xref: /linux/io_uring/kbuf.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/mm.h>
7 #include <linux/slab.h>
8 #include <linux/namei.h>
9 #include <linux/poll.h>
10 #include <linux/io_uring.h>
11 
12 #include <uapi/linux/io_uring.h>
13 
14 #include "io_uring.h"
15 #include "opdef.h"
16 #include "kbuf.h"
17 
18 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
19 
20 #define BGID_ARRAY	64
21 
22 /* BIDs are addressed by a 16-bit field in a CQE */
23 #define MAX_BIDS_PER_BGID (1 << 16)
24 
25 struct kmem_cache *io_buf_cachep;
26 
27 struct io_provide_buf {
28 	struct file			*file;
29 	__u64				addr;
30 	__u32				len;
31 	__u32				bgid;
32 	__u32				nbufs;
33 	__u16				bid;
34 };
35 
36 struct io_buf_free {
37 	struct hlist_node		list;
38 	void				*mem;
39 	size_t				size;
40 	int				inuse;
41 };
42 
43 static struct io_buffer_list *__io_buffer_get_list(struct io_ring_ctx *ctx,
44 						   struct io_buffer_list *bl,
45 						   unsigned int bgid)
46 {
47 	if (bl && bgid < BGID_ARRAY)
48 		return &bl[bgid];
49 
50 	return xa_load(&ctx->io_bl_xa, bgid);
51 }
52 
53 static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
54 							unsigned int bgid)
55 {
56 	lockdep_assert_held(&ctx->uring_lock);
57 
58 	return __io_buffer_get_list(ctx, ctx->io_bl, bgid);
59 }
60 
61 static int io_buffer_add_list(struct io_ring_ctx *ctx,
62 			      struct io_buffer_list *bl, unsigned int bgid)
63 {
64 	/*
65 	 * Store buffer group ID and finally mark the list as visible.
66 	 * The normal lookup doesn't care about the visibility as we're
67 	 * always under the ->uring_lock, but the RCU lookup from mmap does.
68 	 */
69 	bl->bgid = bgid;
70 	smp_store_release(&bl->is_ready, 1);
71 
72 	if (bgid < BGID_ARRAY)
73 		return 0;
74 
75 	return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
76 }
77 
78 bool io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags)
79 {
80 	struct io_ring_ctx *ctx = req->ctx;
81 	struct io_buffer_list *bl;
82 	struct io_buffer *buf;
83 
84 	/*
85 	 * For legacy provided buffer mode, don't recycle if we already did
86 	 * IO to this buffer. For ring-mapped provided buffer mode, we should
87 	 * increment ring->head to explicitly monopolize the buffer to avoid
88 	 * multiple use.
89 	 */
90 	if (req->flags & REQ_F_PARTIAL_IO)
91 		return false;
92 
93 	io_ring_submit_lock(ctx, issue_flags);
94 
95 	buf = req->kbuf;
96 	bl = io_buffer_get_list(ctx, buf->bgid);
97 	list_add(&buf->list, &bl->buf_list);
98 	req->flags &= ~REQ_F_BUFFER_SELECTED;
99 	req->buf_index = buf->bgid;
100 
101 	io_ring_submit_unlock(ctx, issue_flags);
102 	return true;
103 }
104 
105 unsigned int __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags)
106 {
107 	unsigned int cflags;
108 
109 	/*
110 	 * We can add this buffer back to two lists:
111 	 *
112 	 * 1) The io_buffers_cache list. This one is protected by the
113 	 *    ctx->uring_lock. If we already hold this lock, add back to this
114 	 *    list as we can grab it from issue as well.
115 	 * 2) The io_buffers_comp list. This one is protected by the
116 	 *    ctx->completion_lock.
117 	 *
118 	 * We migrate buffers from the comp_list to the issue cache list
119 	 * when we need one.
