xref: /linux/io_uring/io_uring.h (revision ef815d2cba782e96b9aad9483523d474ed41c62a)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/*
20 	 * A hint to not wake right away but delay until there are enough of
21 	 * tw's queued to match the number of CQEs the task is waiting for.
22 	 *
23 	 * Must not be used wirh requests generating more than one CQE.
24 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 	 */
26 	IOU_F_TWQ_LAZY_WAKE			= 1,
27 };
28 
29 enum {
30 	IOU_OK			= 0,
31 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
32 
33 	/*
34 	 * Intended only when both IO_URING_F_MULTISHOT is passed
35 	 * to indicate to the poll runner that multishot should be
36 	 * removed and the result is set on req->cqe.res.
37 	 */
38 	IOU_STOP_MULTISHOT	= -ECANCELED,
39 };
40 
41 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow);
42 bool io_req_cqe_overflow(struct io_kiocb *req);
43 int io_run_task_work_sig(struct io_ring_ctx *ctx);
44 void io_req_defer_failed(struct io_kiocb *req, s32 res);
45 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
46 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
47 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
48 		bool allow_overflow);
49 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
50 
51 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
52 
53 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
54 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
55 			       unsigned issue_flags);
56 
57 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
58 bool io_is_uring_fops(struct file *file);
59 bool io_alloc_async_data(struct io_kiocb *req);
60 void io_req_task_queue(struct io_kiocb *req);
61 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
62 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
63 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
64 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
65 void tctx_task_work(struct callback_head *cb);
66 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
67 int io_uring_alloc_task_context(struct task_struct *task,
68 				struct io_ring_ctx *ctx);
69 
70 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
71 				     int start, int end);
72 
73 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
74 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
75 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
76 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
77 int io_req_prep_async(struct io_kiocb *req);
78 
79 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
80 void io_wq_submit_work(struct io_wq_work *work);
81 
82 void io_free_req(struct io_kiocb *req);
83 void io_queue_next(struct io_kiocb *req);
84 void io_task_refs_refill(struct io_uring_task *tctx);
85 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
86 
87 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
88 			bool cancel_all);
89 
90 #define io_lockdep_assert_cq_locked(ctx)				\
91 	do {								\
92 		lockdep_assert(in_task());				\
93 									\
94 		if (ctx->flags & IORING_SETUP_IOPOLL) {			\
95 			lockdep_assert_held(&ctx->uring_lock);		\
96 		} else if (!ctx->task_complete) {			\
97 			lockdep_assert_held(&ctx->completion_lock);	\
98 		} else if (ctx->submitter_task->flags & PF_EXITING) {	\
99 			lockdep_assert(current_work());			\
100 		} else {						\
101 			lockdep_assert(current == ctx->submitter_task);	\
102 		}							\
103 	} while (0)
104 
105 static inline void io_req_task_work_add(struct io_kiocb *req)
106 {
107 	__io_req_task_work_add(req, 0);
108 }
109 
110 #define io_for_each_link(pos, head) \
111 	for (pos = (head); pos; pos = pos->link)
112 
113 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
114 						       bool overflow)
115 {
116 	io_lockdep_assert_cq_locked(ctx);
117 
118 	if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
119 		struct io_uring_cqe *cqe = ctx->cqe_cached;
120 
121 		ctx->cached_cq_tail++;
122 		ctx->cqe_cached++;
123 		if (ctx->flags & IORING_SETUP_CQE32)
124 			ctx->cqe_cached++;
125 		return cqe;
126 	}
127 
128 	return __io_get_cqe(ctx, overflow);
129 }
130 
131 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
132 {
133 	return io_get_cqe_overflow(ctx, false);
134 }
135 
136 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
137 				     struct io_kiocb *req)
138 {
139 	struct io_uring_cqe *cqe;
140 
141 	/*
142 	 * If we can't get a cq entry, userspace overflowed the
143 	 * submission (by quite a lot). Increment the overflow count in
144 	 * the ring.
145 	 */
146 	cqe = io_get_cqe(ctx);
147 	if (unlikely(!cqe))
148 		return false;
149 
150 	trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
151 				req->cqe.res, req->cqe.flags,
152 				(req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0,
153 				(req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0);
154 
155 	memcpy(cqe, &req->cqe, sizeof(*cqe));
156 
157 	if (ctx->flags & IORING_SETUP_CQE32) {
158 		u64 extra1 = 0, extra2 = 0;
159 
160 		if (req->flags & REQ_F_CQE32_INIT) {
161 			extra1 = req->extra1;
162 			extra2 = req->extra2;
163 		}
164 
165 		WRITE_ONCE(cqe->big_cqe[0], extra1);
166 		WRITE_ONCE(cqe->big_cqe[1], extra2);
167 	}
168 	return true;
169 }
170 
171 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
172 				   struct io_kiocb *req)
173 {
174 	if (likely(__io_fill_cqe_req(ctx, req)))
175 		return true;
176 	return io_req_cqe_overflow(req);
177 }
178 
179 static inline void req_set_fail(struct io_kiocb *req)
180 {
181 	req->flags |= REQ_F_FAIL;
182 	if (req->flags & REQ_F_CQE_SKIP) {
183 		req->flags &= ~REQ_F_CQE_SKIP;
184 		req->flags |= REQ_F_SKIP_LINK_CQES;
185 	}
186 }
187 
188 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
189 {
190 	req->cqe.res = res;
191 	req->cqe.flags = cflags;
192 }
193 
194 static inline bool req_has_async_data(struct io_kiocb *req)
195 {
196 	return req->flags & REQ_F_ASYNC_DATA;
197 }
198 
199 static inline void io_put_file(struct file *file)
200 {
201 	if (file)
202 		fput(file);
203 }
204 
205 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
206 					 unsigned issue_flags)
207 {
208 	lockdep_assert_held(&ctx->uring_lock);
209 	if (issue_flags & IO_URING_F_UNLOCKED)
210 		mutex_unlock(&ctx->uring_lock);
211 }
212 
213 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
214 				       unsigned issue_flags)
215 {
216 	/*
217 	 * "Normal" inline submissions always hold the uring_lock, since we
218 	 * grab it from the system call. Same is true for the SQPOLL offload.
