1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "io-wq.h" 12 #include "slist.h" 13 #include "filetable.h" 14 15 #ifndef CREATE_TRACE_POINTS 16 #include <trace/events/io_uring.h> 17 #endif 18 19 enum { 20 IOU_OK = 0, 21 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 22 23 /* 24 * Requeue the task_work to restart operations on this request. The 25 * actual value isn't important, should just be not an otherwise 26 * valid error code, yet less than -MAX_ERRNO and valid internally. 27 */ 28 IOU_REQUEUE = -3072, 29 30 /* 31 * Intended only when both IO_URING_F_MULTISHOT is passed 32 * to indicate to the poll runner that multishot should be 33 * removed and the result is set on req->cqe.res. 34 */ 35 IOU_STOP_MULTISHOT = -ECANCELED, 36 }; 37 38 struct io_wait_queue { 39 struct wait_queue_entry wq; 40 struct io_ring_ctx *ctx; 41 unsigned cq_tail; 42 unsigned cq_min_tail; 43 unsigned nr_timeouts; 44 int hit_timeout; 45 ktime_t min_timeout; 46 ktime_t timeout; 47 struct hrtimer t; 48 49 #ifdef CONFIG_NET_RX_BUSY_POLL 50 ktime_t napi_busy_poll_dt; 51 bool napi_prefer_busy_poll; 52 #endif 53 }; 54 55 static inline bool io_should_wake(struct io_wait_queue *iowq) 56 { 57 struct io_ring_ctx *ctx = iowq->ctx; 58 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 59 60 /* 61 * Wake up if we have enough events, or if a timeout occurred since we 62 * started waiting. For timeouts, we always want to return to userspace, 63 * regardless of event count. 64 */ 65 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 66 } 67 68 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 69 int io_run_task_work_sig(struct io_ring_ctx *ctx); 70 void io_req_defer_failed(struct io_kiocb *req, s32 res); 71 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 72 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 73 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 74 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 75 76 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 77 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 78 unsigned issue_flags); 79 80 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 81 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 82 unsigned flags); 83 bool io_alloc_async_data(struct io_kiocb *req); 84 void io_req_task_queue(struct io_kiocb *req); 85 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 86 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 87 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 88 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 89 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 90 void tctx_task_work(struct callback_head *cb); 91 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 92 int io_uring_alloc_task_context(struct task_struct *task, 93 struct io_ring_ctx *ctx); 94 95 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 96 int start, int end); 97 void io_req_queue_iowq(struct io_kiocb *req); 98 99 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 100 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 101 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 102 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 103 104 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 105 void io_wq_submit_work(struct io_wq_work *work); 106 107 void io_free_req(struct io_kiocb *req); 108 void io_queue_next(struct io_kiocb *req); 109 void io_task_refs_refill(struct io_uring_task *tctx); 110 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 111 112 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 113 bool cancel_all); 114 115 void io_activate_pollwq(struct io_ring_ctx *ctx); 116 117 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 118 { 119 #if defined(CONFIG_PROVE_LOCKING) 120 lockdep_assert(in_task()); 121 122 if (ctx->flags & IORING_SETUP_IOPOLL) { 123 lockdep_assert_held(&ctx->uring_lock); 124 } else if (!ctx->task_complete) { 125 lockdep_assert_held(&ctx->completion_lock); 126 } else if (ctx->submitter_task) { 127 /* 128 * ->submitter_task may be NULL and we can still post a CQE, 129 * if the ring has been setup with IORING_SETUP_R_DISABLED. 130 * Not from an SQE, as those cannot be submitted, but via 131 * updating tagged resources. 