some read or
170 	 * write iter handling touches the iovec AFTER having called into the
171 	 * handler, eg to reexpand or revert. This means we can have:
172 	 *
173 	 * task			io-wq
174 	 *   issue
175 	 *     punt to io-wq
176 	 *			issue
177 	 *			  blkdev_write_iter()
178 	 *			    ->ki_complete()
179 	 *			      io_complete_rw()
180 	 *			        queue tw complete
181 	 *  run tw
182 	 *    req_rw_cleanup
183 	 *			iov_iter_count() <- look at iov_iter again
184 	 *
185 	 * which can lead to a UAF. This is only possible for io-wq offload
186 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
187 	 * just leave cleanup to the end.
188 	 *
189 	 * This is really a bug in the core code that does this, any issue
190 	 * path should assume that a successful (or -EIOCBQUEUED) return can
191 	 * mean that the underlying data can be gone at any time. But that
192 	 * should be fixed separately, and then this check could be killed.
193 	 */
194 	if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
195 		req->flags &= ~REQ_F_NEED_CLEANUP;
196 		if (!io_rw_recycle(req, issue_flags)) {
197 			struct io_async_rw *rw = req->async_data;
198 
199 			io_vec_free(&rw->vec);
200 		}
201 	}
202 }
203 
204 static int io_rw_alloc_async(struct io_kiocb *req)
205 {
206 	struct io_ring_ctx *ctx = req->ctx;
207 	struct io_async_rw *rw;
208 
209 	rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
210 	if (!rw)
211 		return -ENOMEM;
212 	if (rw->vec.iovec)
213 		req->flags |= REQ_F_NEED_CLEANUP;
214 	rw->bytes_done = 0;
215 	return 0;
216 }
217 
218 static inline void io_meta_save_state(struct io_async_rw *io)
219 {
220 	io->meta_state.seed = io->meta.seed;
221 	iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
222 }
223 
224 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
225 {
226 	if (kiocb->ki_flags & IOCB_HAS_METADATA) {
227 		io->meta.seed = io->meta_state.seed;
228 		iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
229 	}
230 }
231 
232 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
233 			 u64 attr_ptr, u64 attr_type_mask)
234 {
235 	struct io_uring_attr_pi pi_attr;
236 	struct io_async_rw *io;
237 	int ret;
238 
239 	if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
240 	    sizeof(pi_attr)))
241 		return -EFAULT;
242 
243 	if (pi_attr.rsvd)
244 		return -EINVAL;
245 
246 	io = req->async_data;
247 	io->meta.flags = pi_attr.flags;
248 	io->meta.app_tag = pi_attr.app_tag;
249 	io->meta.seed = pi_attr.seed;
250 	ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
251 			  pi_attr.len, &io->meta.iter);
252 	if (unlikely(ret < 0))
253 		return ret;
254 	req->flags |= REQ_F_HAS_METADATA;
255 	io_meta_save_state(io);
256 	return ret;
257 }
258 
259 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
260 			int ddir)
261 {
262 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
263 	struct io_async_rw *io;
264 	unsigned ioprio;
265 	u64 attr_type_mask;
266 	int ret;
267 
268 	if (io_rw_alloc_async(req))
269 		return -ENOMEM;
270 	io = req->async_data;
271 
272 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
273 	/* used for fixed read/write too - just read unconditionally */
274 	req->buf_index = READ_ONCE(sqe->buf_index);
275 	io->buf_group = req->buf_index;
276 
277 	ioprio = READ_ONCE(sqe->ioprio);
278 	if (ioprio) {
279 		ret = ioprio_check_cap(ioprio);
280 		if (ret)
281 			return ret;
282 
283 		rw->kiocb.ki_ioprio = ioprio;
284 	} else {
285 		rw->kiocb.ki_ioprio = get_current_ioprio();
286 	}
287 	rw->kiocb.ki_flags = 0;
288 	rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
289 
290 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
291 		rw->kiocb.ki_complete = io_complete_rw_iopoll;
292 	else
293 		rw->kiocb.ki_complete = io_complete_rw;
294 
295 	rw->addr = READ_ONCE(sqe->addr);
296 	rw->len = READ_ONCE(sqe->len);
297 	rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
298 
299 	attr_type_mask = READ_ONCE(sqe->attr_type_mask);
300 	if (attr_type_mask) {
301 		u64 attr_ptr;
302 
303 		/* only PI attribute is supported currently */
304 		if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
305 			return -EINVAL;
306 
307 		attr_ptr = READ_ONCE(sqe->attr_ptr);
308 		return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
309 	}
310 	return 0;
311 }
312 
313 static int io_rw_do_import(struct io_kiocb *req, int ddir)
314 {
315 	struct io_br_sel sel = { };
316 
317 	if (io_do_buffer_select(req))
318 		return 0;
319 
320 	return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
321 }
322 
323 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
324 		      int ddir)
325 {
326 	int ret;
327 
328 	ret = __io_prep_rw(req, sqe, ddir);
329 	if (unlikely(ret))
330 		return ret;
331 
332 	return io_rw_do_import(req, ddir);