120 	 */
121 	if (req->flags & REQ_F_BUFFER_RING) {
122 		/* no buffers to recycle for this case */
123 		cflags = __io_put_kbuf_list(req, NULL);
124 	} else if (issue_flags & IO_URING_F_UNLOCKED) {
125 		struct io_ring_ctx *ctx = req->ctx;
126 
127 		spin_lock(&ctx->completion_lock);
128 		cflags = __io_put_kbuf_list(req, &ctx->io_buffers_comp);
129 		spin_unlock(&ctx->completion_lock);
130 	} else {
131 		lockdep_assert_held(&req->ctx->uring_lock);
132 
133 		cflags = __io_put_kbuf_list(req, &req->ctx->io_buffers_cache);
134 	}
135 	return cflags;
136 }
137 
138 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
139 					      struct io_buffer_list *bl)
140 {
141 	if (!list_empty(&bl->buf_list)) {
142 		struct io_buffer *kbuf;
143 
144 		kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
145 		list_del(&kbuf->list);
146 		if (*len == 0 || *len > kbuf->len)
147 			*len = kbuf->len;
148 		req->flags |= REQ_F_BUFFER_SELECTED;
149 		req->kbuf = kbuf;
150 		req->buf_index = kbuf->bid;
151 		return u64_to_user_ptr(kbuf->addr);
152 	}
153 	return NULL;
154 }
155 
156 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
157 					  struct io_buffer_list *bl,
158 					  unsigned int issue_flags)
159 {
160 	struct io_uring_buf_ring *br = bl->buf_ring;
161 	struct io_uring_buf *buf;
162 	__u16 head = bl->head;
163 
164 	if (unlikely(smp_load_acquire(&br->tail) == head))
165 		return NULL;
166 
167 	head &= bl->mask;
168 	/* mmaped buffers are always contig */
169 	if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) {
170 		buf = &br->bufs[head];
171 	} else {
172 		int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
173 		int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
174 		buf = page_address(bl->buf_pages[index]);
175 		buf += off;
176 	}
177 	if (*len == 0 || *len > buf->len)
178 		*len = buf->len;
179 	req->flags |= REQ_F_BUFFER_RING;
180 	req->buf_list = bl;
181 	req->buf_index = buf->bid;
182 
183 	if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) {
184 		/*
185 		 * If we came in unlocked, we have no choice but to consume the
186 		 * buffer here, otherwise nothing ensures that the buffer won't
187 		 * get used by others. This does mean it'll be pinned until the
188 		 * IO completes, coming in unlocked means we're being called from
189 		 * io-wq context and there may be further retries in async hybrid
190 		 * mode. For the locked case, the caller must call commit when
191 		 * the transfer completes (or if we get -EAGAIN and must poll of
192 		 * retry).
193 		 */
194 		req->buf_list = NULL;
195 		bl->head++;
196 	}
197 	return u64_to_user_ptr(buf->addr);
198 }
199 
200 void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
201 			      unsigned int issue_flags)
202 {
203 	struct io_ring_ctx *ctx = req->ctx;
204 	struct io_buffer_list *bl;
205 	void __user *ret = NULL;
206 
207 	io_ring_submit_lock(req->ctx, issue_flags);
208 
209 	bl = io_buffer_get_list(ctx, req->buf_index);
210 	if (likely(bl)) {
211 		if (bl->is_mapped)
212 			ret = io_ring_buffer_select(req, len, bl, issue_flags);
213 		else
214 			ret = io_provided_buffer_select(req, len, bl);
215 	}
216 	io_ring_submit_unlock(req->ctx, issue_flags);
