xref: /linux/io_uring/kbuf.c (revision 5c1672705a1a2389f5ad78e0fea6f08ed32d6f18)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/mm.h>
7 #include <linux/slab.h>
8 #include <linux/namei.h>
9 #include <linux/poll.h>
10 #include <linux/io_uring.h>
11 
12 #include <uapi/linux/io_uring.h>
13 
14 #include "io_uring.h"
15 #include "opdef.h"
16 #include "kbuf.h"
17 
18 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
19 
20 /* BIDs are addressed by a 16-bit field in a CQE */
21 #define MAX_BIDS_PER_BGID (1 << 16)
22 
23 struct kmem_cache *io_buf_cachep;
24 
25 struct io_provide_buf {
26 	struct file			*file;
27 	__u64				addr;
28 	__u32				len;
29 	__u32				bgid;
30 	__u32				nbufs;
31 	__u16				bid;
32 };
33 
34 struct io_buf_free {
35 	struct hlist_node		list;
36 	void				*mem;
37 	size_t				size;
38 	int				inuse;
39 };
40 
41 static inline struct io_buffer_list *__io_buffer_get_list(struct io_ring_ctx *ctx,
42 							  unsigned int bgid)
43 {
44 	return xa_load(&ctx->io_bl_xa, bgid);
45 }
46 
47 static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
48 							unsigned int bgid)
49 {
50 	lockdep_assert_held(&ctx->uring_lock);
51 
52 	return __io_buffer_get_list(ctx, bgid);
53 }
54 
55 static int io_buffer_add_list(struct io_ring_ctx *ctx,
56 			      struct io_buffer_list *bl, unsigned int bgid)
57 {
58 	/*
59 	 * Store buffer group ID and finally mark the list as visible.
60 	 * The normal lookup doesn't care about the visibility as we're
61 	 * always under the ->uring_lock, but the RCU lookup from mmap does.
62 	 */
63 	bl->bgid = bgid;
64 	atomic_set(&bl->refs, 1);
65 	return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
66 }
67 
68 bool io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags)
69 {
70 	struct io_ring_ctx *ctx = req->ctx;
71 	struct io_buffer_list *bl;
72 	struct io_buffer *buf;
73 
74 	io_ring_submit_lock(ctx, issue_flags);
75 
76 	buf = req->kbuf;
77 	bl = io_buffer_get_list(ctx, buf->bgid);
78 	list_add(&buf->list, &bl->buf_list);
79 	req->flags &= ~REQ_F_BUFFER_SELECTED;
80 	req->buf_index = buf->bgid;
81 
82 	io_ring_submit_unlock(ctx, issue_flags);
83 	return true;
84 }
85 
86 void __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags)
87 {
88 	/*
89 	 * We can add this buffer back to two lists:
90 	 *
91 	 * 1) The io_buffers_cache list. This one is protected by the
92 	 *    ctx->uring_lock. If we already hold this lock, add back to this
93 	 *    list as we can grab it from issue as well.
94 	 * 2) The io_buffers_comp list. This one is protected by the
95 	 *    ctx->completion_lock.
96 	 *
97 	 * We migrate buffers from the comp_list to the issue cache list
98 	 * when we need one.