333 }
334 
335 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
336 {
337 	return io_prep_rw(req, sqe, ITER_DEST);
338 }
339 
340 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
341 {
342 	return io_prep_rw(req, sqe, ITER_SOURCE);
343 }
344 
345 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
346 		       int ddir)
347 {
348 	int ret;
349 
350 	ret = io_prep_rw(req, sqe, ddir);
351 	if (unlikely(ret))
352 		return ret;
353 	if (!(req->flags & REQ_F_BUFFER_SELECT))
354 		return 0;
355 
356 	/*
357 	 * Have to do this validation here, as this is in io_read() rw->len
358 	 * might have changed due to buffer selection
359 	 */
360 	return io_iov_buffer_select_prep(req);
361 }
362 
363 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
364 {
365 	return io_prep_rwv(req, sqe, ITER_DEST);
366 }
367 
368 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
369 {
370 	return io_prep_rwv(req, sqe, ITER_SOURCE);
371 }
372 
373 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
374 			    int ddir)
375 {
376 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
377 	struct io_async_rw *io = req->async_data;
378 	int ret;
379 
380 	if (io->bytes_done)
381 		return 0;
382 
383 	ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
384 				issue_flags);
385 	iov_iter_save_state(&io->iter, &io->iter_state);
386 	return ret;
387 }
388 
389 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
390 {
391 	return __io_prep_rw(req, sqe, ITER_DEST);
392 }
393 
394 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
395 {
396 	return __io_prep_rw(req, sqe, ITER_SOURCE);
397 }
398 
399 static int io_rw_import_reg_vec(struct io_kiocb *req,
400 				struct io_async_rw *io,
401 				int ddir, unsigned int issue_flags)
402 {
403 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
404 	unsigned uvec_segs = rw->len;
405 	int ret;
406 
407 	ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
408 				uvec_segs, issue_flags);
409 	if (unlikely(ret))
410 		return ret;
411 	iov_iter_save_state(&io->iter, &io->iter_state);
412 	req->flags &= ~REQ_F_IMPORT_BUFFER;
413 	return 0;
414 }
415 
416 static int io_rw_prep_reg_vec(struct io_kiocb *req)
417 {
418 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
419 	struct io_async_rw *io = req->async_data;
420 	const struct iovec __user *uvec;
421 
422 	uvec = u64_to_user_ptr(rw->addr);
423 	return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
424 }
425 
426 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
427 {
428 	int ret;
429 
430 	ret = __io_prep_rw(req, sqe, ITER_DEST);
431 	if (unlikely(ret))
432 		return ret;
433 	return io_rw_prep_reg_vec(req);
434 }
435 
436 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
437 {
438 	int ret;
439 
440 	ret = __io_prep_rw(req, sqe, ITER_SOURCE);
441 	if (unlikely(ret))
442 		return ret;
443 	return io_rw_prep_reg_vec(req);
444 }
445 
446 /*
447  * Multishot read is prepared just like a normal read/write request, only
448  * difference is that we set the MULTISHOT flag.
449  */
450 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
451 {
452 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
453 	int ret;
454 
455 	/* must be used with provided buffers */
456 	if (!(req->flags & REQ_F_BUFFER_SELECT))
457 		return -EINVAL;
458 
459 	ret = __io_prep_rw(req, sqe, ITER_DEST);
460 	if (unlikely(ret))
461 		return ret;
462 
463 	if (rw->addr || rw->len)
464 		return -EINVAL;
465 
466 	req->flags |= REQ_F_APOLL_MULTISHOT;
467 	return 0;
468 }
469 
470 void io_readv_writev_cleanup(struct io_kiocb *req)
471 {
472 	struct io_async_rw *rw = req->async_data;
473 
474 	lockdep_assert_held(&req->ctx->uring_lock);
475 	io_vec_free(&rw->vec);
476 	io_rw_recycle(req, 0);
477 }
478 
479 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
480 {
481 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
482 
483 	if (rw->kiocb.ki_pos != -1)
484 		return &rw->kiocb.ki_pos;
485 
486 	if (!(req->file->f_mode & FMODE_STREAM)) {
487 		req->flags |= REQ_F_CUR_POS;
488 		rw->kiocb.ki_pos = req->file->f_pos;
489 		return &rw->kiocb.ki_pos;
490 	}
491 
492 	rw->kiocb.ki_pos = 0;
493 	return NULL;
494 }
495 
496 static bool io_rw_should_reissue(struct io_kiocb *req)
497 {
498 #ifdef CONFIG_BLOCK
499 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
500 	umode_t mode = file_inode(req->file)->i_mode;
501 	struct io_async_rw *io = req->async_data;
502 	struct io_ring_ctx *ctx = req->ctx;
503 
504 	if (!S_ISBLK(mode) && !S_ISREG(mode))
505 		return false;
506 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
507 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
508 		return false;
509 	/*
510 	 * If ref is dying, we might be running poll reap from the exit work.
