xref: /linux/io_uring/io_uring.h (revision e20706d5385b10a6f6a2fe5ad6b1333dad2d1416)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16 
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20 
21 enum {
22 	IOU_OK			= 0, /* deprecated, use IOU_COMPLETE */
23 	IOU_COMPLETE		= 0,
24 
25 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
26 
27 	/*
28 	 * The request has more work to do and should be retried. io_uring will
29 	 * attempt to wait on the file for eligible opcodes, but otherwise
30 	 * it'll be handed to iowq for blocking execution. It works for normal
31 	 * requests as well as for the multi shot mode.
32 	 */
33 	IOU_RETRY		= -EAGAIN,
34 
35 	/*
36 	 * Requeue the task_work to restart operations on this request. The
37 	 * actual value isn't important, should just be not an otherwise
38 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
39 	 */
40 	IOU_REQUEUE		= -3072,
41 };
42 
43 struct io_wait_queue {
44 	struct wait_queue_entry wq;
45 	struct io_ring_ctx *ctx;
46 	unsigned cq_tail;
47 	unsigned cq_min_tail;
48 	unsigned nr_timeouts;
49 	int hit_timeout;
50 	ktime_t min_timeout;
51 	ktime_t timeout;
52 	struct hrtimer t;
53 
54 #ifdef CONFIG_NET_RX_BUSY_POLL
55 	ktime_t napi_busy_poll_dt;
56 	bool napi_prefer_busy_poll;
57 #endif
58 };
59 
60 static inline bool io_should_wake(struct io_wait_queue *iowq)
61 {
62 	struct io_ring_ctx *ctx = iowq->ctx;
63 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
64 
65 	/*
66 	 * Wake up if we have enough events, or if a timeout occurred since we
67 	 * started waiting. For timeouts, we always want to return to userspace,
68 	 * regardless of event count.
69 	 */
70 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
71 }
72 
73 #define IORING_MAX_ENTRIES	32768
74 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
75 
76 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
77 			 unsigned int cq_entries, size_t *sq_offset);
78 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
79 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
80 int io_run_task_work_sig(struct io_ring_ctx *ctx);
81 void io_req_defer_failed(struct io_kiocb *req, s32 res);
82 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
84 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
86 
87 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
89 			       unsigned issue_flags);
90 
91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
92 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
93 				 unsigned flags);
94 void io_req_task_queue(struct io_kiocb *req);
95 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
96 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
97 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
98 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
99 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
100 void tctx_task_work(struct callback_head *cb);
101 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
102 int io_uring_alloc_task_context(struct task_struct *task,
103 				struct io_ring_ctx *ctx);
104 
105 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
106 				     int start, int end);
107 void io_req_queue_iowq(struct io_kiocb *req);
108 
109 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
110 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
111 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
112 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
113 
114 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
115 void io_wq_submit_work(struct io_wq_work *work);
116 
117 void io_free_req(struct io_kiocb *req);
118 void io_queue_next(struct io_kiocb *req);
119 void io_task_refs_refill(struct io_uring_task *tctx);
120 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
121 
122 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
123 			bool cancel_all);
124 
125 void io_activate_pollwq(struct io_ring_ctx *ctx);
126 
127 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
128 {
129 #if defined(CONFIG_PROVE_LOCKING)
130 	lockdep_assert(in_task());
131 
132 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
133 		lockdep_assert_held(&ctx->uring_lock);
134 
135 	if (ctx->flags & IORING_SETUP_IOPOLL) {
136 		lockdep_assert_held(&ctx->uring_lock);
137 	} else if (!ctx->task_complete) {
138 		lockdep_assert_held(&ctx->completion_lock);
139 	} else if (ctx->submitter_task) {
140 		/*
141 		 * ->submitter_task may be NULL and we can still post a CQE,
142 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
143 		 * Not from an SQE, as those cannot be submitted, but via
144 		 * updating tagged resources.
