1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/io_uring_types.h> 9 #include <uapi/linux/eventpoll.h> 10 #include "io-wq.h" 11 #include "slist.h" 12 #include "filetable.h" 13 14 #ifndef CREATE_TRACE_POINTS 15 #include <trace/events/io_uring.h> 16 #endif 17 18 enum { 19 /* 20 * A hint to not wake right away but delay until there are enough of 21 * tw's queued to match the number of CQEs the task is waiting for. 22 * 23 * Must not be used wirh requests generating more than one CQE. 24 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set. 25 */ 26 IOU_F_TWQ_LAZY_WAKE = 1, 27 }; 28 29 enum { 30 IOU_OK = 0, 31 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 32 33 /* 34 * Intended only when both IO_URING_F_MULTISHOT is passed 35 * to indicate to the poll runner that multishot should be 36 * removed and the result is set on req->cqe.res. 37 */ 38 IOU_STOP_MULTISHOT = -ECANCELED, 39 }; 40 41 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow); 42 bool io_req_cqe_overflow(struct io_kiocb *req); 43 int io_run_task_work_sig(struct io_ring_ctx *ctx); 44 void io_req_defer_failed(struct io_kiocb *req, s32 res); 45 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags); 46 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 47 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 48 bool allow_overflow); 49 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 50 51 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages); 52 53 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 54 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 55 unsigned issue_flags); 56 57 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 58 bool io_is_uring_fops(struct file *file); 59 bool io_alloc_async_data(struct io_kiocb *req); 60 void io_req_task_queue(struct io_kiocb *req); 61 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use); 62 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 63 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 64 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 65 void tctx_task_work(struct callback_head *cb); 66 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 67 int io_uring_alloc_task_context(struct task_struct *task, 68 struct io_ring_ctx *ctx); 69 70 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 71 int start, int end); 72 73 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 74 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 75 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 76 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node); 77 int io_req_prep_async(struct io_kiocb *req); 78 79 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 80 void io_wq_submit_work(struct io_wq_work *work); 81 82 void io_free_req(struct io_kiocb *req); 83 void io_queue_next(struct io_kiocb *req); 84 void io_task_refs_refill(struct io_uring_task *tctx); 85 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 86 87 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 88 bool cancel_all); 89 90 #define io_lockdep_assert_cq_locked(ctx) \ 91 do { \ 92 lockdep_assert(in_task()); \ 93 \ 94 if (ctx->flags & IORING_SETUP_IOPOLL) { \ 95 lockdep_assert_held(&ctx->uring_lock); \ 96 } else if (!ctx->task_complete) { \ 97 lockdep_assert_held(&ctx->completion_lock); \ 98 } else if (ctx->submitter_task->flags & PF_EXITING) { \ 99 lockdep_assert(current_work()); \ 100 } else { \ 101 lockdep_assert(current == ctx->submitter_task); \ 102 } \ 103 } while (0) 104 105 static inline void io_req_task_work_add(struct io_kiocb *req) 106 { 107 __io_req_task_work_add(req, 0); 108 } 109 110 #define io_for_each_link(pos, head) \ 111 for (pos = (head); pos; pos = pos->link) 112 113 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx, 114 bool overflow) 115 { 116 io_lockdep_assert_cq_locked(ctx); 117 118 if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) { 119 struct io_uring_cqe *cqe = ctx->cqe_cached; 120 121 ctx->cached_cq_tail++; 122 ctx->cqe_cached++; 123 if (ctx->flags & IORING_SETUP_CQE32) 124 ctx->cqe_cached++; 125 return cqe; 126 } 127 128 return __io_get_cqe(ctx, overflow); 129 } 130 131 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx) 132 { 133 return io_get_cqe_overflow(ctx, false); 134 } 135 136 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx, 137 struct io_kiocb *req) 138 { 139 struct io_uring_cqe *cqe; 140 141 /* 142 * If we can't get a cq entry, userspace overflowed the 143 * submission (by quite a lot). Increment the overflow count in 144 * the ring. 145 */ 146 cqe = io_get_cqe(ctx); 147 if (unlikely(!cqe)) 148 return false; 149 150 trace_io_uring_complete(req->ctx, req, req->cqe.user_data, 151 req->cqe.res, req->cqe.flags, 152 (req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0, 153 (req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0); 154 155 memcpy(cqe, &req->cqe, sizeof(*cqe)); 156 157 if (ctx->flags & IORING_SETUP_CQE32) { 158 u64 extra1 = 0, extra2 = 0; 159 160 if (req->flags & REQ_F_CQE32_INIT) { 161 extra1 = req->extra1; 162 extra2 = req->extra2; 163 } 164 165 WRITE_ONCE(cqe->big_cqe[0], extra1); 166 WRITE_ONCE(cqe->big_cqe[1], extra2); 167 } 168 return true; 169 } 170 171 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 172 struct io_kiocb *req) 173 { 174 if (likely(__io_fill_cqe_req(ctx, req))) 175 return true; 176 return io_req_cqe_overflow(req); 177 } 178 179 static inline void req_set_fail(struct io_kiocb *req) 180 { 181 req->flags |= REQ_F_FAIL; 182 if (req->flags & REQ_F_CQE_SKIP) { 183 req->flags &= ~REQ_F_CQE_SKIP; 184 req->flags |= REQ_F_SKIP_LINK_CQES; 185 } 186 } 187 188 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 189 { 190 req->cqe.res = res; 191 req->cqe.flags = cflags; 192 } 193 194 static inline bool req_has_async_data(struct io_kiocb *req) 195 { 196 return req->flags & REQ_F_ASYNC_DATA; 197 } 198 199 static inline void io_put_file(struct file *file) 200 { 201 if (file) 202 fput(file); 203 } 204 205 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 206 unsigned issue_flags) 207 { 208 lockdep_assert_held(&ctx->uring_lock); 209 if (issue_flags & IO_URING_F_UNLOCKED) 210 mutex_unlock(&ctx->uring_lock); 211 } 212 213 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 214 unsigned issue_flags) 215 { 216 /* 217 * "Normal" inline submissions always hold the uring_lock, since we 218 * grab it from the system call. Same is true for the SQPOLL offload. 