511 	 * Don't attempt to reissue from that path, just let it fail with
512 	 * -EAGAIN.
513 	 */
514 	if (percpu_ref_is_dying(&ctx->refs))
515 		return false;
516 
517 	io_meta_restore(io, &rw->kiocb);
518 	iov_iter_restore(&io->iter, &io->iter_state);
519 	return true;
520 #else
521 	return false;
522 #endif
523 }
524 
525 static void io_req_end_write(struct io_kiocb *req)
526 {
527 	if (req->flags & REQ_F_ISREG) {
528 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
529 
530 		kiocb_end_write(&rw->kiocb);
531 	}
532 }
533 
534 /*
535  * Trigger the notifications after having done some IO, and finish the write
536  * accounting, if any.
537  */
538 static void io_req_io_end(struct io_kiocb *req)
539 {
540 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
541 
542 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
543 		io_req_end_write(req);
544 		fsnotify_modify(req->file);
545 	} else {
546 		fsnotify_access(req->file);
547 	}
548 }
549 
550 static void __io_complete_rw_common(struct io_kiocb *req, long res)
551 {
552 	if (res == req->cqe.res)
553 		return;
554 	if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
555 		req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
556 	} else {
557 		req_set_fail(req);
558 		req->cqe.res = res;
559 	}
560 }
561 
562 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
563 {
564 	struct io_async_rw *io = req->async_data;
565 
566 	/* add previously done IO, if any */
567 	if (req_has_async_data(req) && io->bytes_done > 0) {
568 		if (res < 0)
569 			res = io->bytes_done;
570 		else
571 			res += io->bytes_done;
572 	}
573 	return res;
574 }
575 
576 void io_req_rw_complete(struct io_tw_req tw_req, io_tw_token_t tw)
577 {
578 	struct io_kiocb *req = tw_req.req;
579 
580 	io_req_io_end(req);
581 
582 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
583 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
584 
585 	io_req_rw_cleanup(req, 0);
586 	io_req_task_complete(tw_req, tw);
587 }
588 
589 static void io_complete_rw(struct kiocb *kiocb, long res)
590 {
591 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
592 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
593 
594 	__io_complete_rw_common(req, res);
595 	io_req_set_res(req, io_fixup_rw_res(req, res), 0);
596 	req->io_task_work.func = io_req_rw_complete;
597 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
598 }
599 
600 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
601 {
602 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
603 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
604 
605 	if (kiocb->ki_flags & IOCB_WRITE)
606 		io_req_end_write(req);
607 	if (unlikely(res != req->cqe.res)) {
608 		if (res == -EAGAIN && io_rw_should_reissue(req))
609 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
610 		else
611 			req->cqe.res = res;
612 	}
613 
614 	/* order with io_iopoll_complete() checking ->iopoll_completed */
615 	smp_store_release(&req->iopoll_completed, 1);
616 }
617 
618 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
619 {
620 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
621 
622 	/* IO was queued async, completion will happen later */
623 	if (ret == -EIOCBQUEUED)
624 		return;
625 
626 	/* transform internal restart error codes */
627 	if (unlikely(ret < 0)) {
628 		switch (ret) {
629 		case -ERESTARTSYS:
630 		case -ERESTARTNOINTR:
631 		case -ERESTARTNOHAND:
632 		case -ERESTART_RESTARTBLOCK:
633 			/*
634 			 * We can't just restart the syscall, since previously
635 			 * submitted sqes may already be in progress. Just fail
636 			 * this IO with EINTR.
637 			 */
638 			ret = -EINTR;
639 			break;
640 		}
641 	}
642 
643 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
644 		io_complete_rw_iopoll(&rw->kiocb, ret);
645 	else
646 		io_complete_rw(&rw->kiocb, ret);
647 }
648 
649 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
650 		      struct io_br_sel *sel, unsigned int issue_flags)
651 {
652 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
653 	unsigned final_ret = io_fixup_rw_res(req, ret);
654 
655 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
656 		req->file->f_pos = rw->kiocb.ki_pos;
657 	if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
658 		u32 cflags = 0;
659 
660 		__io_complete_rw_common(req, ret);
661 		/*
662 		 * Safe to call io_end from here as we're inline
663 		 * from the submission path.