217 	return ret;
218 }
219 
220 static __cold int io_init_bl_list(struct io_ring_ctx *ctx)
221 {
222 	struct io_buffer_list *bl;
223 	int i;
224 
225 	bl = kcalloc(BGID_ARRAY, sizeof(struct io_buffer_list), GFP_KERNEL);
226 	if (!bl)
227 		return -ENOMEM;
228 
229 	for (i = 0; i < BGID_ARRAY; i++) {
230 		INIT_LIST_HEAD(&bl[i].buf_list);
231 		bl[i].bgid = i;
232 	}
233 
234 	smp_store_release(&ctx->io_bl, bl);
235 	return 0;
236 }
237 
238 /*
239  * Mark the given mapped range as free for reuse
240  */
241 static void io_kbuf_mark_free(struct io_ring_ctx *ctx, struct io_buffer_list *bl)
242 {
243 	struct io_buf_free *ibf;
244 
245 	hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
246 		if (bl->buf_ring == ibf->mem) {
247 			ibf->inuse = 0;
248 			return;
249 		}
250 	}
251 
252 	/* can't happen... */
253 	WARN_ON_ONCE(1);
254 }
255 
256 static int __io_remove_buffers(struct io_ring_ctx *ctx,
257 			       struct io_buffer_list *bl, unsigned nbufs)
258 {
259 	unsigned i = 0;
260 
261 	/* shouldn't happen */
262 	if (!nbufs)
263 		return 0;
264 
265 	if (bl->is_mapped) {
266 		i = bl->buf_ring->tail - bl->head;
267 		if (bl->is_mmap) {
268 			/*
269 			 * io_kbuf_list_free() will free the page(s) at
270 			 * ->release() time.
271 			 */
272 			io_kbuf_mark_free(ctx, bl);
273 			bl->buf_ring = NULL;
274 			bl->is_mmap = 0;
275 		} else if (bl->buf_nr_pages) {
276 			int j;
277 
278 			for (j = 0; j < bl->buf_nr_pages; j++)
279 				unpin_user_page(bl->buf_pages[j]);
280 			kvfree(bl->buf_pages);
281 			bl->buf_pages = NULL;
282 			bl->buf_nr_pages = 0;
283 		}
284 		/* make sure it's seen as empty */
285 		INIT_LIST_HEAD(&bl->buf_list);
286 		bl->is_mapped = 0;
287 		return i;
288 	}
289 
290 	/* protects io_buffers_cache */
291 	lockdep_assert_held(&ctx->uring_lock);
292 
293 	while (!list_empty(&bl->buf_list)) {
294 		struct io_buffer *nxt;
295 
296 		nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
297 		list_move(&nxt->list, &ctx->io_buffers_cache);
298 		if (++i == nbufs)
299 			return i;
300 		cond_resched();
301 	}
302 
303 	return i;
304 }
305 
306 void io_destroy_buffers(struct io_ring_ctx *ctx)
307 {
308 	struct io_buffer_list *bl;
309 	struct list_head *item, *tmp;
310 	struct io_buffer *buf;
311 	unsigned long index;
312 	int i;
313 
314 	for (i = 0; i < BGID_ARRAY; i++) {
315 		if (!ctx->io_bl)
316 			break;
317 		__io_remove_buffers(ctx, &ctx->io_bl[i], -1U);
318 	}
319 
320 	xa_for_each(&ctx->io_bl_xa, index, bl) {
321 		xa_erase(&ctx->io_bl_xa, bl->bgid);
322 		__io_remove_buffers(ctx, bl, -1U);
323 		kfree_rcu(bl, rcu);
324 	}
325 
326 	/*
327 	 * Move deferred locked entries to cache before pruning
328 	 */
329 	spin_lock(&ctx->completion_lock);
330 	if (!list_empty(&ctx->io_buffers_comp))
331 		list_splice_init(&ctx->io_buffers_comp, &ctx->io_buffers_cache);
332 	spin_unlock(&ctx->completion_lock);
333 
334 	list_for_each_safe(item, tmp, &ctx->io_buffers_cache) {
335 		buf = list_entry(item, struct io_buffer, list);
336 		kmem_cache_free(io_buf_cachep, buf);
337 	}
338 }
339 
340 int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
341 {
342 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
343 	u64 tmp;
344 