219 * The only exception is when we've detached the request and issue it 220 * from an async worker thread, grab the lock for that case. 221 */ 222 if (issue_flags & IO_URING_F_UNLOCKED) 223 mutex_lock(&ctx->uring_lock); 224 lockdep_assert_held(&ctx->uring_lock); 225 } 226 227 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 228 { 229 /* order cqe stores with ring update */ 230 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 231 } 232 233 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 234 { 235 if (wq_has_sleeper(&ctx->poll_wq)) 236 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 237 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 238 } 239 240 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 241 { 242 /* 243 * Trigger waitqueue handler on all waiters on our waitqueue. This 244 * won't necessarily wake up all the tasks, io_should_wake() will make 245 * that decision. 246 * 247 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 248 * set in the mask so that if we recurse back into our own poll 249 * waitqueue handlers, we know we have a dependency between eventfd or 250 * epoll and should terminate multishot poll at that point. 251 */ 252 if (wq_has_sleeper(&ctx->cq_wait)) 253 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 254 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 255 } 256 257 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 258 { 259 struct io_rings *r = ctx->rings; 260 261 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries; 262 } 263 264 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 265 { 266 struct io_rings *rings = ctx->rings; 267 unsigned int entries; 268 269 /* make sure SQ entry isn't read before tail */ 270 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 271 return min(entries, ctx->sq_entries); 272 } 273 274 static inline int io_run_task_work(void) 275 { 276 /* 277 * Always check-and-clear the task_work notification signal. With how 278 * signaling works for task_work, we can find it set with nothing to 279 * run. We need to clear it for that case, like get_signal() does. 280 */ 281 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 282 clear_notify_signal(); 283 /* 284 * PF_IO_WORKER never returns to userspace, so check here if we have 285 * notify work that needs processing. 286 */ 287 if (current->flags & PF_IO_WORKER && 288 test_thread_flag(TIF_NOTIFY_RESUME)) { 289 __set_current_state(TASK_RUNNING); 290 resume_user_mode_work(NULL); 291 } 292 if (task_work_pending(current)) { 293 __set_current_state(TASK_RUNNING); 294 task_work_run(); 295 return 1; 296 } 297 298 return 0; 299 } 300 301 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 302 { 303 return task_work_pending(current) || !wq_list_empty(&ctx->work_llist); 304 } 305 306 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 307 { 308 if (!ts->locked) { 309 mutex_lock(&ctx->uring_lock); 310 ts->locked = true; 311 } 312 } 313 314 /* 315 * Don't complete immediately but use deferred completion infrastructure. 316 * Protected by ->uring_lock and can only be used either with 317 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 318 */ 319 static inline void io_req_complete_defer(struct io_kiocb *req) 320 __must_hold(&req->ctx->uring_lock) 321 { 322 struct io_submit_state *state = &req->ctx->submit_state; 323 324 lockdep_assert_held(&req->ctx->uring_lock); 325 326 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 327 } 328 329 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 330 { 331 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 332 ctx->has_evfd || ctx->poll_activated)) 333 __io_commit_cqring_flush(ctx); 334 } 335 336 static inline void io_get_task_refs(int nr) 337 { 338 struct io_uring_task *tctx = current->io_uring; 339 340 tctx->cached_refs -= nr; 341 if (unlikely(tctx->cached_refs < 0)) 342 io_task_refs_refill(tctx); 343 } 344 345 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 346 { 347 return !ctx->submit_state.free_list.next; 348 } 349 350 extern struct kmem_cache *req_cachep; 351 352 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 353 { 354 struct io_kiocb *req; 355 356 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 357 kasan_unpoison_object_data(req_cachep, req); 358 wq_stack_extract(&ctx->submit_state.free_list); 359 return req; 360 } 361 362 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 363 { 364 if (unlikely(io_req_cache_empty(ctx))) { 365 if (!__io_alloc_req_refill(ctx)) 366 return false; 367 } 368 *req = io_extract_req(ctx); 369 return true; 370 } 371 372 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 373 { 374 return likely(ctx->submitter_task == current); 375 } 376 377 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 378 { 379 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 380 ctx->submitter_task == current); 381 } 382 383 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 384 { 385 io_req_set_res(req, res, 0); 386 req->io_task_work.func = io_req_task_complete; 387 io_req_task_work_add(req); 388 } 389 390 /* 391 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 392 * slot. 393 */ 394 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 395 { 396 if (ctx->flags & IORING_SETUP_SQE128) 397 return 2 * sizeof(struct io_uring_sqe); 398 return sizeof(struct io_uring_sqe); 399 } 400 #endif 401