xref: /linux/io_uring/io_uring.h (revision bca5cfbb694d66a1c482d0c347eee80f6afbc870)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16 
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20 
21 enum {
22 	IOU_COMPLETE		= 0,
23 
24 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
25 
26 	/*
27 	 * The request has more work to do and should be retried. io_uring will
28 	 * attempt to wait on the file for eligible opcodes, but otherwise
29 	 * it'll be handed to iowq for blocking execution. It works for normal
30 	 * requests as well as for the multi shot mode.
31 	 */
32 	IOU_RETRY		= -EAGAIN,
33 
34 	/*
35 	 * Requeue the task_work to restart operations on this request. The
36 	 * actual value isn't important, should just be not an otherwise
37 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
38 	 */
39 	IOU_REQUEUE		= -3072,
40 };
41 
42 struct io_wait_queue {
43 	struct wait_queue_entry wq;
44 	struct io_ring_ctx *ctx;
45 	unsigned cq_tail;
46 	unsigned cq_min_tail;
47 	unsigned nr_timeouts;
48 	int hit_timeout;
49 	ktime_t min_timeout;
50 	ktime_t timeout;
51 	struct hrtimer t;
52 
53 #ifdef CONFIG_NET_RX_BUSY_POLL
54 	ktime_t napi_busy_poll_dt;
55 	bool napi_prefer_busy_poll;
56 #endif
57 };
58 
59 static inline bool io_should_wake(struct io_wait_queue *iowq)
60 {
61 	struct io_ring_ctx *ctx = iowq->ctx;
62 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
63 
64 	/*
65 	 * Wake up if we have enough events, or if a timeout occurred since we
66 	 * started waiting. For timeouts, we always want to return to userspace,
67 	 * regardless of event count.
68 	 */
69 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
70 }
71 
72 #define IORING_MAX_ENTRIES	32768
73 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
74 
75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
76 			 unsigned int cq_entries, size_t *sq_offset);
77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
79 int io_run_task_work_sig(struct io_ring_ctx *ctx);
80 void io_req_defer_failed(struct io_kiocb *req, s32 res);
81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
84 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
85 
86 void io_req_track_inflight(struct io_kiocb *req);
87 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
89 			       unsigned issue_flags);
90 
91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags);
93 void io_req_task_queue(struct io_kiocb *req);
94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
95 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
99 void tctx_task_work(struct callback_head *cb);
100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
101 int io_uring_alloc_task_context(struct task_struct *task,
102 				struct io_ring_ctx *ctx);
103 
104 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
105 				     int start, int end);
106 void io_req_queue_iowq(struct io_kiocb *req);
107 
108 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
109 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
110 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
111 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
112 
113 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
114 void io_wq_submit_work(struct io_wq_work *work);
115 
116 void io_free_req(struct io_kiocb *req);
117 void io_queue_next(struct io_kiocb *req);
118 void io_task_refs_refill(struct io_uring_task *tctx);
119 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
120 
121 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
122 			bool cancel_all);
123 
124 void io_activate_pollwq(struct io_ring_ctx *ctx);
125 
126 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
127 {
128 #if defined(CONFIG_PROVE_LOCKING)
129 	lockdep_assert(in_task());
130 
131 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
132 		lockdep_assert_held(&ctx->uring_lock);
133 
134 	if (ctx->flags & IORING_SETUP_IOPOLL) {
135 		lockdep_assert_held(&ctx->uring_lock);
136 	} else if (!ctx->task_complete) {
137 		lockdep_assert_held(&ctx->completion_lock);
138 	} else if (ctx->submitter_task) {
139 		/*
140 		 * ->submitter_task may be NULL and we can still post a CQE,
141 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
142 		 * Not from an SQE, as those cannot be submitted, but via
143 		 * updating tagged resources.