99 	 */
100 	if (issue_flags & IO_URING_F_UNLOCKED) {
101 		struct io_ring_ctx *ctx = req->ctx;
102 
103 		spin_lock(&ctx->completion_lock);
104 		__io_put_kbuf_list(req, &ctx->io_buffers_comp);
105 		spin_unlock(&ctx->completion_lock);
106 	} else {
107 		lockdep_assert_held(&req->ctx->uring_lock);
108 
109 		__io_put_kbuf_list(req, &req->ctx->io_buffers_cache);
110 	}
111 }
112 
113 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
114 					      struct io_buffer_list *bl)
115 {
116 	if (!list_empty(&bl->buf_list)) {
117 		struct io_buffer *kbuf;
118 
119 		kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
120 		list_del(&kbuf->list);
121 		if (*len == 0 || *len > kbuf->len)
122 			*len = kbuf->len;
123 		if (list_empty(&bl->buf_list))
124 			req->flags |= REQ_F_BL_EMPTY;
125 		req->flags |= REQ_F_BUFFER_SELECTED;
126 		req->kbuf = kbuf;
127 		req->buf_index = kbuf->bid;
128 		return u64_to_user_ptr(kbuf->addr);
129 	}
130 	return NULL;
131 }
132 
133 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
134 					  struct io_buffer_list *bl,
135 					  unsigned int issue_flags)
136 {
137 	struct io_uring_buf_ring *br = bl->buf_ring;
138 	__u16 tail, head = bl->head;
139 	struct io_uring_buf *buf;
140 
141 	tail = smp_load_acquire(&br->tail);
142 	if (unlikely(tail == head))
143 		return NULL;
144 
145 	if (head + 1 == tail)
146 		req->flags |= REQ_F_BL_EMPTY;
147 
148 	head &= bl->mask;
149 	/* mmaped buffers are always contig */
150 	if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) {
151 		buf = &br->bufs[head];
152 	} else {
153 		int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
154 		int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
155 		buf = page_address(bl->buf_pages[index]);
156 		buf += off;
157 	}
158 	if (*len == 0 || *len > buf->len)
159 		*len = buf->len;
160 	req->flags |= REQ_F_BUFFER_RING;
161 	req->buf_list = bl;
162 	req->buf_index = buf->bid;
163 
164 	if (issue_flags & IO_URING_F_UNLOCKED || !io_file_can_poll(req)) {
165 		/*
166 		 * If we came in unlocked, we have no choice but to consume the
167 		 * buffer here, otherwise nothing ensures that the buffer won't
168 		 * get used by others. This does mean it'll be pinned until the
169 		 * IO completes, coming in unlocked means we're being called from
170 		 * io-wq context and there may be further retries in async hybrid
171 		 * mode. For the locked case, the caller must call commit when
172 		 * the transfer completes (or if we get -EAGAIN and must poll of
173 		 * retry).
174 		 */
175 		req->buf_list = NULL;
176 		bl->head++;
177 	}
178 	return u64_to_user_ptr(buf->addr);
179 }
180 
181 void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
182 			      unsigned int issue_flags)
183 {
184 	struct io_ring_ctx *ctx = req->ctx;
185 	struct io_buffer_list *bl;
186 	void __user *ret = NULL;
187 
188 	io_ring_submit_lock(req->ctx, issue_flags);
189 
190 	bl = io_buffer_get_list(ctx, req->buf_index);
191 	if (likely(bl)) {
192 		if (bl->is_buf_ring)
193 			ret = io_ring_buffer_select(req, len, bl, issue_flags);
194 		else
195 			ret = io_provided_buffer_select(req, len, bl);
196 	}
197 	io_ring_submit_unlock(req->ctx, issue_flags);
198 	return ret;
199 }
200 
201 /*
202  * Mark the given mapped range as free for reuse
203  */
204 static void io_kbuf_mark_free(struct io_ring_ctx *ctx, struct io_buffer_list *bl)
205 {
206 	struct io_buf_free *ibf;
207 
208 	hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
209 		if (bl->buf_ring == ibf->mem) {
210 			ibf->inuse = 0;
211 			return;
212 		}
213 	}
214 
215 	/* can't happen... */
216 	WARN_ON_ONCE(1);
217 }
218 
219 static int __io_remove_buffers(struct io_ring_ctx *ctx,
220 			       struct io_buffer_list *bl, unsigned nbufs)
221 {
222 	unsigned i = 0;
223 
224 	/* shouldn't happen */
225 	if (!nbufs)
226 		return 0;
227 
228 	if (bl->is_buf_ring) {
229 		i = bl->buf_ring->tail - bl->head;
230 		if (bl->is_mmap) {
231 			/*
232 			 * io_kbuf_list_free() will free the page(s) at
233 			 * ->release() time.
