1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_COMPLETE = 0, 23 24 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 25 26 /* 27 * The request has more work to do and should be retried. io_uring will 28 * attempt to wait on the file for eligible opcodes, but otherwise 29 * it'll be handed to iowq for blocking execution. It works for normal 30 * requests as well as for the multi shot mode. 31 */ 32 IOU_RETRY = -EAGAIN, 33 34 /* 35 * Requeue the task_work to restart operations on this request. The 36 * actual value isn't important, should just be not an otherwise 37 * valid error code, yet less than -MAX_ERRNO and valid internally. 38 */ 39 IOU_REQUEUE = -3072, 40 }; 41 42 struct io_wait_queue { 43 struct wait_queue_entry wq; 44 struct io_ring_ctx *ctx; 45 unsigned cq_tail; 46 unsigned cq_min_tail; 47 unsigned nr_timeouts; 48 int hit_timeout; 49 ktime_t min_timeout; 50 ktime_t timeout; 51 struct hrtimer t; 52 53 #ifdef CONFIG_NET_RX_BUSY_POLL 54 ktime_t napi_busy_poll_dt; 55 bool napi_prefer_busy_poll; 56 #endif 57 }; 58 59 static inline bool io_should_wake(struct io_wait_queue *iowq) 60 { 61 struct io_ring_ctx *ctx = iowq->ctx; 62 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 63 64 /* 65 * Wake up if we have enough events, or if a timeout occurred since we 66 * started waiting. For timeouts, we always want to return to userspace, 67 * regardless of event count. 68 */ 69 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 70 } 71 72 #define IORING_MAX_ENTRIES 32768 73 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 74 75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 76 unsigned int cq_entries, size_t *sq_offset); 77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 79 int io_run_task_work_sig(struct io_ring_ctx *ctx); 80 void io_req_defer_failed(struct io_kiocb *req, s32 res); 81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 84 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 85 86 void io_req_track_inflight(struct io_kiocb *req); 87 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 89 unsigned issue_flags); 90 91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags); 93 void io_req_task_queue(struct io_kiocb *req); 94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 95 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 99 void tctx_task_work(struct callback_head *cb); 100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 101 int io_uring_alloc_task_context(struct task_struct *task, 102 struct io_ring_ctx *ctx); 103 104 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 105 int start, int end); 106 void io_req_queue_iowq(struct io_kiocb *req); 107 108 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 109 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 110 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 111 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 112 113 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 114 void io_wq_submit_work(struct io_wq_work *work); 115 116 void io_free_req(struct io_kiocb *req); 117 void io_queue_next(struct io_kiocb *req); 118 void io_task_refs_refill(struct io_uring_task *tctx); 119 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 120 121 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 122 bool cancel_all); 123 124 void io_activate_pollwq(struct io_ring_ctx *ctx); 125 126 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 127 { 128 #if defined(CONFIG_PROVE_LOCKING) 129 lockdep_assert(in_task()); 130 131 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 132 lockdep_assert_held(&ctx->uring_lock); 133 134 if (ctx->flags & IORING_SETUP_IOPOLL) { 135 lockdep_assert_held(&ctx->uring_lock); 136 } else if (!ctx->task_complete) { 137 lockdep_assert_held(&ctx->completion_lock); 138 } else if (ctx->submitter_task) { 139 /* 140 * ->submitter_task may be NULL and we can still post a CQE, 141 * if the ring has been setup with IORING_SETUP_R_DISABLED. 142 * Not from an SQE, as those cannot be submitted, but via 143 * updating tagged resources. 144 */ 145 if (!percpu_ref_is_dying(&ctx->refs)) 146 lockdep_assert(current == ctx->submitter_task); 147 } 148 #endif 149 } 150 151 static inline bool io_is_compat(struct io_ring_ctx *ctx) 152 { 153 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 154 } 155 156 static inline void io_req_task_work_add(struct io_kiocb *req) 157 { 158 __io_req_task_work_add(req, 0); 159 } 160 161 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 162 { 163 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 164 ctx->submit_state.cq_flush) 165 __io_submit_flush_completions(ctx); 166 } 167 168 #define io_for_each_link(pos, head) \ 169 for (pos = (head); pos; pos = pos->link) 170 171 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 172 struct io_uring_cqe **ret, 173 bool overflow) 174 { 175 io_lockdep_assert_cq_locked(ctx); 176 177 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 178 