132 */ 133 if (ctx->submitter_task->flags & PF_EXITING) 134 lockdep_assert(current_work()); 135 else 136 lockdep_assert(current == ctx->submitter_task); 137 } 138 #endif 139 } 140 141 static inline void io_req_task_work_add(struct io_kiocb *req) 142 { 143 __io_req_task_work_add(req, 0); 144 } 145 146 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 147 { 148 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 149 ctx->submit_state.cq_flush) 150 __io_submit_flush_completions(ctx); 151 } 152 153 #define io_for_each_link(pos, head) \ 154 for (pos = (head); pos; pos = pos->link) 155 156 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 157 struct io_uring_cqe **ret, 158 bool overflow) 159 { 160 io_lockdep_assert_cq_locked(ctx); 161 162 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 163 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 164 return false; 165 } 166 *ret = ctx->cqe_cached; 167 ctx->cached_cq_tail++; 168 ctx->cqe_cached++; 169 if (ctx->flags & IORING_SETUP_CQE32) 170 ctx->cqe_cached++; 171 return true; 172 } 173 174 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 175 { 176 return io_get_cqe_overflow(ctx, ret, false); 177 } 178 179 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 180 struct io_kiocb *req) 181 { 182 struct io_uring_cqe *cqe; 183 184 /* 185 * If we can't get a cq entry, userspace overflowed the 186 * submission (by quite a lot). Increment the overflow count in 187 * the ring. 188 */ 189 if (unlikely(!io_get_cqe(ctx, &cqe))) 190 return false; 191 192 if (trace_io_uring_complete_enabled()) 193 trace_io_uring_complete(req->ctx, req, req->cqe.user_data, 194 req->cqe.res, req->cqe.flags, 195 req->big_cqe.extra1, req->big_cqe.extra2); 196 197 memcpy(cqe, &req->cqe, sizeof(*cqe)); 198 if (ctx->flags & IORING_SETUP_CQE32) { 199 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 200 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 201 } 202 return true; 203 } 204 205 static inline void req_set_fail(struct io_kiocb *req) 206 { 207 req->flags |= REQ_F_FAIL; 208 if (req->flags & REQ_F_CQE_SKIP) { 209 req->flags &= ~REQ_F_CQE_SKIP; 210 req->flags |= REQ_F_SKIP_LINK_CQES; 211 } 212 } 213 214 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 215 { 216 req->cqe.res = res; 217 req->cqe.flags = cflags; 218 } 219 220 static inline bool req_has_async_data(struct io_kiocb *req) 221 { 222 return req->flags & REQ_F_ASYNC_DATA; 223 } 224 225 static inline void io_put_file(struct io_kiocb *req) 226 { 227 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 228 fput(req->file); 229 } 230 231 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 232 unsigned issue_flags) 233 { 234 lockdep_assert_held(&ctx->uring_lock); 235 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 236 mutex_unlock(&ctx->uring_lock); 237 } 238 239 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 240 unsigned issue_flags) 241 { 242 /* 243 * "Normal" inline submissions always hold the uring_lock, since we 244 * grab it from the system call. Same is true for the SQPOLL offload. 245 * The only exception is when we've detached the request and issue it 246 * from an async worker thread, grab the lock for that case. 247 */ 248 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 249 mutex_lock(&ctx->uring_lock); 250 lockdep_assert_held(&ctx->uring_lock); 251 } 252 253 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 254 { 255 /* order cqe stores with ring update */ 256 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 257 } 258 259 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 260 { 261 if (wq_has_sleeper(&ctx->poll_wq)) 262 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 263 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 264 } 265 266 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 267 { 268 /* 269 * Trigger waitqueue handler on all waiters on our waitqueue. This 270 * won't necessarily wake up all the tasks, io_should_wake() will make 271 * that decision. 272 * 273 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 274 * set in the mask so that if we recurse back into our own poll 275 * waitqueue handlers, we know we have a dependency between eventfd or 276 * epoll and should terminate multishot poll at that point. 277 */ 278 if (wq_has_sleeper(&ctx->cq_wait)) 279 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 280 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 281 } 282 283 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 284 { 285 struct io_rings *r = ctx->rings; 286 287 /* 288 * SQPOLL must use the actual sqring head, as using the cached_sq_head 289 * is race prone if the SQPOLL thread has grabbed entries but not yet 290 * committed them to the ring. For !SQPOLL, this doesn't matter, but 291 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 292 * just read the actual sqring head unconditionally. 