xref: /linux/io_uring/io_uring.h (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "io-wq.h"
12 #include "slist.h"
13 #include "filetable.h"
14 
15 #ifndef CREATE_TRACE_POINTS
16 #include <trace/events/io_uring.h>
17 #endif
18 
19 enum {
20 	IOU_OK			= 0,
21 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
22 
23 	/*
24 	 * Requeue the task_work to restart operations on this request. The
25 	 * actual value isn't important, should just be not an otherwise
26 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
27 	 */
28 	IOU_REQUEUE		= -3072,
29 
30 	/*
31 	 * Intended only when both IO_URING_F_MULTISHOT is passed
32 	 * to indicate to the poll runner that multishot should be
33 	 * removed and the result is set on req->cqe.res.
34 	 */
35 	IOU_STOP_MULTISHOT	= -ECANCELED,
36 };
37 
38 struct io_wait_queue {
39 	struct wait_queue_entry wq;
40 	struct io_ring_ctx *ctx;
41 	unsigned cq_tail;
42 	unsigned cq_min_tail;
43 	unsigned nr_timeouts;
44 	int hit_timeout;
45 	ktime_t min_timeout;
46 	ktime_t timeout;
47 	struct hrtimer t;
48 
49 #ifdef CONFIG_NET_RX_BUSY_POLL
50 	ktime_t napi_busy_poll_dt;
51 	bool napi_prefer_busy_poll;
52 #endif
53 };
54 
55 static inline bool io_should_wake(struct io_wait_queue *iowq)
56 {
57 	struct io_ring_ctx *ctx = iowq->ctx;
58 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
59 
60 	/*
61 	 * Wake up if we have enough events, or if a timeout occurred since we
62 	 * started waiting. For timeouts, we always want to return to userspace,
63 	 * regardless of event count.
64 	 */
65 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
66 }
67 
68 #define IORING_MAX_ENTRIES	32768
69 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
70 
71 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
72 			 unsigned int cq_entries, size_t *sq_offset);
73 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
74 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
75 int io_run_task_work_sig(struct io_ring_ctx *ctx);
76 void io_req_defer_failed(struct io_kiocb *req, s32 res);
77 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
78 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
79 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
80 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
81 
82 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
83 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
84 			       unsigned issue_flags);
85 
86 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
87 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
88 				 unsigned flags);
89 bool io_alloc_async_data(struct io_kiocb *req);
90 void io_req_task_queue(struct io_kiocb *req);
91 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
92 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
93 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
94 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
95 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
96 void tctx_task_work(struct callback_head *cb);
97 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
98 int io_uring_alloc_task_context(struct task_struct *task,
99 				struct io_ring_ctx *ctx);
100 
101 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
102 				     int start, int end);
103 void io_req_queue_iowq(struct io_kiocb *req);
104 
105 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
106 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
107 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
108 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
109 
110 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
111 void io_wq_submit_work(struct io_wq_work *work);
112 
113 void io_free_req(struct io_kiocb *req);
114 void io_queue_next(struct io_kiocb *req);
115 void io_task_refs_refill(struct io_uring_task *tctx);
116 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
117 
118 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
119 			bool cancel_all);
120 
121 void io_activate_pollwq(struct io_ring_ctx *ctx);
122 
123 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
124 {
125 #if defined(CONFIG_PROVE_LOCKING)
126 	lockdep_assert(in_task());
127 
128 	if (ctx->flags & IORING_SETUP_IOPOLL) {
129 		lockdep_assert_held(&ctx->uring_lock);
130 	} else if (!ctx->task_complete) {
131 		lockdep_assert_held(&ctx->completion_lock);
132 	} else if (ctx->submitter_task) {
133 		/*
134 		 * ->submitter_task may be NULL and we can still post a CQE,
135 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
136 		 * Not from an SQE, as those cannot be submitted, but via
137 		 * updating tagged resources.