345 	if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
346 	    sqe->splice_fd_in)
347 		return -EINVAL;
348 
349 	tmp = READ_ONCE(sqe->fd);
350 	if (!tmp || tmp > MAX_BIDS_PER_BGID)
351 		return -EINVAL;
352 
353 	memset(p, 0, sizeof(*p));
354 	p->nbufs = tmp;
355 	p->bgid = READ_ONCE(sqe->buf_group);
356 	return 0;
357 }
358 
359 int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
360 {
361 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
362 	struct io_ring_ctx *ctx = req->ctx;
363 	struct io_buffer_list *bl;
364 	int ret = 0;
365 
366 	io_ring_submit_lock(ctx, issue_flags);
367 
368 	ret = -ENOENT;
369 	bl = io_buffer_get_list(ctx, p->bgid);
370 	if (bl) {
371 		ret = -EINVAL;
372 		/* can't use provide/remove buffers command on mapped buffers */
373 		if (!bl->is_mapped)
374 			ret = __io_remove_buffers(ctx, bl, p->nbufs);
375 	}
376 	io_ring_submit_unlock(ctx, issue_flags);
377 	if (ret < 0)
378 		req_set_fail(req);
379 	io_req_set_res(req, ret, 0);
380 	return IOU_OK;
381 }
382 
383 int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
384 {
385 	unsigned long size, tmp_check;
386 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
387 	u64 tmp;
388 
389 	if (sqe->rw_flags || sqe->splice_fd_in)
390 		return -EINVAL;
391 
392 	tmp = READ_ONCE(sqe->fd);
393 	if (!tmp || tmp > MAX_BIDS_PER_BGID)
394 		return -E2BIG;
395 	p->nbufs = tmp;
396 	p->addr = READ_ONCE(sqe->addr);
397 	p->len = READ_ONCE(sqe->len);
398 
399 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
400 				&size))
401 		return -EOVERFLOW;
402 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
403 		return -EOVERFLOW;
404 
405 	size = (unsigned long)p->len * p->nbufs;
406 	if (!access_ok(u64_to_user_ptr(p->addr), size))
407 		return -EFAULT;
408 
409 	p->bgid = READ_ONCE(sqe->buf_group);
410 	tmp = READ_ONCE(sqe->off);
411 	if (tmp > USHRT_MAX)
412 		return -E2BIG;
413 	if (tmp + p->nbufs > MAX_BIDS_PER_BGID)
414 		return -EINVAL;
415 	p->bid = tmp;
416 	return 0;
417 }
418 
419 #define IO_BUFFER_ALLOC_BATCH 64
420 
421 static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
422 {
423 	struct io_buffer *bufs[IO_BUFFER_ALLOC_BATCH];
424 	int allocated;
425 
426 	/*
427 	 * Completions that don't happen inline (eg not under uring_lock) will
428 	 * add to ->io_buffers_comp. If we don't have any free buffers, check
429 	 * the completion list and splice those entries first.
430 	 */
431 	if (!list_empty_careful(&ctx->io_buffers_comp)) {
432 		spin_lock(&ctx->completion_lock);
433 		if (!list_empty(&ctx->io_buffers_comp)) {
434 			list_splice_init(&ctx->io_buffers_comp,
435 						&ctx->io_buffers_cache);
436 			spin_unlock(&ctx->completion_lock);
437 			return 0;
438 		}
439 		spin_unlock(&ctx->completion_lock);
440 	}
441 
442 	/*
443 	 * No free buffers and no completion entries either. Allocate a new
444 	 * batch of buffer entries and add those to our freelist.
445 	 */
446 
447 	allocated = kmem_cache_alloc_bulk(io_buf_cachep, GFP_KERNEL_ACCOUNT,
448 					  ARRAY_SIZE(bufs), (void **) bufs);
449 	if (unlikely(!allocated)) {
450 		/*
451 		 * Bulk alloc is all-or-nothing. If we fail to get a batch,
452 		 * retry single alloc to be on the safe side.
