1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_OK = 0, /* deprecated, use IOU_COMPLETE */ 23 IOU_COMPLETE = 0, 24 25 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 26 27 /* 28 * The request has more work to do and should be retried. io_uring will 29 * attempt to wait on the file for eligible opcodes, but otherwise 30 * it'll be handed to iowq for blocking execution. It works for normal 31 * requests as well as for the multi shot mode. 32 */ 33 IOU_RETRY = -EAGAIN, 34 35 /* 36 * Requeue the task_work to restart operations on this request. The 37 * actual value isn't important, should just be not an otherwise 38 * valid error code, yet less than -MAX_ERRNO and valid internally. 39 */ 40 IOU_REQUEUE = -3072, 41 }; 42 43 struct io_wait_queue { 44 struct wait_queue_entry wq; 45 struct io_ring_ctx *ctx; 46 unsigned cq_tail; 47 unsigned cq_min_tail; 48 unsigned nr_timeouts; 49 int hit_timeout; 50 ktime_t min_timeout; 51 ktime_t timeout; 52 struct hrtimer t; 53 54 #ifdef CONFIG_NET_RX_BUSY_POLL 55 ktime_t napi_busy_poll_dt; 56 bool napi_prefer_busy_poll; 57 #endif 58 }; 59 60 static inline bool io_should_wake(struct io_wait_queue *iowq) 61 { 62 struct io_ring_ctx *ctx = iowq->ctx; 63 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 64 65 /* 66 * Wake up if we have enough events, or if a timeout occurred since we 67 * started waiting. For timeouts, we always want to return to userspace, 68 * regardless of event count. 69 */ 70 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 71 } 72 73 #define IORING_MAX_ENTRIES 32768 74 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 75 76 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 77 unsigned int cq_entries, size_t *sq_offset); 78 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 79 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 80 int io_run_task_work_sig(struct io_ring_ctx *ctx); 81 void io_req_defer_failed(struct io_kiocb *req, s32 res); 82 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 83 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 84 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 86 87 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 89 unsigned issue_flags); 90 91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 92 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 93 unsigned flags); 94 void io_req_task_queue(struct io_kiocb *req); 95 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 96 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 97 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 98 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 99 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 100 void tctx_task_work(struct callback_head *cb); 101 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 102 int io_uring_alloc_task_context(struct task_struct *task, 103 struct io_ring_ctx *ctx); 104 105 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 106 int start, int end); 107 void io_req_queue_iowq(struct io_kiocb *req); 108 109 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 110 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 111 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 112 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 113 114 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 115 void io_wq_submit_work(struct io_wq_work *work); 116 117 void io_free_req(struct io_kiocb *req); 118 void io_queue_next(struct io_kiocb *req); 119 void io_task_refs_refill(struct io_uring_task *tctx); 120 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 121 122 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 123 bool cancel_all); 124 125 void io_activate_pollwq(struct io_ring_ctx *ctx); 126 127 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 128 { 129 #if defined(CONFIG_PROVE_LOCKING) 130 lockdep_assert(in_task()); 131 132 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 133 lockdep_assert_held(&ctx->uring_lock); 134 135 if (ctx->flags & IORING_SETUP_IOPOLL) { 136 lockdep_assert_held(&ctx->uring_lock); 137 } else if (!ctx->task_complete) { 138 lockdep_assert_held(&ctx->completion_lock); 139 } else if (ctx->submitter_task) { 140 /* 141 * ->submitter_task may be NULL and we can still post a CQE, 142 * if the ring has been setup with IORING_SETUP_R_DISABLED. 143 * Not from an SQE, as those cannot be submitted, but via 144 * updating tagged resources. 