145 		 */
146 		if (!percpu_ref_is_dying(&ctx->refs))
147 			lockdep_assert(current == ctx->submitter_task);
148 	}
149 #endif
150 }
151 
152 static inline bool io_is_compat(struct io_ring_ctx *ctx)
153 {
154 	return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
155 }
156 
157 static inline void io_req_task_work_add(struct io_kiocb *req)
158 {
159 	__io_req_task_work_add(req, 0);
160 }
161 
162 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
163 {
164 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
165 	    ctx->submit_state.cq_flush)
166 		__io_submit_flush_completions(ctx);
167 }
168 
169 #define io_for_each_link(pos, head) \
170 	for (pos = (head); pos; pos = pos->link)
171 
172 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
173 					struct io_uring_cqe **ret,
174 					bool overflow)
175 {
176 	io_lockdep_assert_cq_locked(ctx);
177 
178 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
179 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
180 			return false;
181 	}
182 	*ret = ctx->cqe_cached;
183 	ctx->cached_cq_tail++;
184 	ctx->cqe_cached++;
185 	if (ctx->flags & IORING_SETUP_CQE32)
186 		ctx->cqe_cached++;
187 	return true;
188 }
189 
190 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
191 {
192 	return io_get_cqe_overflow(ctx, ret, false);
193 }
194 
195 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
196 					       struct io_uring_cqe **cqe_ret)
197 {
198 	io_lockdep_assert_cq_locked(ctx);
199 
200 	ctx->cq_extra++;
201 	ctx->submit_state.cq_flush = true;
202 	return io_get_cqe(ctx, cqe_ret);
203 }
204 
205 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
206 					    struct io_kiocb *req)
207 {
208 	struct io_uring_cqe *cqe;
209 
210 	/*
211 	 * If we can't get a cq entry, userspace overflowed the
212 	 * submission (by quite a lot). Increment the overflow count in
213 	 * the ring.
214 	 */
215 	if (unlikely(!io_get_cqe(ctx, &cqe)))
216 		return false;
217 
218 
219 	memcpy(cqe, &req->cqe, sizeof(*cqe));
220 	if (ctx->flags & IORING_SETUP_CQE32) {
221 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
222 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
223 	}
224 
225 	if (trace_io_uring_complete_enabled())
226 		trace_io_uring_complete(req->ctx, req, cqe);
227 	return true;
228 }
229 
230 static inline void req_set_fail(struct io_kiocb *req)
231 {
232 	req->flags |= REQ_F_FAIL;
233 	if (req->flags & REQ_F_CQE_SKIP) {
234 		req->flags &= ~REQ_F_CQE_SKIP;
235 		req->flags |= REQ_F_SKIP_LINK_CQES;
236 	}
237 }
238 
239 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
240 {
241 	req->cqe.res = res;
242 	req->cqe.flags = cflags;
243 }
244 
245 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
246 					      struct io_kiocb *req)
247 {
248 	if (cache) {
249 		req->async_data = io_cache_alloc(cache, GFP_KERNEL);
250 	} else {
251 		const struct io_issue_def *def = &io_issue_defs[req->opcode];
252 
253 		WARN_ON_ONCE(!def->async_size);
254 		req->async_data = kmalloc(def->async_size, GFP_KERNEL);
255 	}
256 	if (req->async_data)
257 		req->flags |= REQ_F_ASYNC_DATA;
258 	return req->async_data;
259 }
260 
261 static inline bool req_has_async_data(struct io_kiocb *req)
262 {
263 	return req->flags & REQ_F_ASYNC_DATA;
264 }
265 
266 static inline void io_put_file(struct io_kiocb *req)
267 {
268 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
269 		fput(req->file);
270 }
271 
272 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
273 					 unsigned issue_flags)
274 {
275 	lockdep_assert_held(&ctx->uring_lock);
276 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
277 		mutex_unlock(&ctx->uring_lock);
278 }
279 
280 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
281 				       unsigned issue_flags)
282 {
283 	/*
284 	 * "Normal" inline submissions always hold the uring_lock, since we
285 	 * grab it from the system call. Same is true for the SQPOLL offload.
286 	 * The only exception is when we've detached the request and issue it
287 	 * from an async worker thread, grab the lock for that case.
288 	 */
289 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
290 		mutex_lock(&ctx->uring_lock);
291 	lockdep_assert_held(&ctx->uring_lock);
292 }
293 
294 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
295 {
296 	/* order cqe stores with ring update */
297 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
298 }
299 
300 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
301 {
302 	if (wq_has_sleeper(&ctx->poll_wq))
303 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
304 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
305 }
306 
307 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
308 {
309 	/*
310 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
311 	 * won't necessarily wake up all the tasks, io_should_wake() will make
312 	 * that decision.
313 	 *
314 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
315 	 * set in the mask so that if we recurse back into our own poll
316 	 * waitqueue handlers, we know we have a dependency between eventfd or
317 	 * epoll and should terminate multishot poll at that point.
318 	 */
319 	if (wq_has_sleeper(&ctx->cq_wait))
320 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
321 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
322 }
323 
324 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
325 {
326 	struct io_rings *r = ctx->rings;
327 
328 	/*
329 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
330 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
331 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
332 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
333 	 * just read the actual sqring head unconditionally.
334 	 */
335 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
336 }
337 
338 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
339 {
340 	struct io_rings *rings = ctx->rings;
341 	unsigned int entries;
342 
343 	/* make sure SQ entry isn't read before tail */
344 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
345 	return min(entries, ctx->sq_entries);
346 }
347 
348 static inline int io_run_task_work(void)
349 {
350 	bool ret = false;
351 
352 	/*
353 	 * Always check-and-clear the task_work notification signal. With how
354 	 * signaling works for task_work, we can find it set with nothing to
355 	 * run. We need to clear it for that case, like get_signal() does.