664 		 */
665 		io_req_io_end(req);
666 		if (sel)
667 			cflags = io_put_kbuf(req, ret, sel->buf_list);
668 		io_req_set_res(req, final_ret, cflags);
669 		io_req_rw_cleanup(req, issue_flags);
670 		return IOU_COMPLETE;
671 	} else {
672 		io_rw_done(req, ret);
673 	}
674 
675 	return IOU_ISSUE_SKIP_COMPLETE;
676 }
677 
678 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
679 {
680 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
681 }
682 
683 /*
684  * For files that don't have ->read_iter() and ->write_iter(), handle them
685  * by looping over ->read() or ->write() manually.
686  */
687 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
688 {
689 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
690 	struct kiocb *kiocb = &rw->kiocb;
691 	struct file *file = kiocb->ki_filp;
692 	ssize_t ret = 0;
693 	loff_t *ppos;
694 
695 	/*
696 	 * Don't support polled IO through this interface, and we can't
697 	 * support non-blocking either. For the latter, this just causes
698 	 * the kiocb to be handled from an async context.
699 	 */
700 	if (kiocb->ki_flags & IOCB_HIPRI)
701 		return -EOPNOTSUPP;
702 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
703 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
704 		return -EAGAIN;
705 	if ((req->flags & REQ_F_BUF_NODE) &&
706 	     (req->buf_node->buf->flags & IO_REGBUF_F_KBUF))
707 		return -EFAULT;
708 
709 	ppos = io_kiocb_ppos(kiocb);
710 
711 	while (iov_iter_count(iter)) {
712 		void __user *addr;
713 		size_t len;
714 		ssize_t nr;
715 
716 		if (iter_is_ubuf(iter)) {
717 			addr = iter->ubuf + iter->iov_offset;
718 			len = iov_iter_count(iter);
719 		} else if (!iov_iter_is_bvec(iter)) {
720 			addr = iter_iov_addr(iter);
721 			len = iter_iov_len(iter);
722 		} else {
723 			addr = u64_to_user_ptr(rw->addr);
724 			len = rw->len;
725 		}
726 
727 		if (ddir == READ)
728 			nr = file->f_op->read(file, addr, len, ppos);
729 		else
730 			nr = file->f_op->write(file, addr, len, ppos);
731 
732 		if (nr < 0) {
733 			if (!ret)
734 				ret = nr;
735 			break;
736 		}
737 		ret += nr;
738 		if (!iov_iter_is_bvec(iter)) {
739 			iov_iter_advance(iter, nr);
740 		} else {
741 			rw->addr += nr;
742 			rw->len -= nr;
743 			if (!rw->len)
744 				break;
745 		}
746 		if (nr != len)
747 			break;
748 	}
749 
750 	return ret;
751 }
752 
753 /*
754  * This is our waitqueue callback handler, registered through __folio_lock_async()
755  * when we initially tried to do the IO with the iocb armed our waitqueue.
756  * This gets called when the page is unlocked, and we generally expect that to
757  * happen when the page IO is completed and the page is now uptodate. This will
758  * queue a task_work based retry of the operation, attempting to copy the data
759  * again. If the latter fails because the page was NOT uptodate, then we will
760  * do a thread based blocking retry of the operation. That's the unexpected
761  * slow path.
762  */
763 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
764 			     int sync, void *arg)
765 {
766 	struct wait_page_queue *wpq;
767 	struct io_kiocb *req = wait->private;
768 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
769 	struct wait_page_key *key = arg;
770 
771 	wpq = container_of(wait, struct wait_page_queue, wait);
772 
773 	if (!wake_page_match(wpq, key))
774 		return 0;
775 
776 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
777 	list_del_init(&wait->entry);
778 	io_req_task_queue(req);
779 	return 1;
780 }
781 
782 /*
783  * This controls whether a given IO request should be armed for async page
784  * based retry. If we return false here, the request is handed to the async
785  * worker threads for retry. If we're doing buffered reads on a regular file,
786  * we prepare a private wait_page_queue entry and retry the operation. This
787  * will either succeed because the page is now uptodate and unlocked, or it
788  * will register a callback when the page is unlocked at IO completion. Through
789  * that callback, io_uring uses task_work to setup a retry of the operation.
790  * That retry will attempt the buffered read again. The retry will generally
791  * succeed, or in rare cases where it fails, we then fall back to using the
792  * async worker threads for a blocking retry.
793  */
794 static bool io_rw_should_retry(struct io_kiocb *req)
795 {
796 	struct io_async_rw *io = req->async_data;
797 	struct wait_page_queue *wait = &io->wpq;
798 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
799 	struct kiocb *kiocb = &rw->kiocb;
800 
801 	/*
802 	 * Never retry for NOWAIT or a request with metadata, we just complete
803 	 * with -EAGAIN.