144 		 */
145 		if (!percpu_ref_is_dying(&ctx->refs))
146 			lockdep_assert(current == ctx->submitter_task);
147 	}
148 #endif
149 }
150 
151 static inline bool io_is_compat(struct io_ring_ctx *ctx)
152 {
153 	return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
154 }
155 
156 static inline void io_req_task_work_add(struct io_kiocb *req)
157 {
158 	__io_req_task_work_add(req, 0);
159 }
160 
161 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
162 {
163 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
164 	    ctx->submit_state.cq_flush)
165 		__io_submit_flush_completions(ctx);
166 }
167 
168 #define io_for_each_link(pos, head) \
169 	for (pos = (head); pos; pos = pos->link)
170 
171 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
172 					struct io_uring_cqe **ret,
173 					bool overflow)
174 {
175 	io_lockdep_assert_cq_locked(ctx);
176 
177 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
178 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
179 			return false;
180 	}
181 	*ret = ctx->cqe_cached;
182 	ctx->cached_cq_tail++;
183 	ctx->cqe_cached++;
184 	if (ctx->flags & IORING_SETUP_CQE32)
185 		ctx->cqe_cached++;
186 	return true;
187 }
188 
189 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
190 {
191 	return io_get_cqe_overflow(ctx, ret, false);
192 }
193 
194 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
195 					       struct io_uring_cqe **cqe_ret)
196 {
197 	io_lockdep_assert_cq_locked(ctx);
198 
199 	ctx->submit_state.cq_flush = true;
200 	return io_get_cqe(ctx, cqe_ret);
201 }
202 
203 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
204 					    struct io_kiocb *req)
205 {
206 	struct io_uring_cqe *cqe;
207 
208 	/*
209 	 * If we can't get a cq entry, userspace overflowed the
210 	 * submission (by quite a lot). Increment the overflow count in
211 	 * the ring.
212 	 */
213 	if (unlikely(!io_get_cqe(ctx, &cqe)))
214 		return false;
215 
216 
217 	memcpy(cqe, &req->cqe, sizeof(*cqe));
218 	if (ctx->flags & IORING_SETUP_CQE32) {
219 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
220 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
221 	}
222 
223 	if (trace_io_uring_complete_enabled())
224 		trace_io_uring_complete(req->ctx, req, cqe);
225 	return true;
226 }
227 
228 static inline void req_set_fail(struct io_kiocb *req)
229 {
230 	req->flags |= REQ_F_FAIL;
231 	if (req->flags & REQ_F_CQE_SKIP) {
232 		req->flags &= ~REQ_F_CQE_SKIP;
233 		req->flags |= REQ_F_SKIP_LINK_CQES;
234 	}
235 }
236 
237 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
238 {
239 	req->cqe.res = res;
240 	req->cqe.flags = cflags;
241 }
242 
243 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
244 					      struct io_kiocb *req)
245 {
246 	if (cache) {
247 		req->async_data = io_cache_alloc(cache, GFP_KERNEL);
248 	} else {
249 		const struct io_issue_def *def = &io_issue_defs[req->opcode];
250 
251 		WARN_ON_ONCE(!def->async_size);
252 		req->async_data = kmalloc(def->async_size, GFP_KERNEL);
253 	}
254 	if (req->async_data)
255 		req->flags |= REQ_F_ASYNC_DATA;
256 	return req->async_data;
257 }
258 
259 static inline bool req_has_async_data(struct io_kiocb *req)
260 {
261 	return req->flags & REQ_F_ASYNC_DATA;
262 }
263 
264 static inline void io_put_file(struct io_kiocb *req)
265 {
266 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
267 		fput(req->file);
268 }
269 
270 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
271 					 unsigned issue_flags)
272 {
273 	lockdep_assert_held(&ctx->uring_lock);
274 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
275 		mutex_unlock(&ctx->uring_lock);
276 }
277 
278 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
279 				       unsigned issue_flags)
280 {
281 	/*
282 	 * "Normal" inline submissions always hold the uring_lock, since we
283 	 * grab it from the system call. Same is true for the SQPOLL offload.
284 	 * The only exception is when we've detached the request and issue it
285 	 * from an async worker thread, grab the lock for that case.
286 	 */
287 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
288 		mutex_lock(&ctx->uring_lock);
289 	lockdep_assert_held(&ctx->uring_lock);
290 }
291 
292 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
293 {
294 	/* order cqe stores with ring update */
295 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
296 }
297 
298 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
299 {
300 	if (wq_has_sleeper(&ctx->poll_wq))
301 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
302 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
303 }
304 
305 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
306 {
307 	/*
308 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
309 	 * won't necessarily wake up all the tasks, io_should_wake() will make
310 	 * that decision.
311 	 *
312 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
313 	 * set in the mask so that if we recurse back into our own poll
314 	 * waitqueue handlers, we know we have a dependency between eventfd or
315 	 * epoll and should terminate multishot poll at that point.
316 	 */
317 	if (wq_has_sleeper(&ctx->cq_wait))
318 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
319 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
320 }
321 
322 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
323 {
324 	struct io_rings *r = ctx->rings;
325 
326 	/*
327 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
328 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
329 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
330 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
331 	 * just read the actual sqring head unconditionally.
332 	 */
333 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
334 }
335 
336 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
337 {
338 	struct io_rings *rings = ctx->rings;
339 	unsigned int entries;
340 
341 	/* make sure SQ entry isn't read before tail */
342 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
343 	return min(entries, ctx->sq_entries);
344 }
345 
346 static inline int io_run_task_work(void)
347 {
348 	bool ret = false;
349 
350 	/*
351 	 * Always check-and-clear the task_work notification signal. With how
352 	 * signaling works for task_work, we can find it set with nothing to
353 	 * run. We need to clear it for that case, like get_signal() does.