234 			 */
235 			io_kbuf_mark_free(ctx, bl);
236 			bl->buf_ring = NULL;
237 			bl->is_mmap = 0;
238 		} else if (bl->buf_nr_pages) {
239 			int j;
240 
241 			for (j = 0; j < bl->buf_nr_pages; j++)
242 				unpin_user_page(bl->buf_pages[j]);
243 			kvfree(bl->buf_pages);
244 			bl->buf_pages = NULL;
245 			bl->buf_nr_pages = 0;
246 		}
247 		/* make sure it's seen as empty */
248 		INIT_LIST_HEAD(&bl->buf_list);
249 		bl->is_buf_ring = 0;
250 		return i;
251 	}
252 
253 	/* protects io_buffers_cache */
254 	lockdep_assert_held(&ctx->uring_lock);
255 
256 	while (!list_empty(&bl->buf_list)) {
257 		struct io_buffer *nxt;
258 
259 		nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
260 		list_move(&nxt->list, &ctx->io_buffers_cache);
261 		if (++i == nbufs)
262 			return i;
263 		cond_resched();
264 	}
265 
266 	return i;
267 }
268 
269 void io_put_bl(struct io_ring_ctx *ctx, struct io_buffer_list *bl)
270 {
271 	if (atomic_dec_and_test(&bl->refs)) {
272 		__io_remove_buffers(ctx, bl, -1U);
273 		kfree_rcu(bl, rcu);
274 	}
275 }
276 
277 void io_destroy_buffers(struct io_ring_ctx *ctx)
278 {
279 	struct io_buffer_list *bl;
280 	struct list_head *item, *tmp;
281 	struct io_buffer *buf;
282 	unsigned long index;
283 
284 	xa_for_each(&ctx->io_bl_xa, index, bl) {
285 		xa_erase(&ctx->io_bl_xa, bl->bgid);
286 		io_put_bl(ctx, bl);
287 	}
288 
289 	/*
290 	 * Move deferred locked entries to cache before pruning
291 	 */
292 	spin_lock(&ctx->completion_lock);
293 	if (!list_empty(&ctx->io_buffers_comp))
294 		list_splice_init(&ctx->io_buffers_comp, &ctx->io_buffers_cache);
295 	spin_unlock(&ctx->completion_lock);
296 
297 	list_for_each_safe(item, tmp, &ctx->io_buffers_cache) {
298 		buf = list_entry(item, struct io_buffer, list);
299 		kmem_cache_free(io_buf_cachep, buf);
300 	}
301 }
302 
303 int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
304 {
305 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
306 	u64 tmp;
307 
308 	if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
309 	    sqe->splice_fd_in)
310 		return -EINVAL;
311 
312 	tmp = READ_ONCE(sqe->fd);
313 	if (!tmp || tmp > MAX_BIDS_PER_BGID)
314 		return -EINVAL;
315 
316 	memset(p, 0, sizeof(*p));
317 	p->nbufs = tmp;
318 	p->bgid = READ_ONCE(sqe->buf_group);
319 	return 0;
320 }
321 
322 int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
323 {
324 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
325 	struct io_ring_ctx *ctx = req->ctx;
326 	struct io_buffer_list *bl;
327 	int ret = 0;
328 
329 	io_ring_submit_lock(ctx, issue_flags);
330 
331 	ret = -ENOENT;
332 	bl = io_buffer_get_list(ctx, p->bgid);
333 	if (bl) {
334 		ret = -EINVAL;
335 		/* can't use provide/remove buffers command on mapped buffers */
336 		if (!bl->is_buf_ring)
337 			ret = __io_remove_buffers(ctx, bl, p->nbufs);
338 	}
339 	io_ring_submit_unlock(ctx, issue_flags);
340 	if (ret < 0)
341 		req_set_fail(req);
342 	io_req_set_res(req, ret, 0);
343 	return IOU_OK;
344 }
345 
346 int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
347 {
348 	unsigned long size, tmp_check;
349 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
350 	u64 tmp;
351 
352 	if (sqe->rw_flags || sqe->splice_fd_in)
353 		return -EINVAL;
354 
355 	tmp = READ_ONCE(sqe->fd);
356 	if (!tmp || tmp > MAX_BIDS_PER_BGID)
357 		return -E2BIG;
358 	p->nbufs = tmp;
359 	p->addr = READ_ONCE(sqe->addr);
360 	p->len = READ_ONCE(sqe->len);
361 
362 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
363 				&size))
364 		return -EOVERFLOW;
365 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
366 		return -EOVERFLOW;
367 
368 	size = (unsigned long)p->len * p->nbufs;
369 	if (!access_ok(u64_to_user_ptr(p->addr), size))
370 		return -EFAULT;
371 
372 	p->bgid = READ_ONCE(sqe->buf_group);
373 	tmp = READ_ONCE(sqe->off);
374 	if (tmp > USHRT_MAX)
375 		return -E2BIG;
376 	if (tmp + p->nbufs > MAX_BIDS_PER_BGID)
377 		return -EINVAL;
378 	p->bid = tmp;
379 	return 0;
380 }
381 
382 #define IO_BUFFER_ALLOC_BATCH 64
383 
384 static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
385 {
386 	struct io_buffer *bufs[IO_BUFFER_ALLOC_BATCH];
387 	int allocated;
388 
389 	/*
390 	 * Completions that don't happen inline (eg not under uring_lock) will
391 	 * add to ->io_buffers_comp. If we don't have any free buffers, check
392 	 * the completion list and splice those entries first.