804 	 */
805 	if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
806 		return false;
807 
808 	/* Only for buffered IO */
809 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
810 		return false;
811 
812 	/*
813 	 * just use poll if we can, and don't attempt if the fs doesn't
814 	 * support callback based unlocks
815 	 */
816 	if (io_file_can_poll(req) ||
817 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
818 		return false;
819 
820 	wait->wait.func = io_async_buf_func;
821 	wait->wait.private = req;
822 	wait->wait.flags = 0;
823 	INIT_LIST_HEAD(&wait->wait.entry);
824 	kiocb->ki_flags |= IOCB_WAITQ;
825 	kiocb->ki_flags &= ~IOCB_NOWAIT;
826 	kiocb->ki_waitq = wait;
827 	return true;
828 }
829 
830 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
831 {
832 	struct file *file = rw->kiocb.ki_filp;
833 
834 	if (likely(file->f_op->read_iter))
835 		return file->f_op->read_iter(&rw->kiocb, iter);
836 	else if (file->f_op->read)
837 		return loop_rw_iter(READ, rw, iter);
838 	else
839 		return -EINVAL;
840 }
841 
842 static bool need_complete_io(struct io_kiocb *req)
843 {
844 	return req->flags & REQ_F_ISREG ||
845 		S_ISBLK(file_inode(req->file)->i_mode);
846 }
847 
848 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
849 {
850 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
851 	struct kiocb *kiocb = &rw->kiocb;
852 	struct io_ring_ctx *ctx = req->ctx;
853 	struct file *file = req->file;
854 	int ret;
855 
856 	if (unlikely(!(file->f_mode & mode)))
857 		return -EBADF;
858 
859 	if (!(req->flags & REQ_F_FIXED_FILE))
860 		req->flags |= io_file_get_flags(file);
861 
862 	kiocb->ki_flags = file->f_iocb_flags;
863 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
864 	if (unlikely(ret))
865 		return ret;
866 
867 	/*
868 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
869 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
870 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
871 	 */
872 	if (kiocb->ki_flags & IOCB_NOWAIT ||
873 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
874 		req->flags |= REQ_F_NOWAIT;
875 
876 	if (ctx->flags & IORING_SETUP_IOPOLL) {
877 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
878 			return -EOPNOTSUPP;
879 		kiocb->private = NULL;
880 		kiocb->ki_flags |= IOCB_HIPRI;
881 		req->iopoll_completed = 0;
882 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
883 			/* make sure every req only blocks once*/
884 			req->flags &= ~REQ_F_IOPOLL_STATE;
885 			req->iopoll_start = ktime_get_ns();
886 		}
887 	} else {
888 		if (kiocb->ki_flags & IOCB_HIPRI)
889 			return -EINVAL;
890 	}
891 
892 	if (req->flags & REQ_F_HAS_METADATA) {
893 		struct io_async_rw *io = req->async_data;
894 
895 		if (!(file->f_mode & FMODE_HAS_METADATA))
896 			return -EINVAL;
897 
898 		/*
899 		 * We have a union of meta fields with wpq used for buffered-io
900 		 * in io_async_rw, so fail it here.
901 		 */
902 		if (!(req->file->f_flags & O_DIRECT))
903 			return -EOPNOTSUPP;
904 		kiocb->ki_flags |= IOCB_HAS_METADATA;
905 		kiocb->private = &io->meta;
906 	}
907 
908 	return 0;
909 }
910 
911 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
912 		     unsigned int issue_flags)
913 {
914 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
915 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
916 	struct io_async_rw *io = req->async_data;
917 	struct kiocb *kiocb = &rw->kiocb;
918 	ssize_t ret;
919 	loff_t *ppos;
920 
921 	if (req->flags & REQ_F_IMPORT_BUFFER) {
922 		ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
923 		if (unlikely(ret))
924 			return ret;
925 	} else if (io_do_buffer_select(req)) {
926 		ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
927 		if (unlikely(ret < 0))
928 			return ret;
929 	}
930 	ret = io_rw_init_file(req, FMODE_READ, READ);
931 	if (unlikely(ret))
932 		return ret;
933 	req->cqe.res = iov_iter_count(&io->iter);
934 
935 	if (force_nonblock) {
936 		/* If the file doesn't support async, just async punt */
937 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
938 			return -EAGAIN;
939 		kiocb->ki_flags |= IOCB_NOWAIT;
940 	} else {
941 		/* Ensure we clear previously set non-block flag */
942 		kiocb->ki_flags &= ~IOCB_NOWAIT;
943 	}
944 
945 	ppos = io_kiocb_update_pos(req);
946 
947 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
948 	if (unlikely(ret))
949 		return ret;
950 
951 	ret = io_iter_do_read(rw, &io->iter);
952 
953 	/*
954 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
955 	 * issue, even though they should be returning -EAGAIN. To be safe,
956 	 * retry from blocking context for either.