453 		 */
454 		bufs[0] = kmem_cache_alloc(io_buf_cachep, GFP_KERNEL);
455 		if (!bufs[0])
456 			return -ENOMEM;
457 		allocated = 1;
458 	}
459 
460 	while (allocated)
461 		list_add_tail(&bufs[--allocated]->list, &ctx->io_buffers_cache);
462 
463 	return 0;
464 }
465 
466 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
467 			  struct io_buffer_list *bl)
468 {
469 	struct io_buffer *buf;
470 	u64 addr = pbuf->addr;
471 	int i, bid = pbuf->bid;
472 
473 	for (i = 0; i < pbuf->nbufs; i++) {
474 		if (list_empty(&ctx->io_buffers_cache) &&
475 		    io_refill_buffer_cache(ctx))
476 			break;
477 		buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
478 					list);
479 		list_move_tail(&buf->list, &bl->buf_list);
480 		buf->addr = addr;
481 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
482 		buf->bid = bid;
483 		buf->bgid = pbuf->bgid;
484 		addr += pbuf->len;
485 		bid++;
486 		cond_resched();
487 	}
488 
489 	return i ? 0 : -ENOMEM;
490 }
491 
492 int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
493 {
494 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
495 	struct io_ring_ctx *ctx = req->ctx;
496 	struct io_buffer_list *bl;
497 	int ret = 0;
498 
499 	io_ring_submit_lock(ctx, issue_flags);
500 
501 	if (unlikely(p->bgid < BGID_ARRAY && !ctx->io_bl)) {
502 		ret = io_init_bl_list(ctx);
503 		if (ret)
504 			goto err;
505 	}
506 
507 	bl = io_buffer_get_list(ctx, p->bgid);
508 	if (unlikely(!bl)) {
509 		bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT);
510 		if (!bl) {
511 			ret = -ENOMEM;
512 			goto err;
513 		}
514 		INIT_LIST_HEAD(&bl->buf_list);
515 		ret = io_buffer_add_list(ctx, bl, p->bgid);
516 		if (ret) {
517 			/*
518 			 * Doesn't need rcu free as it was never visible, but
519 			 * let's keep it consistent throughout. Also can't
520 			 * be a lower indexed array group, as adding one
521 			 * where lookup failed cannot happen.
522 			 */
523 			if (p->bgid >= BGID_ARRAY)
524 				kfree_rcu(bl, rcu);
525 			else
526 				WARN_ON_ONCE(1);
527 			goto err;
528 		}
529 	}
530 	/* can't add buffers via this command for a mapped buffer ring */
531 	if (bl->is_mapped) {
532 		ret = -EINVAL;
533 		goto err;
534 	}
535 
536 	ret = io_add_buffers(ctx, p, bl);
537 err:
538 	io_ring_submit_unlock(ctx, issue_flags);
539 
540 	if (ret < 0)
541 		req_set_fail(req);
542 	io_req_set_res(req, ret, 0);
543 	return IOU_OK;
544 }
545 
546 static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg,
547 			    struct io_buffer_list *bl)
548 {
549 	struct io_uring_buf_ring *br;
550 	struct page **pages;
551 	int i, nr_pages;
552 
553 	pages = io_pin_pages(reg->ring_addr,
554 			     flex_array_size(br, bufs, reg->ring_entries),
555 			     &nr_pages);
556 	if (IS_ERR(pages))
557 		return PTR_ERR(pages);
558 
559 	/*
560 	 * Apparently some 32-bit boxes (ARM) will return highmem pages,
561 	 * which then need to be mapped. We could support that, but it'd
562 	 * complicate the code and slowdown the common cases quite a bit.
563 	 * So just error out, returning -EINVAL just like we did on kernels
564 	 * that didn't support mapped buffer rings.