293 */ 294 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 295 } 296 297 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 298 { 299 struct io_rings *rings = ctx->rings; 300 unsigned int entries; 301 302 /* make sure SQ entry isn't read before tail */ 303 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 304 return min(entries, ctx->sq_entries); 305 } 306 307 static inline int io_run_task_work(void) 308 { 309 bool ret = false; 310 311 /* 312 * Always check-and-clear the task_work notification signal. With how 313 * signaling works for task_work, we can find it set with nothing to 314 * run. We need to clear it for that case, like get_signal() does. 315 */ 316 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 317 clear_notify_signal(); 318 /* 319 * PF_IO_WORKER never returns to userspace, so check here if we have 320 * notify work that needs processing. 321 */ 322 if (current->flags & PF_IO_WORKER) { 323 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 324 __set_current_state(TASK_RUNNING); 325 resume_user_mode_work(NULL); 326 } 327 if (current->io_uring) { 328 unsigned int count = 0; 329 330 __set_current_state(TASK_RUNNING); 331 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 332 if (count) 333 ret = true; 334 } 335 } 336 if (task_work_pending(current)) { 337 __set_current_state(TASK_RUNNING); 338 task_work_run(); 339 ret = true; 340 } 341 342 return ret; 343 } 344 345 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 346 { 347 return task_work_pending(current) || !llist_empty(&ctx->work_llist); 348 } 349 350 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 351 { 352 lockdep_assert_held(&ctx->uring_lock); 353 } 354 355 /* 356 * Don't complete immediately but use deferred completion infrastructure. 357 * Protected by ->uring_lock and can only be used either with 358 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 359 */ 360 static inline void io_req_complete_defer(struct io_kiocb *req) 361 __must_hold(&req->ctx->uring_lock) 362 { 363 struct io_submit_state *state = &req->ctx->submit_state; 364 365 lockdep_assert_held(&req->ctx->uring_lock); 366 367 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 368 } 369 370 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 371 { 372 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 373 ctx->has_evfd || ctx->poll_activated)) 374 __io_commit_cqring_flush(ctx); 375 } 376 377 static inline void io_get_task_refs(int nr) 378 { 379 struct io_uring_task *tctx = current->io_uring; 380 381 tctx->cached_refs -= nr; 382 if (unlikely(tctx->cached_refs < 0)) 383 io_task_refs_refill(tctx); 384 } 385 386 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 387 { 388 return !ctx->submit_state.free_list.next; 389 } 390 391 extern struct kmem_cache *req_cachep; 392 extern struct kmem_cache *io_buf_cachep; 393 394 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 395 { 396 struct io_kiocb *req; 397 398 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 399 wq_stack_extract(&ctx->submit_state.free_list); 400 return req; 401 } 402 403 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 404 { 405 if (unlikely(io_req_cache_empty(ctx))) { 406 if (!__io_alloc_req_refill(ctx)) 407 return false; 408 } 409 *req = io_extract_req(ctx); 410 return true; 411 } 412 413 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 414 { 415 return likely(ctx->submitter_task == current); 416 } 417 418 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 419 { 420 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 421 ctx->submitter_task == current); 422 } 423 424 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 425 { 426 io_req_set_res(req, res, 0); 427 req->io_task_work.func = io_req_task_complete; 428 io_req_task_work_add(req); 429 } 430 431 /* 432 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 433 * slot. 434 */ 435 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 436 { 437 if (ctx->flags & IORING_SETUP_SQE128) 438 return 2 * sizeof(struct io_uring_sqe); 439 return sizeof(struct io_uring_sqe); 440 } 441 442 static inline bool io_file_can_poll(struct io_kiocb *req) 443 { 444 if (req->flags & REQ_F_CAN_POLL) 445 return true; 446 if (req->file && file_can_poll(req->file)) { 447 req->flags |= REQ_F_CAN_POLL; 448 return true; 449 } 450 return false; 451 } 452 453 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 454 { 455 if (ctx->clockid == CLOCK_MONOTONIC) 456 return ktime_get(); 457 458 return ktime_get_with_offset(ctx->clock_offset); 459 } 460 461 enum { 462 IO_CHECK_CQ_OVERFLOW_BIT, 463 IO_CHECK_CQ_DROPPED_BIT, 464 }; 465 466 static inline bool io_has_work(struct io_ring_ctx *ctx) 467 { 468 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 469 !llist_empty(&ctx->work_llist); 470 } 471 #endif 472