957 	 */
958 	if (ret == -EOPNOTSUPP && force_nonblock)
959 		ret = -EAGAIN;
960 
961 	if (ret == -EAGAIN) {
962 		/* If we can poll, just do that. */
963 		if (io_file_can_poll(req))
964 			return -EAGAIN;
965 		/* IOPOLL retry should happen for io-wq threads */
966 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
967 			goto done;
968 		/* no retry on NONBLOCK nor RWF_NOWAIT */
969 		if (req->flags & REQ_F_NOWAIT)
970 			goto done;
971 		ret = 0;
972 	} else if (ret == -EIOCBQUEUED) {
973 		return IOU_ISSUE_SKIP_COMPLETE;
974 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
975 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
976 		   (issue_flags & IO_URING_F_MULTISHOT)) {
977 		/* read all, failed, already did sync or don't want to retry */
978 		goto done;
979 	}
980 
981 	/*
982 	 * Don't depend on the iter state matching what was consumed, or being
983 	 * untouched in case of error. Restore it and we'll advance it
984 	 * manually if we need to.
985 	 */
986 	iov_iter_restore(&io->iter, &io->iter_state);
987 	io_meta_restore(io, kiocb);
988 
989 	do {
990 		/*
991 		 * We end up here because of a partial read, either from
992 		 * above or inside this loop. Advance the iter by the bytes
993 		 * that were consumed.
994 		 */
995 		iov_iter_advance(&io->iter, ret);
996 		if (!iov_iter_count(&io->iter))
997 			break;
998 		io->bytes_done += ret;
999 		iov_iter_save_state(&io->iter, &io->iter_state);
1000 
1001 		/* if we can retry, do so with the callbacks armed */
1002 		if (!io_rw_should_retry(req)) {
1003 			kiocb->ki_flags &= ~IOCB_WAITQ;
1004 			return -EAGAIN;
1005 		}
1006 
1007 		req->cqe.res = iov_iter_count(&io->iter);
1008 		/*
1009 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1010 		 * we get -EIOCBQUEUED, then we'll get a notification when the
1011 		 * desired page gets unlocked. We can also get a partial read
1012 		 * here, and if we do, then just retry at the new offset.
1013 		 */
1014 		ret = io_iter_do_read(rw, &io->iter);
1015 		if (ret == -EIOCBQUEUED)
1016 			return IOU_ISSUE_SKIP_COMPLETE;
1017 		/* we got some bytes, but not all. retry. */
1018 		kiocb->ki_flags &= ~IOCB_WAITQ;
1019 		iov_iter_restore(&io->iter, &io->iter_state);
1020 	} while (ret > 0);
1021 done:
1022 	/* it's faster to check here than delegate to kfree */
1023 	return ret;
1024 }
1025 
1026 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1027 {
1028 	struct io_br_sel sel = { };
1029 	int ret;
1030 
1031 	ret = __io_read(req, &sel, issue_flags);
1032 	if (ret >= 0)
1033 		return kiocb_done(req, ret, &sel, issue_flags);
1034 
1035 	if (req->flags & REQ_F_BUFFERS_COMMIT)
1036 		io_kbuf_recycle(req, sel.buf_list, issue_flags);
1037 	return ret;
1038 }
1039 
1040 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1041 {
1042 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1043 	struct io_br_sel sel = { };
1044 	unsigned int cflags = 0;
1045 	int ret;
1046 
1047 	/*
1048 	 * Multishot MUST be used on a pollable file
1049 	 */
1050 	if (!io_file_can_poll(req))
1051 		return -EBADFD;
1052 
1053 	/* make it sync, multishot doesn't support async execution */
1054 	rw->kiocb.ki_complete = NULL;
1055 	ret = __io_read(req, &sel, issue_flags);
1056 
1057 	/*
1058 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
1059 	 * handling arm it.
1060 	 */
1061 	if (ret == -EAGAIN) {
1062 		/*
1063 		 * Reset rw->len to 0 again to avoid clamping future mshot
1064 		 * reads, in case the buffer size varies.
1065 		 */
1066 		if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1067 			rw->len = 0;
1068 		return IOU_RETRY;
1069 	} else if (ret <= 0) {
1070 		io_kbuf_recycle(req, sel.buf_list, issue_flags);
1071 		if (ret < 0)
1072 			req_set_fail(req);
1073 	} else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1074 		cflags = io_put_kbuf(req, ret, sel.buf_list);
1075 	} else {
1076 		/*
1077 		 * Any successful return value will keep the multishot read
1078 		 * armed, if it's still set. Put our buffer and post a CQE. If
1079 		 * we fail to post a CQE, or multishot is no longer set, then
1080 		 * jump to the termination path. This request is then done.
1081 		 */
1082 		cflags = io_put_kbuf(req, ret, sel.buf_list);
1083 		rw->len = 0; /* similarly to above, reset len to 0 */
1084 
1085 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1086 			if (issue_flags & IO_URING_F_MULTISHOT)
1087 				/*
1088 				 * Force retry, as we might have more data to
1089 				 * be read and otherwise it won't get retried
1090 				 * until (if ever) another poll is triggered.