145 */ 146 if (!percpu_ref_is_dying(&ctx->refs)) 147 lockdep_assert(current == ctx->submitter_task); 148 } 149 #endif 150 } 151 152 static inline bool io_is_compat(struct io_ring_ctx *ctx) 153 { 154 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 155 } 156 157 static inline void io_req_task_work_add(struct io_kiocb *req) 158 { 159 __io_req_task_work_add(req, 0); 160 } 161 162 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 163 { 164 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 165 ctx->submit_state.cq_flush) 166 __io_submit_flush_completions(ctx); 167 } 168 169 #define io_for_each_link(pos, head) \ 170 for (pos = (head); pos; pos = pos->link) 171 172 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 173 struct io_uring_cqe **ret, 174 bool overflow) 175 { 176 io_lockdep_assert_cq_locked(ctx); 177 178 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 179 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 180 return false; 181 } 182 *ret = ctx->cqe_cached; 183 ctx->cached_cq_tail++; 184 ctx->cqe_cached++; 185 if (ctx->flags & IORING_SETUP_CQE32) 186 ctx->cqe_cached++; 187 return true; 188 } 189 190 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 191 { 192 return io_get_cqe_overflow(ctx, ret, false); 193 } 194 195 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx, 196 struct io_uring_cqe **cqe_ret) 197 { 198 io_lockdep_assert_cq_locked(ctx); 199 200 ctx->cq_extra++; 201 ctx->submit_state.cq_flush = true; 202 return io_get_cqe(ctx, cqe_ret); 203 } 204 205 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 206 struct io_kiocb *req) 207 { 208 struct io_uring_cqe *cqe; 209 210 /* 211 * If we can't get a cq entry, userspace overflowed the 212 * submission (by quite a lot). Increment the overflow count in 213 * the ring. 214 */ 215 if (unlikely(!io_get_cqe(ctx, &cqe))) 216 return false; 217 218 219 memcpy(cqe, &req->cqe, sizeof(*cqe)); 220 if (ctx->flags & IORING_SETUP_CQE32) { 221 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 222 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 223 } 224 225 if (trace_io_uring_complete_enabled()) 226 trace_io_uring_complete(req->ctx, req, cqe); 227 return true; 228 } 229 230 static inline void req_set_fail(struct io_kiocb *req) 231 { 232 req->flags |= REQ_F_FAIL; 233 if (req->flags & REQ_F_CQE_SKIP) { 234 req->flags &= ~REQ_F_CQE_SKIP; 235 req->flags |= REQ_F_SKIP_LINK_CQES; 236 } 237 } 238 239 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 240 { 241 req->cqe.res = res; 242 req->cqe.flags = cflags; 243 } 244 245 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 246 struct io_kiocb *req) 247 { 248 if (cache) { 249 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 250 } else { 251 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 252 253 WARN_ON_ONCE(!def->async_size); 254 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 255 } 256 if (req->async_data) 257 req->flags |= REQ_F_ASYNC_DATA; 258 return req->async_data; 259 } 260 261 static inline bool req_has_async_data(struct io_kiocb *req) 262 { 263 return req->flags & REQ_F_ASYNC_DATA; 264 } 265 266 static inline void io_put_file(struct io_kiocb *req) 267 { 268 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 269 fput(req->file); 270 } 271 272 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 273 unsigned issue_flags) 274 { 275 lockdep_assert_held(&ctx->uring_lock); 276 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 277 mutex_unlock(&ctx->uring_lock); 278 } 279 280 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 281 unsigned issue_flags) 282 { 283 /* 284 * "Normal" inline submissions always hold the uring_lock, since we 285 * grab it from the system call. Same is true for the SQPOLL offload. 286 * The only exception is when we've detached the request and issue it 287 * from an async worker thread, grab the lock for that case. 288 */ 289 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 290 mutex_lock(&ctx->uring_lock); 291 lockdep_assert_held(&ctx->uring_lock); 292 } 293 294 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 295 { 296 /* order cqe stores with ring update */ 297 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 298 } 299 300 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 301 { 302 if (wq_has_sleeper(&ctx->poll_wq)) 303 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 304 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 305 } 306 307 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 308 { 309 /* 310 * Trigger waitqueue handler on all waiters on our waitqueue. This 311 * won't necessarily wake up all the tasks, io_should_wake() will make 312 * that decision. 313 * 314 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 315 * set in the mask so that if we recurse back into our own poll 316 * waitqueue handlers, we know we have a dependency between eventfd or 317 * epoll and should terminate multishot poll at that point. 318 */ 319 if (wq_has_sleeper(&ctx->cq_wait)) 320 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 321 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 322 } 323 324 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 325 { 326 struct io_rings *r = ctx->rings; 327 328 /* 329 * SQPOLL must use the actual sqring head, as using the cached_sq_head 330 * is race prone if the SQPOLL thread has grabbed entries but not yet 331 * committed them to the ring. For !SQPOLL, this doesn't matter, but 332 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 333 * just read the actual sqring head unconditionally. 