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 179 return false; 180 } 181 *ret = ctx->cqe_cached; 182 ctx->cached_cq_tail++; 183 ctx->cqe_cached++; 184 if (ctx->flags & IORING_SETUP_CQE32) 185 ctx->cqe_cached++; 186 return true; 187 } 188 189 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 190 { 191 return io_get_cqe_overflow(ctx, ret, false); 192 } 193 194 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx, 195 struct io_uring_cqe **cqe_ret) 196 { 197 io_lockdep_assert_cq_locked(ctx); 198 199 ctx->submit_state.cq_flush = true; 200 return io_get_cqe(ctx, cqe_ret); 201 } 202 203 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 204 struct io_kiocb *req) 205 { 206 struct io_uring_cqe *cqe; 207 208 /* 209 * If we can't get a cq entry, userspace overflowed the 210 * submission (by quite a lot). Increment the overflow count in 211 * the ring. 212 */ 213 if (unlikely(!io_get_cqe(ctx, &cqe))) 214 return false; 215 216 217 memcpy(cqe, &req->cqe, sizeof(*cqe)); 218 if (ctx->flags & IORING_SETUP_CQE32) { 219 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 220 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 221 } 222 223 if (trace_io_uring_complete_enabled()) 224 trace_io_uring_complete(req->ctx, req, cqe); 225 return true; 226 } 227 228 static inline void req_set_fail(struct io_kiocb *req) 229 { 230 req->flags |= REQ_F_FAIL; 231 if (req->flags & REQ_F_CQE_SKIP) { 232 req->flags &= ~REQ_F_CQE_SKIP; 233 req->flags |= REQ_F_SKIP_LINK_CQES; 234 } 235 } 236 237 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 238 { 239 req->cqe.res = res; 240 req->cqe.flags = cflags; 241 } 242 243 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 244 struct io_kiocb *req) 245 { 246 if (cache) { 247 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 248 } else { 249 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 250 251 WARN_ON_ONCE(!def->async_size); 252 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 253 } 254 if (req->async_data) 255 req->flags |= REQ_F_ASYNC_DATA; 256 return req->async_data; 257 } 258 259 static inline bool req_has_async_data(struct io_kiocb *req) 260 { 261 return req->flags & REQ_F_ASYNC_DATA; 262 } 263 264 static inline void io_put_file(struct io_kiocb *req) 265 { 266 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 267 fput(req->file); 268 } 269 270 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 271 unsigned issue_flags) 272 { 273 lockdep_assert_held(&ctx->uring_lock); 274 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 275 mutex_unlock(&ctx->uring_lock); 276 } 277 278 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 279 unsigned issue_flags) 280 { 281 /* 282 * "Normal" inline submissions always hold the uring_lock, since we 283 * grab it from the system call. Same is true for the SQPOLL offload. 284 * The only exception is when we've detached the request and issue it 285 * from an async worker thread, grab the lock for that case. 286 */ 287 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 288 mutex_lock(&ctx->uring_lock); 289 lockdep_assert_held(&ctx->uring_lock); 290 } 291 292 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 293 { 294 /* order cqe stores with ring update */ 295 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 296 } 297 298 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 299 { 300 if (wq_has_sleeper(&ctx->poll_wq)) 301 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 302 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 303 } 304 305 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 306 { 307 /* 308 * Trigger waitqueue handler on all waiters on our waitqueue. This 309 * won't necessarily wake up all the tasks, io_should_wake() will make 310 * that decision. 311 * 312 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 313 * set in the mask so that if we recurse back into our own poll 314 * waitqueue handlers, we know we have a dependency between eventfd or 315 * epoll and should terminate multishot poll at that point. 316 */ 317 if (wq_has_sleeper(&ctx->cq_wait)) 318 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 319 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 320 } 321 322 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 323 { 324 struct io_rings *r = ctx->rings; 325 326 /* 327 * SQPOLL must use the actual sqring head, as using the cached_sq_head 328 * is race prone if the SQPOLL thread has grabbed entries but not yet 329 * committed them to the ring. For !SQPOLL, this doesn't matter, but 330 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 331 * just read the actual sqring head unconditionally. 