1091 				 */
1092 				io_poll_multishot_retry(req);
1093 
1094 			return IOU_RETRY;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Either an error, or we've hit overflow posting the CQE. For any
1100 	 * multishot request, hitting overflow will terminate it.
1101 	 */
1102 	io_req_set_res(req, ret, cflags);
1103 	io_req_rw_cleanup(req, issue_flags);
1104 	return IOU_COMPLETE;
1105 }
1106 
1107 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1108 {
1109 	struct inode *inode;
1110 	bool ret;
1111 
1112 	if (!(req->flags & REQ_F_ISREG))
1113 		return true;
1114 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1115 		kiocb_start_write(kiocb);
1116 		return true;
1117 	}
1118 
1119 	inode = file_inode(kiocb->ki_filp);
1120 	ret = sb_start_write_trylock(inode->i_sb);
1121 	if (ret)
1122 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1123 	return ret;
1124 }
1125 
1126 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1127 {
1128 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1129 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1130 	struct io_async_rw *io = req->async_data;
1131 	struct kiocb *kiocb = &rw->kiocb;
1132 	ssize_t ret, ret2;
1133 	loff_t *ppos;
1134 
1135 	if (req->flags & REQ_F_IMPORT_BUFFER) {
1136 		ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1137 		if (unlikely(ret))
1138 			return ret;
1139 	}
1140 
1141 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1142 	if (unlikely(ret))
1143 		return ret;
1144 	req->cqe.res = iov_iter_count(&io->iter);
1145 
1146 	if (force_nonblock) {
1147 		/* If the file doesn't support async, just async punt */
1148 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1149 			goto ret_eagain;
1150 
1151 		/* Check if we can support NOWAIT. */
1152 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1153 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1154 		    (req->flags & REQ_F_ISREG))
1155 			goto ret_eagain;
1156 
1157 		kiocb->ki_flags |= IOCB_NOWAIT;
1158 	} else {
1159 		/* Ensure we clear previously set non-block flag */
1160 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1161 	}
1162 
1163 	ppos = io_kiocb_update_pos(req);
1164 
1165 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1166 	if (unlikely(ret))
1167 		return ret;
1168 
1169 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1170 		return -EAGAIN;
1171 	kiocb->ki_flags |= IOCB_WRITE;
1172 
1173 	if (likely(req->file->f_op->write_iter))
1174 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1175 	else if (req->file->f_op->write)
1176 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1177 	else
1178 		ret2 = -EINVAL;
1179 
1180 	/*
1181 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1182 	 * retry them without IOCB_NOWAIT.
1183 	 */
1184 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1185 		ret2 = -EAGAIN;
1186 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1187 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1188 		goto done;
1189 	if (!force_nonblock || ret2 != -EAGAIN) {
1190 		/* IOPOLL retry should happen for io-wq threads */
1191 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1192 			goto ret_eagain;
1193 
1194 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1195 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1196 						req->cqe.res, ret2);
1197 
1198 			/* This is a partial write. The file pos has already been
1199 			 * updated, setup the async struct to complete the request
1200 			 * in the worker. Also update bytes_done to account for
1201 			 * the bytes already written.
1202 			 */
1203 			iov_iter_save_state(&io->iter, &io->iter_state);
1204 			io->bytes_done += ret2;
1205 
1206 			if (kiocb->ki_flags & IOCB_WRITE)
1207 				io_req_end_write(req);
1208 			return -EAGAIN;
1209 		}
1210 done:
1211 		return kiocb_done(req, ret2, NULL, issue_flags);
1212 	} else {
1213 ret_eagain:
1214 		iov_iter_restore(&io->iter, &io->iter_state);
1215 		io_meta_restore(io, kiocb);
1216 		if (kiocb->ki_flags & IOCB_WRITE)
1217 			io_req_end_write(req);
1218 		return -EAGAIN;
1219 	}
1220 }
1221 
1222 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1223 {
1224 	int ret;
1225 
1226 	ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1227 	if (unlikely(ret))
1228 		return ret;
1229 
1230 	return io_read(req, issue_flags);
1231 }
1232 
1233 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1234 {
1235 	int ret;
1236 
1237 	ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1238 	if (unlikely(ret))
1239 		return ret;
1240 
1241 	return io_write(req, issue_flags);
1242 }
1243 
1244 void io_rw_fail(struct io_kiocb *req)
1245 {