393 	 */
394 	if (!list_empty_careful(&ctx->io_buffers_comp)) {
395 		spin_lock(&ctx->completion_lock);
396 		if (!list_empty(&ctx->io_buffers_comp)) {
397 			list_splice_init(&ctx->io_buffers_comp,
398 						&ctx->io_buffers_cache);
399 			spin_unlock(&ctx->completion_lock);
400 			return 0;
401 		}
402 		spin_unlock(&ctx->completion_lock);
403 	}
404 
405 	/*
406 	 * No free buffers and no completion entries either. Allocate a new
407 	 * batch of buffer entries and add those to our freelist.
408 	 */
409 
410 	allocated = kmem_cache_alloc_bulk(io_buf_cachep, GFP_KERNEL_ACCOUNT,
411 					  ARRAY_SIZE(bufs), (void **) bufs);
412 	if (unlikely(!allocated)) {
413 		/*
414 		 * Bulk alloc is all-or-nothing. If we fail to get a batch,
415 		 * retry single alloc to be on the safe side.
416 		 */
417 		bufs[0] = kmem_cache_alloc(io_buf_cachep, GFP_KERNEL);
418 		if (!bufs[0])
419 			return -ENOMEM;
420 		allocated = 1;
421 	}
422 
423 	while (allocated)
424 		list_add_tail(&bufs[--allocated]->list, &ctx->io_buffers_cache);
425 
426 	return 0;
427 }
428 
429 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
430 			  struct io_buffer_list *bl)
431 {
432 	struct io_buffer *buf;
433 	u64 addr = pbuf->addr;
434 	int i, bid = pbuf->bid;
435 
436 	for (i = 0; i < pbuf->nbufs; i++) {
437 		if (list_empty(&ctx->io_buffers_cache) &&
438 		    io_refill_buffer_cache(ctx))
439 			break;
440 		buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
441 					list);
442 		list_move_tail(&buf->list, &bl->buf_list);
443 		buf->addr = addr;
444 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
445 		buf->bid = bid;
446 		buf->bgid = pbuf->bgid;
447 		addr += pbuf->len;
448 		bid++;
449 		cond_resched();
450 	}
451 
452 	return i ? 0 : -ENOMEM;
453 }
454 
455 int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
456 {
457 	struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
458 	struct io_ring_ctx *ctx = req->ctx;
459 	struct io_buffer_list *bl;
460 	int ret = 0;
461 
462 	io_ring_submit_lock(ctx, issue_flags);
463 
464 	bl = io_buffer_get_list(ctx, p->bgid);
465 	if (unlikely(!bl)) {
466 		bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT);
467 		if (!bl) {
468 			ret = -ENOMEM;
469 			goto err;
470 		}
471 		INIT_LIST_HEAD(&bl->buf_list);
472 		ret = io_buffer_add_list(ctx, bl, p->bgid);
473 		if (ret) {
474 			/*
475 			 * Doesn't need rcu free as it was never visible, but
476 			 * let's keep it consistent throughout.
477 			 */
478 			kfree_rcu(bl, rcu);
479 			goto err;
480 		}
481 	}
482 	/* can't add buffers via this command for a mapped buffer ring */
483 	if (bl->is_buf_ring) {
484 		ret = -EINVAL;
485 		goto err;
486 	}
487 
488 	ret = io_add_buffers(ctx, p, bl);
489 err:
490 	io_ring_submit_unlock(ctx, issue_flags);
491 
492 	if (ret < 0)
493 		req_set_fail(req);
494 	io_req_set_res(req, ret, 0);
495 	return IOU_OK;
496 }
497 
498 static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg,
499 			    struct io_buffer_list *bl)
500 {
501 	struct io_uring_buf_ring *br;
502 	struct page **pages;
503 	int i, nr_pages;
504 
505 	pages = io_pin_pages(reg->ring_addr,
506 			     flex_array_size(br, bufs, reg->ring_entries),
507 			     &nr_pages);
508 	if (IS_ERR(pages))
509 		return PTR_ERR(pages);
510 
511 	/*
512 	 * Apparently some 32-bit boxes (ARM) will return highmem pages,
513 	 * which then need to be mapped. We could support that, but it'd
514 	 * complicate the code and slowdown the common cases quite a bit.
515 	 * So just error out, returning -EINVAL just like we did on kernels
516 	 * that didn't support mapped buffer rings.