332 */ 333 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 334 } 335 336 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 337 { 338 struct io_rings *rings = ctx->rings; 339 unsigned int entries; 340 341 /* make sure SQ entry isn't read before tail */ 342 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 343 return min(entries, ctx->sq_entries); 344 } 345 346 static inline int io_run_task_work(void) 347 { 348 bool ret = false; 349 350 /* 351 * Always check-and-clear the task_work notification signal. With how 352 * signaling works for task_work, we can find it set with nothing to 353 * run. We need to clear it for that case, like get_signal() does. 354 */ 355 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 356 clear_notify_signal(); 357 /* 358 * PF_IO_WORKER never returns to userspace, so check here if we have 359 * notify work that needs processing. 360 */ 361 if (current->flags & PF_IO_WORKER) { 362 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 363 __set_current_state(TASK_RUNNING); 364 resume_user_mode_work(NULL); 365 } 366 if (current->io_uring) { 367 unsigned int count = 0; 368 369 __set_current_state(TASK_RUNNING); 370 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 371 if (count) 372 ret = true; 373 } 374 } 375 if (task_work_pending(current)) { 376 __set_current_state(TASK_RUNNING); 377 task_work_run(); 378 ret = true; 379 } 380 381 return ret; 382 } 383 384 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 385 { 386 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 387 } 388 389 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 390 { 391 return task_work_pending(current) || io_local_work_pending(ctx); 392 } 393 394 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 395 { 396 lockdep_assert_held(&ctx->uring_lock); 397 } 398 399 /* 400 * Don't complete immediately but use deferred completion infrastructure. 401 * Protected by ->uring_lock and can only be used either with 402 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 403 */ 404 static inline void io_req_complete_defer(struct io_kiocb *req) 405 __must_hold(&req->ctx->uring_lock) 406 { 407 struct io_submit_state *state = &req->ctx->submit_state; 408 409 lockdep_assert_held(&req->ctx->uring_lock); 410 411 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 412 } 413 414 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 415 { 416 if (unlikely(ctx->off_timeout_used || 417 ctx->has_evfd || ctx->poll_activated)) 418 __io_commit_cqring_flush(ctx); 419 } 420 421 static inline void io_get_task_refs(int nr) 422 { 423 struct io_uring_task *tctx = current->io_uring; 424 425 tctx->cached_refs -= nr; 426 if (unlikely(tctx->cached_refs < 0)) 427 io_task_refs_refill(tctx); 428 } 429 430 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 431 { 432 return !ctx->submit_state.free_list.next; 433 } 434 435 extern struct kmem_cache *req_cachep; 436 437 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 438 { 439 struct io_kiocb *req; 440 441 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 442 wq_stack_extract(&ctx->submit_state.free_list); 443 return req; 444 } 445 446 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 447 { 448 if (unlikely(io_req_cache_empty(ctx))) { 449 if (!__io_alloc_req_refill(ctx)) 450 return false; 451 } 452 *req = io_extract_req(ctx); 453 return true; 454 } 455 456 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 457 { 458 return likely(ctx->submitter_task == current); 459 } 460 461 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 462 { 463 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 464 ctx->submitter_task == current); 465 } 466 467 /* 468 * Terminate the request if either of these conditions are true: 469 * 470 * 1) It's being executed by the original task, but that task is marked 471 * with PF_EXITING as it's exiting. 472 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 473 * our fallback task_work. 474 */ 475 static inline bool io_should_terminate_tw(void) 476 { 477 return current->flags & (PF_KTHREAD | PF_EXITING); 478 } 479 480 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 481 { 482 io_req_set_res(req, res, 0); 483 req->io_task_work.func = io_req_task_complete; 484 io_req_task_work_add(req); 485 } 486 487 /* 488 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 489 * slot. 490 */ 491 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 492 { 493 if (ctx->flags & IORING_SETUP_SQE128) 494 return 2 * sizeof(struct io_uring_sqe); 495 return sizeof(struct io_uring_sqe); 496 } 497 498 static inline bool io_file_can_poll(struct io_kiocb *req) 499 { 500 if (req->flags & REQ_F_CAN_POLL) 501 return true; 502 if (req->file && file_can_poll(req->file)) { 503 req->flags |= REQ_F_CAN_POLL; 504 return true; 505 } 506 return false; 507 } 508 509 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 510 { 511 if (ctx->clockid == CLOCK_MONOTONIC) 512 return ktime_get(); 513 514 return ktime_get_with_offset(ctx->clock_offset); 515 } 516 517 enum { 518 IO_CHECK_CQ_OVERFLOW_BIT, 519 IO_CHECK_CQ_DROPPED_BIT, 520 }; 521 522 static inline bool io_has_work(struct io_ring_ctx *ctx) 523 { 524 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 525 io_local_work_pending(ctx); 526 } 527 #endif 528