138 		 */
139 		if (percpu_ref_is_dying(&ctx->refs))
140 			lockdep_assert(current_work());
141 		else
142 			lockdep_assert(current == ctx->submitter_task);
143 	}
144 #endif
145 }
146 
147 static inline void io_req_task_work_add(struct io_kiocb *req)
148 {
149 	__io_req_task_work_add(req, 0);
150 }
151 
152 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
153 {
154 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
155 	    ctx->submit_state.cq_flush)
156 		__io_submit_flush_completions(ctx);
157 }
158 
159 #define io_for_each_link(pos, head) \
160 	for (pos = (head); pos; pos = pos->link)
161 
162 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
163 					struct io_uring_cqe **ret,
164 					bool overflow)
165 {
166 	io_lockdep_assert_cq_locked(ctx);
167 
168 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
169 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
170 			return false;
171 	}
172 	*ret = ctx->cqe_cached;
173 	ctx->cached_cq_tail++;
174 	ctx->cqe_cached++;
175 	if (ctx->flags & IORING_SETUP_CQE32)
176 		ctx->cqe_cached++;
177 	return true;
178 }
179 
180 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
181 {
182 	return io_get_cqe_overflow(ctx, ret, false);
183 }
184 
185 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
186 					    struct io_kiocb *req)
187 {
188 	struct io_uring_cqe *cqe;
189 
190 	/*
191 	 * If we can't get a cq entry, userspace overflowed the
192 	 * submission (by quite a lot). Increment the overflow count in
193 	 * the ring.
194 	 */
195 	if (unlikely(!io_get_cqe(ctx, &cqe)))
196 		return false;
197 
198 
199 	memcpy(cqe, &req->cqe, sizeof(*cqe));
200 	if (ctx->flags & IORING_SETUP_CQE32) {
201 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
202 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
203 	}
204 
205 	if (trace_io_uring_complete_enabled())
206 		trace_io_uring_complete(req->ctx, req, cqe);
207 	return true;
208 }
209 
210 static inline void req_set_fail(struct io_kiocb *req)
211 {
212 	req->flags |= REQ_F_FAIL;
213 	if (req->flags & REQ_F_CQE_SKIP) {
214 		req->flags &= ~REQ_F_CQE_SKIP;
215 		req->flags |= REQ_F_SKIP_LINK_CQES;
216 	}
217 }
218 
219 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
220 {
221 	req->cqe.res = res;
222 	req->cqe.flags = cflags;
223 }
224 
225 static inline bool req_has_async_data(struct io_kiocb *req)
226 {
227 	return req->flags & REQ_F_ASYNC_DATA;
228 }
229 
230 static inline void io_put_file(struct io_kiocb *req)
231 {
232 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
233 		fput(req->file);
234 }
235 
236 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
237 					 unsigned issue_flags)
238 {
239 	lockdep_assert_held(&ctx->uring_lock);
240 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
241 		mutex_unlock(&ctx->uring_lock);
242 }
243 
244 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
245 				       unsigned issue_flags)
246 {
247 	/*
248 	 * "Normal" inline submissions always hold the uring_lock, since we
249 	 * grab it from the system call. Same is true for the SQPOLL offload.
250 	 * The only exception is when we've detached the request and issue it
251 	 * from an async worker thread, grab the lock for that case.
252 	 */
253 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
254 		mutex_lock(&ctx->uring_lock);
255 	lockdep_assert_held(&ctx->uring_lock);
256 }
257 
258 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
259 {
260 	/* order cqe stores with ring update */
261 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
262 }
263 
264 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
265 {
266 	if (wq_has_sleeper(&ctx->poll_wq))
267 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
268 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
269 }
270 
271 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
272 {
273 	/*
274 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
275 	 * won't necessarily wake up all the tasks, io_should_wake() will make
276 	 * that decision.
277 	 *
278 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
279 	 * set in the mask so that if we recurse back into our own poll
280 	 * waitqueue handlers, we know we have a dependency between eventfd or
281 	 * epoll and should terminate multishot poll at that point.
282 	 */
283 	if (wq_has_sleeper(&ctx->cq_wait))
284 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
285 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
286 }
287 
288 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
289 {
290 	struct io_rings *r = ctx->rings;
291 
292 	/*
293 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
294 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
295 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
296 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
297 	 * just read the actual sqring head unconditionally.
298 	 */
299 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
300 }
301 
302 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
303 {
304 	struct io_rings *rings = ctx->rings;
305 	unsigned int entries;
306 
307 	/* make sure SQ entry isn't read before tail */
308 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
309 	return min(entries, ctx->sq_entries);
310 }
311 
312 static inline int io_run_task_work(void)
313 {
314 	bool ret = false;
315 
316 	/*
317 	 * Always check-and-clear the task_work notification signal. With how
318 	 * signaling works for task_work, we can find it set with nothing to
319 	 * run. We need to clear it for that case, like get_signal() does.