565 	 */
566 	for (i = 0; i < nr_pages; i++)
567 		if (PageHighMem(pages[i]))
568 			goto error_unpin;
569 
570 	br = page_address(pages[0]);
571 #ifdef SHM_COLOUR
572 	/*
573 	 * On platforms that have specific aliasing requirements, SHM_COLOUR
574 	 * is set and we must guarantee that the kernel and user side align
575 	 * nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and
576 	 * the application mmap's the provided ring buffer. Fail the request
577 	 * if we, by chance, don't end up with aligned addresses. The app
578 	 * should use IOU_PBUF_RING_MMAP instead, and liburing will handle
579 	 * this transparently.
580 	 */
581 	if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1))
582 		goto error_unpin;
583 #endif
584 	bl->buf_pages = pages;
585 	bl->buf_nr_pages = nr_pages;
586 	bl->buf_ring = br;
587 	bl->is_mapped = 1;
588 	bl->is_mmap = 0;
589 	return 0;
590 error_unpin:
591 	for (i = 0; i < nr_pages; i++)
592 		unpin_user_page(pages[i]);
593 	kvfree(pages);
594 	return -EINVAL;
595 }
596 
597 /*
598  * See if we have a suitable region that we can reuse, rather than allocate
599  * both a new io_buf_free and mem region again. We leave it on the list as
600  * even a reused entry will need freeing at ring release.
601  */
602 static struct io_buf_free *io_lookup_buf_free_entry(struct io_ring_ctx *ctx,
603 						    size_t ring_size)
604 {
605 	struct io_buf_free *ibf, *best = NULL;
606 	size_t best_dist;
607 
608 	hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
609 		size_t dist;
610 
611 		if (ibf->inuse || ibf->size < ring_size)
612 			continue;
613 		dist = ibf->size - ring_size;
614 		if (!best || dist < best_dist) {
615 			best = ibf;
616 			if (!dist)
617 				break;
618 			best_dist = dist;
619 		}
620 	}
621 
622 	return best;
623 }
624 
625 static int io_alloc_pbuf_ring(struct io_ring_ctx *ctx,
626 			      struct io_uring_buf_reg *reg,
627 			      struct io_buffer_list *bl)
628 {
629 	struct io_buf_free *ibf;
630 	size_t ring_size;
631 	void *ptr;
632 
633 	ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring);
634 
635 	/* Reuse existing entry, if we can */
636 	ibf = io_lookup_buf_free_entry(ctx, ring_size);
637 	if (!ibf) {
638 		ptr = io_mem_alloc(ring_size);
639 		if (IS_ERR(ptr))
640 			return PTR_ERR(ptr);
641 
642 		/* Allocate and store deferred free entry */
643 		ibf = kmalloc(sizeof(*ibf), GFP_KERNEL_ACCOUNT);
644 		if (!ibf) {
645 			io_mem_free(ptr);
646 			return -ENOMEM;
647 		}
648 		ibf->mem = ptr;
649 		ibf->size = ring_size;
650 		hlist_add_head(&ibf->list, &ctx->io_buf_list);
651 	}
652 	ibf->inuse = 1;
653 	bl->buf_ring = ibf->mem;
654 	bl->is_mapped = 1;
655 	bl->is_mmap = 1;
656 	return 0;
657 }
658 
659 int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
660 {
661 	struct io_uring_buf_reg reg;
662 	struct io_buffer_list *bl, *free_bl = NULL;
663 	int ret;
664 
665 	lockdep_assert_held(&ctx->uring_lock);
666 
667 	if (copy_from_user(&reg, arg, sizeof(reg)))
668 		return -EFAULT;
669 
670 	if (reg.resv[0] || reg.resv[1] || reg.resv[2])