334 */ 335 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 336 } 337 338 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 339 { 340 struct io_rings *rings = ctx->rings; 341 unsigned int entries; 342 343 /* make sure SQ entry isn't read before tail */ 344 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 345 return min(entries, ctx->sq_entries); 346 } 347 348 static inline int io_run_task_work(void) 349 { 350 bool ret = false; 351 352 /* 353 * Always check-and-clear the task_work notification signal. With how 354 * signaling works for task_work, we can find it set with nothing to 355 * run. We need to clear it for that case, like get_signal() does. 356 */ 357 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 358 clear_notify_signal(); 359 /* 360 * PF_IO_WORKER never returns to userspace, so check here if we have 361 * notify work that needs processing. 362 */ 363 if (current->flags & PF_IO_WORKER) { 364 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 365 __set_current_state(TASK_RUNNING); 366 resume_user_mode_work(NULL); 367 } 368 if (current->io_uring) { 369 unsigned int count = 0; 370 371 __set_current_state(TASK_RUNNING); 372 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 373 if (count) 374 ret = true; 375 } 376 } 377 if (task_work_pending(current)) { 378 __set_current_state(TASK_RUNNING); 379 task_work_run(); 380 ret = true; 381 } 382 383 return ret; 384 } 385 386 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 387 { 388 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 389 } 390 391 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 392 { 393 return task_work_pending(current) || io_local_work_pending(ctx); 394 } 395 396 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 397 { 398 lockdep_assert_held(&ctx->uring_lock); 399 } 400 401 /* 402 * Don't complete immediately but use deferred completion infrastructure. 403 * Protected by ->uring_lock and can only be used either with 404 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 405 */ 406 static inline void io_req_complete_defer(struct io_kiocb *req) 407 __must_hold(&req->ctx->uring_lock) 408 { 409 struct io_submit_state *state = &req->ctx->submit_state; 410 411 lockdep_assert_held(&req->ctx->uring_lock); 412 413 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 414 } 415 416 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 417 { 418 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 419 ctx->has_evfd || ctx->poll_activated)) 420 __io_commit_cqring_flush(ctx); 421 } 422 423 static inline void io_get_task_refs(int nr) 424 { 425 struct io_uring_task *tctx = current->io_uring; 426 427 tctx->cached_refs -= nr; 428 if (unlikely(tctx->cached_refs < 0)) 429 io_task_refs_refill(tctx); 430 } 431 432 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 433 { 434 return !ctx->submit_state.free_list.next; 435 } 436 437 extern struct kmem_cache *req_cachep; 438 439 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 440 { 441 struct io_kiocb *req; 442 443 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 444 wq_stack_extract(&ctx->submit_state.free_list); 445 return req; 446 } 447 448 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 449 { 450 if (unlikely(io_req_cache_empty(ctx))) { 451 if (!__io_alloc_req_refill(ctx)) 452 return false; 453 } 454 *req = io_extract_req(ctx); 455 return true; 456 } 457 458 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 459 { 460 return likely(ctx->submitter_task == current); 461 } 462 463 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 464 { 465 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 466 ctx->submitter_task == current); 467 } 468 469 /* 470 * Terminate the request if either of these conditions are true: 471 * 472 * 1) It's being executed by the original task, but that task is marked 473 * with PF_EXITING as it's exiting. 474 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 475 * our fallback task_work. 476 */ 477 static inline bool io_should_terminate_tw(void) 478 { 479 return current->flags & (PF_KTHREAD | PF_EXITING); 480 } 481 482 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 483 { 484 io_req_set_res(req, res, 0); 485 req->io_task_work.func = io_req_task_complete; 486 io_req_task_work_add(req); 487 } 488 489 /* 490 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 491 * slot. 492 */ 493 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 494 { 495 if (ctx->flags & IORING_SETUP_SQE128) 496 return 2 * sizeof(struct io_uring_sqe); 497 return sizeof(struct io_uring_sqe); 498 } 499 500 static inline bool io_file_can_poll(struct io_kiocb *req) 501 { 502 if (req->flags & REQ_F_CAN_POLL) 503 return true; 504 if (req->file && file_can_poll(req->file)) { 505 req->flags |= REQ_F_CAN_POLL; 506 return true; 507 } 508 return false; 509 } 510 511 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 512 { 513 if (ctx->clockid == CLOCK_MONOTONIC) 514 return ktime_get(); 515 516 return ktime_get_with_offset(ctx->clock_offset); 517 } 518 519 enum { 520 IO_CHECK_CQ_OVERFLOW_BIT, 521 IO_CHECK_CQ_DROPPED_BIT, 522 }; 523 524 static inline bool io_has_work(struct io_ring_ctx *ctx) 525 { 526 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 527 io_local_work_pending(ctx); 528 } 529 #endif 530