320 	 */
321 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
322 		clear_notify_signal();
323 	/*
324 	 * PF_IO_WORKER never returns to userspace, so check here if we have
325 	 * notify work that needs processing.
326 	 */
327 	if (current->flags & PF_IO_WORKER) {
328 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
329 			__set_current_state(TASK_RUNNING);
330 			resume_user_mode_work(NULL);
331 		}
332 		if (current->io_uring) {
333 			unsigned int count = 0;
334 
335 			__set_current_state(TASK_RUNNING);
336 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
337 			if (count)
338 				ret = true;
339 		}
340 	}
341 	if (task_work_pending(current)) {
342 		__set_current_state(TASK_RUNNING);
343 		task_work_run();
344 		ret = true;
345 	}
346 
347 	return ret;
348 }
349 
350 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
351 {
352 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
353 }
354 
355 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
356 {
357 	return task_work_pending(current) || io_local_work_pending(ctx);
358 }
359 
360 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
361 {
362 	lockdep_assert_held(&ctx->uring_lock);
363 }
364 
365 /*
366  * Don't complete immediately but use deferred completion infrastructure.
367  * Protected by ->uring_lock and can only be used either with
368  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
369  */
370 static inline void io_req_complete_defer(struct io_kiocb *req)
371 	__must_hold(&req->ctx->uring_lock)
372 {
373 	struct io_submit_state *state = &req->ctx->submit_state;
374 
375 	lockdep_assert_held(&req->ctx->uring_lock);
376 
377 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
378 }
379 
380 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
381 {
382 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
383 		     ctx->has_evfd || ctx->poll_activated))
384 		__io_commit_cqring_flush(ctx);
385 }
386 
387 static inline void io_get_task_refs(int nr)
388 {
389 	struct io_uring_task *tctx = current->io_uring;
390 
391 	tctx->cached_refs -= nr;
392 	if (unlikely(tctx->cached_refs < 0))
393 		io_task_refs_refill(tctx);
394 }
395 
396 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
397 {
398 	return !ctx->submit_state.free_list.next;
399 }
400 
401 extern struct kmem_cache *req_cachep;
402 extern struct kmem_cache *io_buf_cachep;
403 
404 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
405 {
406 	struct io_kiocb *req;
407 
408 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
409 	wq_stack_extract(&ctx->submit_state.free_list);
410 	return req;
411 }
412 
413 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
414 {
415 	if (unlikely(io_req_cache_empty(ctx))) {
416 		if (!__io_alloc_req_refill(ctx))
417 			return false;
418 	}
419 	*req = io_extract_req(ctx);
420 	return true;
421 }
422 
423 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
424 {
425 	return likely(ctx->submitter_task == current);
426 }
427 
428 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
429 {
430 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
431 		      ctx->submitter_task == current);
432 }
433 
434 /*
435  * Terminate the request if either of these conditions are true:
436  *
437  * 1) It's being executed by the original task, but that task is marked
438  *    with PF_EXITING as it's exiting.
439  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
440  *    our fallback task_work.
441  */
442 static inline bool io_should_terminate_tw(void)
443 {
444 	return current->flags & (PF_KTHREAD | PF_EXITING);
445 }
446 
447 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
448 {
449 	io_req_set_res(req, res, 0);
450 	req->io_task_work.func = io_req_task_complete;
451 	io_req_task_work_add(req);
452 }
453 
454 /*
455  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
456  * slot.
457  */
458 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
459 {
460 	if (ctx->flags & IORING_SETUP_SQE128)
461 		return 2 * sizeof(struct io_uring_sqe);
462 	return sizeof(struct io_uring_sqe);
463 }
464 
465 static inline bool io_file_can_poll(struct io_kiocb *req)
466 {
467 	if (req->flags & REQ_F_CAN_POLL)
468 		return true;
469 	if (req->file && file_can_poll(req->file)) {
470 		req->flags |= REQ_F_CAN_POLL;
471 		return true;
472 	}
473 	return false;
474 }
475 
476 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
477 {
478 	if (ctx->clockid == CLOCK_MONOTONIC)
479 		return ktime_get();
480 
481 	return ktime_get_with_offset(ctx->clock_offset);
482 }
483 
484 enum {
485 	IO_CHECK_CQ_OVERFLOW_BIT,
486 	IO_CHECK_CQ_DROPPED_BIT,
487 };
488 
489 static inline bool io_has_work(struct io_ring_ctx *ctx)
490 {
491 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
492 	       io_local_work_pending(ctx);
493 }
494 #endif
495