517 	 */
518 	for (i = 0; i < nr_pages; i++)
519 		if (PageHighMem(pages[i]))
520 			goto error_unpin;
521 
522 	br = page_address(pages[0]);
523 #ifdef SHM_COLOUR
524 	/*
525 	 * On platforms that have specific aliasing requirements, SHM_COLOUR
526 	 * is set and we must guarantee that the kernel and user side align
527 	 * nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and
528 	 * the application mmap's the provided ring buffer. Fail the request
529 	 * if we, by chance, don't end up with aligned addresses. The app
530 	 * should use IOU_PBUF_RING_MMAP instead, and liburing will handle
531 	 * this transparently.
532 	 */
533 	if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1))
534 		goto error_unpin;
535 #endif
536 	bl->buf_pages = pages;
537 	bl->buf_nr_pages = nr_pages;
538 	bl->buf_ring = br;
539 	bl->is_buf_ring = 1;
540 	bl->is_mmap = 0;
541 	return 0;
542 error_unpin:
543 	for (i = 0; i < nr_pages; i++)
544 		unpin_user_page(pages[i]);
545 	kvfree(pages);
546 	return -EINVAL;
547 }
548 
549 /*
550  * See if we have a suitable region that we can reuse, rather than allocate
551  * both a new io_buf_free and mem region again. We leave it on the list as
552  * even a reused entry will need freeing at ring release.
553  */
554 static struct io_buf_free *io_lookup_buf_free_entry(struct io_ring_ctx *ctx,
555 						    size_t ring_size)
556 {
557 	struct io_buf_free *ibf, *best = NULL;
558 	size_t best_dist;
559 
560 	hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
561 		size_t dist;
562 
563 		if (ibf->inuse || ibf->size < ring_size)
564 			continue;
565 		dist = ibf->size - ring_size;
566 		if (!best || dist < best_dist) {
567 			best = ibf;
568 			if (!dist)
569 				break;
570 			best_dist = dist;
571 		}
572 	}
573 
574 	return best;
575 }
576 
577 static int io_alloc_pbuf_ring(struct io_ring_ctx *ctx,
578 			      struct io_uring_buf_reg *reg,
579 			      struct io_buffer_list *bl)
580 {
581 	struct io_buf_free *ibf;
582 	size_t ring_size;
583 	void *ptr;
584 
585 	ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring);
586 
587 	/* Reuse existing entry, if we can */
588 	ibf = io_lookup_buf_free_entry(ctx, ring_size);
589 	if (!ibf) {
590 		ptr = io_mem_alloc(ring_size);
591 		if (IS_ERR(ptr))
592 			return PTR_ERR(ptr);
593 
594 		/* Allocate and store deferred free entry */
595 		ibf = kmalloc(sizeof(*ibf), GFP_KERNEL_ACCOUNT);
596 		if (!ibf) {
597 			io_mem_free(ptr);
598 			return -ENOMEM;
599 		}
600 		ibf->mem = ptr;
601 		ibf->size = ring_size;
602 		hlist_add_head(&ibf->list, &ctx->io_buf_list);
603 	}
604 	ibf->inuse = 1;
605 	bl->buf_ring = ibf->mem;
606 	bl->is_buf_ring = 1;
607 	bl->is_mmap = 1;
608 	return 0;
609 }
610 
611 int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
612 {
613 	struct io_uring_buf_reg reg;
614 	struct io_buffer_list *bl, *free_bl = NULL;
615 	int ret;
616 
617 	lockdep_assert_held(&ctx->uring_lock);
618 
619 	if (copy_from_user(&reg, arg, sizeof(reg)))
620 		return -EFAULT;
621 
622 	if (reg.resv[0] || reg.resv[1] || reg.resv[2])
623 		return -EINVAL;
624 	if (reg.flags & ~IOU_PBUF_RING_MMAP)
625 		return -EINVAL;
626 	if (!(reg.flags & IOU_PBUF_RING_MMAP)) {
627 		if (!reg.ring_addr)
628 			return -EFAULT;
629 		if (reg.ring_addr & ~PAGE_MASK)
630 			return -EINVAL;
631 	} else {
632 		if (reg.ring_addr)
633 			return -EINVAL;
634 	}
635 
636 	if (!is_power_of_2(reg.ring_entries))
637 		return -EINVAL;
638 
639 	/* cannot disambiguate full vs empty due to head/tail size */
640 	if (reg.ring_entries >= 65536)
641 		return -EINVAL;