356 	 */
357 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
358 		clear_notify_signal();
359 	/*
360 	 * PF_IO_WORKER never returns to userspace, so check here if we have
361 	 * notify work that needs processing.
362 	 */
363 	if (current->flags & PF_IO_WORKER) {
364 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
365 			__set_current_state(TASK_RUNNING);
366 			resume_user_mode_work(NULL);
367 		}
368 		if (current->io_uring) {
369 			unsigned int count = 0;
370 
371 			__set_current_state(TASK_RUNNING);
372 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
373 			if (count)
374 				ret = true;
375 		}
376 	}
377 	if (task_work_pending(current)) {
378 		__set_current_state(TASK_RUNNING);
379 		task_work_run();
380 		ret = true;
381 	}
382 
383 	return ret;
384 }
385 
386 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
387 {
388 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
389 }
390 
391 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
392 {
393 	return task_work_pending(current) || io_local_work_pending(ctx);
394 }
395 
396 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
397 {
398 	lockdep_assert_held(&ctx->uring_lock);
399 }
400 
401 /*
402  * Don't complete immediately but use deferred completion infrastructure.
403  * Protected by ->uring_lock and can only be used either with
404  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
405  */
406 static inline void io_req_complete_defer(struct io_kiocb *req)
407 	__must_hold(&req->ctx->uring_lock)
408 {
409 	struct io_submit_state *state = &req->ctx->submit_state;
410 
411 	lockdep_assert_held(&req->ctx->uring_lock);
412 
413 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
414 }
415 
416 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
417 {
418 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
419 		     ctx->has_evfd || ctx->poll_activated))
420 		__io_commit_cqring_flush(ctx);
421 }
422 
423 static inline void io_get_task_refs(int nr)
424 {
425 	struct io_uring_task *tctx = current->io_uring;
426 
427 	tctx->cached_refs -= nr;
428 	if (unlikely(tctx->cached_refs < 0))
429 		io_task_refs_refill(tctx);
430 }
431 
432 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
433 {
434 	return !ctx->submit_state.free_list.next;
435 }
436 
437 extern struct kmem_cache *req_cachep;
438 
439 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
440 {
441 	struct io_kiocb *req;
442 
443 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
444 	wq_stack_extract(&ctx->submit_state.free_list);
445 	return req;
446 }
447 
448 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
449 {
450 	if (unlikely(io_req_cache_empty(ctx))) {
451 		if (!__io_alloc_req_refill(ctx))
452 			return false;
453 	}
454 	*req = io_extract_req(ctx);
455 	return true;
456 }
457 
458 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
459 {
460 	return likely(ctx->submitter_task == current);
461 }
462 
463 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
464 {
465 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
466 		      ctx->submitter_task == current);
467 }
468 
469 /*
470  * Terminate the request if either of these conditions are true:
471  *
472  * 1) It's being executed by the original task, but that task is marked
473  *    with PF_EXITING as it's exiting.
474  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
475  *    our fallback task_work.
476  */
477 static inline bool io_should_terminate_tw(void)
478 {
479 	return current->flags & (PF_KTHREAD | PF_EXITING);
480 }
481 
482 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
483 {
484 	io_req_set_res(req, res, 0);
485 	req->io_task_work.func = io_req_task_complete;
486 	io_req_task_work_add(req);
487 }
488 
489 /*
490  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
491  * slot.
492  */
493 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
494 {
495 	if (ctx->flags & IORING_SETUP_SQE128)
496 		return 2 * sizeof(struct io_uring_sqe);
497 	return sizeof(struct io_uring_sqe);
498 }
499 
500 static inline bool io_file_can_poll(struct io_kiocb *req)
501 {
502 	if (req->flags & REQ_F_CAN_POLL)
503 		return true;
504 	if (req->file && file_can_poll(req->file)) {
505 		req->flags |= REQ_F_CAN_POLL;
506 		return true;
507 	}
508 	return false;
509 }
510 
511 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
512 {
513 	if (ctx->clockid == CLOCK_MONOTONIC)
514 		return ktime_get();
515 
516 	return ktime_get_with_offset(ctx->clock_offset);
517 }
518 
519 enum {
520 	IO_CHECK_CQ_OVERFLOW_BIT,
521 	IO_CHECK_CQ_DROPPED_BIT,
522 };
523 
524 static inline bool io_has_work(struct io_ring_ctx *ctx)
525 {
526 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
527 	       io_local_work_pending(ctx);
528 }
529 #endif
530