354 	 */
355 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
356 		clear_notify_signal();
357 	/*
358 	 * PF_IO_WORKER never returns to userspace, so check here if we have
359 	 * notify work that needs processing.
360 	 */
361 	if (current->flags & PF_IO_WORKER) {
362 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
363 			__set_current_state(TASK_RUNNING);
364 			resume_user_mode_work(NULL);
365 		}
366 		if (current->io_uring) {
367 			unsigned int count = 0;
368 
369 			__set_current_state(TASK_RUNNING);
370 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
371 			if (count)
372 				ret = true;
373 		}
374 	}
375 	if (task_work_pending(current)) {
376 		__set_current_state(TASK_RUNNING);
377 		task_work_run();
378 		ret = true;
379 	}
380 
381 	return ret;
382 }
383 
384 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
385 {
386 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
387 }
388 
389 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
390 {
391 	return task_work_pending(current) || io_local_work_pending(ctx);
392 }
393 
394 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
395 {
396 	lockdep_assert_held(&ctx->uring_lock);
397 }
398 
399 /*
400  * Don't complete immediately but use deferred completion infrastructure.
401  * Protected by ->uring_lock and can only be used either with
402  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
403  */
404 static inline void io_req_complete_defer(struct io_kiocb *req)
405 	__must_hold(&req->ctx->uring_lock)
406 {
407 	struct io_submit_state *state = &req->ctx->submit_state;
408 
409 	lockdep_assert_held(&req->ctx->uring_lock);
410 
411 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
412 }
413 
414 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
415 {
416 	if (unlikely(ctx->off_timeout_used ||
417 		     ctx->has_evfd || ctx->poll_activated))
418 		__io_commit_cqring_flush(ctx);
419 }
420 
421 static inline void io_get_task_refs(int nr)
422 {
423 	struct io_uring_task *tctx = current->io_uring;
424 
425 	tctx->cached_refs -= nr;
426 	if (unlikely(tctx->cached_refs < 0))
427 		io_task_refs_refill(tctx);
428 }
429 
430 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
431 {
432 	return !ctx->submit_state.free_list.next;
433 }
434 
435 extern struct kmem_cache *req_cachep;
436 
437 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
438 {
439 	struct io_kiocb *req;
440 
441 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
442 	wq_stack_extract(&ctx->submit_state.free_list);
443 	return req;
444 }
445 
446 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
447 {
448 	if (unlikely(io_req_cache_empty(ctx))) {
449 		if (!__io_alloc_req_refill(ctx))
450 			return false;
451 	}
452 	*req = io_extract_req(ctx);
453 	return true;
454 }
455 
456 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
457 {
458 	return likely(ctx->submitter_task == current);
459 }
460 
461 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
462 {
463 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
464 		      ctx->submitter_task == current);
465 }
466 
467 /*
468  * Terminate the request if either of these conditions are true:
469  *
470  * 1) It's being executed by the original task, but that task is marked
471  *    with PF_EXITING as it's exiting.
472  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
473  *    our fallback task_work.
474  */
475 static inline bool io_should_terminate_tw(void)
476 {
477 	return current->flags & (PF_KTHREAD | PF_EXITING);
478 }
479 
480 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
481 {
482 	io_req_set_res(req, res, 0);
483 	req->io_task_work.func = io_req_task_complete;
484 	io_req_task_work_add(req);
485 }
486 
487 /*
488  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
489  * slot.
490  */
491 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
492 {
493 	if (ctx->flags & IORING_SETUP_SQE128)
494 		return 2 * sizeof(struct io_uring_sqe);
495 	return sizeof(struct io_uring_sqe);
496 }
497 
498 static inline bool io_file_can_poll(struct io_kiocb *req)
499 {
500 	if (req->flags & REQ_F_CAN_POLL)
501 		return true;
502 	if (req->file && file_can_poll(req->file)) {
503 		req->flags |= REQ_F_CAN_POLL;
504 		return true;
505 	}
506 	return false;
507 }
508 
509 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
510 {
511 	if (ctx->clockid == CLOCK_MONOTONIC)
512 		return ktime_get();
513 
514 	return ktime_get_with_offset(ctx->clock_offset);
515 }
516 
517 enum {
518 	IO_CHECK_CQ_OVERFLOW_BIT,
519 	IO_CHECK_CQ_DROPPED_BIT,
520 };
521 
522 static inline bool io_has_work(struct io_ring_ctx *ctx)
523 {
524 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
525 	       io_local_work_pending(ctx);
526 }
527 #endif
528