642 
643 	bl = io_buffer_get_list(ctx, reg.bgid);
644 	if (bl) {
645 		/* if mapped buffer ring OR classic exists, don't allow */
646 		if (bl->is_buf_ring || !list_empty(&bl->buf_list))
647 			return -EEXIST;
648 	} else {
649 		free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL);
650 		if (!bl)
651 			return -ENOMEM;
652 	}
653 
654 	if (!(reg.flags & IOU_PBUF_RING_MMAP))
655 		ret = io_pin_pbuf_ring(&reg, bl);
656 	else
657 		ret = io_alloc_pbuf_ring(ctx, &reg, bl);
658 
659 	if (!ret) {
660 		bl->nr_entries = reg.ring_entries;
661 		bl->mask = reg.ring_entries - 1;
662 
663 		io_buffer_add_list(ctx, bl, reg.bgid);
664 		return 0;
665 	}
666 
667 	kfree_rcu(free_bl, rcu);
668 	return ret;
669 }
670 
671 int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
672 {
673 	struct io_uring_buf_reg reg;
674 	struct io_buffer_list *bl;
675 
676 	lockdep_assert_held(&ctx->uring_lock);
677 
678 	if (copy_from_user(&reg, arg, sizeof(reg)))
679 		return -EFAULT;
680 	if (reg.resv[0] || reg.resv[1] || reg.resv[2])
681 		return -EINVAL;
682 	if (reg.flags)
683 		return -EINVAL;
684 
685 	bl = io_buffer_get_list(ctx, reg.bgid);
686 	if (!bl)
687 		return -ENOENT;
688 	if (!bl->is_buf_ring)
689 		return -EINVAL;
690 
691 	xa_erase(&ctx->io_bl_xa, bl->bgid);
692 	io_put_bl(ctx, bl);
693 	return 0;
694 }
695 
696 int io_register_pbuf_status(struct io_ring_ctx *ctx, void __user *arg)
697 {
698 	struct io_uring_buf_status buf_status;
699 	struct io_buffer_list *bl;
700 	int i;
701 
702 	if (copy_from_user(&buf_status, arg, sizeof(buf_status)))
703 		return -EFAULT;
704 
705 	for (i = 0; i < ARRAY_SIZE(buf_status.resv); i++)
706 		if (buf_status.resv[i])
707 			return -EINVAL;
708 
709 	bl = io_buffer_get_list(ctx, buf_status.buf_group);
710 	if (!bl)
711 		return -ENOENT;
712 	if (!bl->is_buf_ring)
713 		return -EINVAL;
714 
715 	buf_status.head = bl->head;
716 	if (copy_to_user(arg, &buf_status, sizeof(buf_status)))
717 		return -EFAULT;
718 
719 	return 0;
720 }
721 
722 struct io_buffer_list *io_pbuf_get_bl(struct io_ring_ctx *ctx,
723 				      unsigned long bgid)
724 {
725 	struct io_buffer_list *bl;
726 	bool ret;
727 
728 	/*
729 	 * We have to be a bit careful here - we're inside mmap and cannot grab
730 	 * the uring_lock. This means the buffer_list could be simultaneously
731 	 * going away, if someone is trying to be sneaky. Look it up under rcu
732 	 * so we know it's not going away, and attempt to grab a reference to
733 	 * it. If the ref is already zero, then fail the mapping. If successful,
734 	 * the caller will call io_put_bl() to drop the the reference at at the
735 	 * end. This may then safely free the buffer_list (and drop the pages)
736 	 * at that point, vm_insert_pages() would've already grabbed the
737 	 * necessary vma references.
738 	 */
739 	rcu_read_lock();
740 	bl = xa_load(&ctx->io_bl_xa, bgid);
741 	/* must be a mmap'able buffer ring and have pages */
742 	ret = false;
743 	if (bl && bl->is_mmap)
744 		ret = atomic_inc_not_zero(&bl->refs);
745 	rcu_read_unlock();
746 
747 	if (ret)
748 		return bl;
749 
750 	return ERR_PTR(-EINVAL);
751 }
752 
753 /*
754  * Called at or after ->release(), free the mmap'ed buffers that we used
755  * for memory mapped provided buffer rings.
756  */
757 void io_kbuf_mmap_list_free(struct io_ring_ctx *ctx)
758 {
759 	struct io_buf_free *ibf;
760 	struct hlist_node *tmp;
761 
762 	hlist_for_each_entry_safe(ibf, tmp, &ctx->io_buf_list, list) {
763 		hlist_del(&ibf->list);
764 		io_mem_free(ibf->mem);
765 		kfree(ibf);
766 	}
767 }
768