1246 	int res;
1247 
1248 	res = io_fixup_rw_res(req, req->cqe.res);
1249 	io_req_set_res(req, res, req->cqe.flags);
1250 }
1251 
1252 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1253 				unsigned int poll_flags)
1254 {
1255 	struct file *file = req->file;
1256 
1257 	if (req->opcode == IORING_OP_URING_CMD) {
1258 		struct io_uring_cmd *ioucmd;
1259 
1260 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1261 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1262 	} else {
1263 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1264 
1265 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1266 	}
1267 }
1268 
1269 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1270 {
1271 	struct hrtimer_sleeper timer;
1272 	enum hrtimer_mode mode;
1273 	ktime_t kt;
1274 	u64 sleep_time;
1275 
1276 	if (req->flags & REQ_F_IOPOLL_STATE)
1277 		return 0;
1278 
1279 	if (ctx->hybrid_poll_time == LLONG_MAX)
1280 		return 0;
1281 
1282 	/* Using half the running time to do schedule */
1283 	sleep_time = ctx->hybrid_poll_time / 2;
1284 
1285 	kt = ktime_set(0, sleep_time);
1286 	req->flags |= REQ_F_IOPOLL_STATE;
1287 
1288 	mode = HRTIMER_MODE_REL;
1289 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1290 	hrtimer_set_expires(&timer.timer, kt);
1291 	set_current_state(TASK_INTERRUPTIBLE);
1292 	hrtimer_sleeper_start_expires(&timer, mode);
1293 
1294 	if (timer.task)
1295 		io_schedule();
1296 
1297 	hrtimer_cancel(&timer.timer);
1298 	__set_current_state(TASK_RUNNING);
1299 	destroy_hrtimer_on_stack(&timer.timer);
1300 	return sleep_time;
1301 }
1302 
1303 static int io_uring_hybrid_poll(struct io_kiocb *req,
1304 				struct io_comp_batch *iob, unsigned int poll_flags)
1305 {
1306 	struct io_ring_ctx *ctx = req->ctx;
1307 	u64 runtime, sleep_time, iopoll_start;
1308 	int ret;
1309 
1310 	iopoll_start = READ_ONCE(req->iopoll_start);
1311 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1312 	ret = io_uring_classic_poll(req, iob, poll_flags);
1313 	runtime = ktime_get_ns() - iopoll_start - sleep_time;
1314 
1315 	/*
1316 	 * Use minimum sleep time if we're polling devices with different
1317 	 * latencies. We could get more completions from the faster ones.
1318 	 */
1319 	if (ctx->hybrid_poll_time > runtime)
1320 		ctx->hybrid_poll_time = runtime;
1321 
1322 	return ret;
1323 }
1324 
1325 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1326 {
1327 	unsigned int poll_flags = 0;
1328 	DEFINE_IO_COMP_BATCH(iob);
1329 	struct io_kiocb *req, *tmp;
1330 	int nr_events = 0;
1331 
1332 	/*
1333 	 * Store the polling io_ring_ctx so drivers can detect if they're
1334 	 * completing a request in the same ring context that's polling.
1335 	 */
1336 	iob.poll_ctx = ctx;
1337 
1338 	/*
1339 	 * Only spin for completions if we don't have multiple devices hanging
1340 	 * off our complete list.
1341 	 */
1342 	if (ctx->poll_multi_queue || force_nonspin)
1343 		poll_flags |= BLK_POLL_ONESHOT;
1344 
1345 	list_for_each_entry(req, &ctx->iopoll_list, iopoll_node) {
1346 		int ret;
1347 
1348 		/*
1349 		 * Move completed and retryable entries to our local lists.
1350 		 * If we find a request that requires polling, break out
1351 		 * and complete those lists first, if we have entries there.
1352 		 */
1353 		if (READ_ONCE(req->iopoll_completed))
1354 			break;
1355 
1356 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1357 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1358 		else
1359 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1360 
1361 		if (unlikely(ret < 0))
1362 			return ret;
1363 		else if (ret)
1364 			poll_flags |= BLK_POLL_ONESHOT;
1365 
1366 		/* iopoll may have completed current req */
1367 		if (!rq_list_empty(&iob.req_list) ||
1368 		    READ_ONCE(req->iopoll_completed))
1369 			break;
1370 	}
1371 
1372 	if (!rq_list_empty(&iob.req_list))
1373 		iob.complete(&iob);
1374 
1375 	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, iopoll_node) {
1376 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1377 		if (!smp_load_acquire(&req->iopoll_completed))
1378 			continue;
1379 		list_del(&req->iopoll_node);
1380 		wq_list_add_tail(&req->comp_list, &ctx->submit_state.compl_reqs);
1381 		nr_events++;
1382 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1383 		if (req->opcode != IORING_OP_URING_CMD)
1384 			io_req_rw_cleanup(req, 0);
1385 	}
1386 	if (nr_events)
1387 		__io_submit_flush_completions(ctx);
1388 	return nr_events;
1389 }
1390 
1391 void io_rw_cache_free(const void *entry)
1392 {
1393 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1394 
1395 	io_vec_free(&rw->vec);
1396 	kfree(rw);
1397 }
1398