219 	 * The only exception is when we've detached the request and issue it
220 	 * from an async worker thread, grab the lock for that case.
221 	 */
222 	if (issue_flags & IO_URING_F_UNLOCKED)
223 		mutex_lock(&ctx->uring_lock);
224 	lockdep_assert_held(&ctx->uring_lock);
225 }
226 
227 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
228 {
229 	/* order cqe stores with ring update */
230 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
231 }
232 
233 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
234 {
235 	if (wq_has_sleeper(&ctx->poll_wq))
236 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
237 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
238 }
239 
240 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
241 {
242 	/*
243 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
244 	 * won't necessarily wake up all the tasks, io_should_wake() will make
245 	 * that decision.
246 	 *
247 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
248 	 * set in the mask so that if we recurse back into our own poll
249 	 * waitqueue handlers, we know we have a dependency between eventfd or
250 	 * epoll and should terminate multishot poll at that point.
251 	 */
252 	if (wq_has_sleeper(&ctx->cq_wait))
253 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
254 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
255 }
256 
257 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
258 {
259 	struct io_rings *r = ctx->rings;
260 
261 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
262 }
263 
264 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
265 {
266 	struct io_rings *rings = ctx->rings;
267 	unsigned int entries;
268 
269 	/* make sure SQ entry isn't read before tail */
270 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
271 	return min(entries, ctx->sq_entries);
272 }
273 
274 static inline int io_run_task_work(void)
275 {
276 	/*
277 	 * Always check-and-clear the task_work notification signal. With how
278 	 * signaling works for task_work, we can find it set with nothing to
279 	 * run. We need to clear it for that case, like get_signal() does.
280 	 */
281 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
282 		clear_notify_signal();
283 	/*
284 	 * PF_IO_WORKER never returns to userspace, so check here if we have
285 	 * notify work that needs processing.
286 	 */
287 	if (current->flags & PF_IO_WORKER &&
288 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
289 		__set_current_state(TASK_RUNNING);
290 		resume_user_mode_work(NULL);
291 	}
292 	if (task_work_pending(current)) {
293 		__set_current_state(TASK_RUNNING);
294 		task_work_run();
295 		return 1;
296 	}
297 
298 	return 0;
299 }
300 
301 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
302 {
303 	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
304 }
305 
306 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
307 {
308 	if (!ts->locked) {
309 		mutex_lock(&ctx->uring_lock);
310 		ts->locked = true;
311 	}
312 }
313 
314 /*
315  * Don't complete immediately but use deferred completion infrastructure.
316  * Protected by ->uring_lock and can only be used either with
317  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
318  */
319 static inline void io_req_complete_defer(struct io_kiocb *req)
320 	__must_hold(&req->ctx->uring_lock)
321 {
322 	struct io_submit_state *state = &req->ctx->submit_state;
323 
324 	lockdep_assert_held(&req->ctx->uring_lock);
325 
326 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
327 }
328 
329 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
330 {
331 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
332 		     ctx->has_evfd || ctx->poll_activated))
333 		__io_commit_cqring_flush(ctx);
334 }
335 
336 static inline void io_get_task_refs(int nr)
337 {
338 	struct io_uring_task *tctx = current->io_uring;
339 
340 	tctx->cached_refs -= nr;
341 	if (unlikely(tctx->cached_refs < 0))
342 		io_task_refs_refill(tctx);
343 }
344 
345 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
346 {
347 	return !ctx->submit_state.free_list.next;
348 }
349 
350 extern struct kmem_cache *req_cachep;
351 
352 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
353 {
354 	struct io_kiocb *req;
355 
356 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
357 	kasan_unpoison_object_data(req_cachep, req);
358 	wq_stack_extract(&ctx->submit_state.free_list);
359 	return req;
360 }
361 
362 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
363 {
364 	if (unlikely(io_req_cache_empty(ctx))) {
365 		if (!__io_alloc_req_refill(ctx))
366 			return false;
367 	}
368 	*req = io_extract_req(ctx);
369 	return true;
370 }
371 
372 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
373 {
374 	return likely(ctx->submitter_task == current);
375 }
376 
377 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
378 {
379 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
380 		      ctx->submitter_task == current);
381 }
382 
383 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
384 {
385 	io_req_set_res(req, res, 0);
386 	req->io_task_work.func = io_req_task_complete;
387 	io_req_task_work_add(req);
388 }
389 
390 /*
391  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
392  * slot.
393  */
394 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
395 {
396 	if (ctx->flags & IORING_SETUP_SQE128)
397 		return 2 * sizeof(struct io_uring_sqe);
398 	return sizeof(struct io_uring_sqe);
399 }
400 #endif
401