671 		return -EINVAL;
672 	if (reg.flags & ~IOU_PBUF_RING_MMAP)
673 		return -EINVAL;
674 	if (!(reg.flags & IOU_PBUF_RING_MMAP)) {
675 		if (!reg.ring_addr)
676 			return -EFAULT;
677 		if (reg.ring_addr & ~PAGE_MASK)
678 			return -EINVAL;
679 	} else {
680 		if (reg.ring_addr)
681 			return -EINVAL;
682 	}
683 
684 	if (!is_power_of_2(reg.ring_entries))
685 		return -EINVAL;
686 
687 	/* cannot disambiguate full vs empty due to head/tail size */
688 	if (reg.ring_entries >= 65536)
689 		return -EINVAL;
690 
691 	if (unlikely(reg.bgid < BGID_ARRAY && !ctx->io_bl)) {
692 		int ret = io_init_bl_list(ctx);
693 		if (ret)
694 			return ret;
695 	}
696 
697 	bl = io_buffer_get_list(ctx, reg.bgid);
698 	if (bl) {
699 		/* if mapped buffer ring OR classic exists, don't allow */
700 		if (bl->is_mapped || !list_empty(&bl->buf_list))
701 			return -EEXIST;
702 	} else {
703 		free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL);
704 		if (!bl)
705 			return -ENOMEM;
706 	}
707 
708 	if (!(reg.flags & IOU_PBUF_RING_MMAP))
709 		ret = io_pin_pbuf_ring(&reg, bl);
710 	else
711 		ret = io_alloc_pbuf_ring(ctx, &reg, bl);
712 
713 	if (!ret) {
714 		bl->nr_entries = reg.ring_entries;
715 		bl->mask = reg.ring_entries - 1;
716 
717 		io_buffer_add_list(ctx, bl, reg.bgid);
718 		return 0;
719 	}
720 
721 	kfree_rcu(free_bl, rcu);
722 	return ret;
723 }
724 
725 int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
726 {
727 	struct io_uring_buf_reg reg;
728 	struct io_buffer_list *bl;
729 
730 	lockdep_assert_held(&ctx->uring_lock);
731 
732 	if (copy_from_user(&reg, arg, sizeof(reg)))
733 		return -EFAULT;
734 	if (reg.resv[0] || reg.resv[1] || reg.resv[2])
735 		return -EINVAL;
736 	if (reg.flags)
737 		return -EINVAL;
738 
739 	bl = io_buffer_get_list(ctx, reg.bgid);
740 	if (!bl)
741 		return -ENOENT;
742 	if (!bl->is_mapped)
743 		return -EINVAL;
744 
745 	__io_remove_buffers(ctx, bl, -1U);
746 	if (bl->bgid >= BGID_ARRAY) {
747 		xa_erase(&ctx->io_bl_xa, bl->bgid);
748 		kfree_rcu(bl, rcu);
749 	}
750 	return 0;
751 }
752 
753 void *io_pbuf_get_address(struct io_ring_ctx *ctx, unsigned long bgid)
754 {
755 	struct io_buffer_list *bl;
756 
757 	bl = __io_buffer_get_list(ctx, smp_load_acquire(&ctx->io_bl), bgid);
758 
759 	if (!bl || !bl->is_mmap)
760 		return NULL;
761 	/*
762 	 * Ensure the list is fully setup. Only strictly needed for RCU lookup
763 	 * via mmap, and in that case only for the array indexed groups. For
764 	 * the xarray lookups, it's either visible and ready, or not at all.
765 	 */
766 	if (!smp_load_acquire(&bl->is_ready))
767 		return NULL;
768 
769 	return bl->buf_ring;
770 }
771 
772 /*
773  * Called at or after ->release(), free the mmap'ed buffers that we used
774  * for memory mapped provided buffer rings.
775  */
776 void io_kbuf_mmap_list_free(struct io_ring_ctx *ctx)
777 {
778 	struct io_buf_free *ibf;
779 	struct hlist_node *tmp;
780 
781 	hlist_for_each_entry_safe(ibf, tmp, &ctx->io_buf_list, list) {
782 		hlist_del(&ibf->list);
783 		io_mem_free(ibf->mem);
784 		kfree(ibf);
785 	}
786 }
787