1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_COMPLETE = 0, 23 24 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 25 26 /* 27 * The request has more work to do and should be retried. io_uring will 28 * attempt to wait on the file for eligible opcodes, but otherwise 29 * it'll be handed to iowq for blocking execution. It works for normal 30 * requests as well as for the multi shot mode. 31 */ 32 IOU_RETRY = -EAGAIN, 33 34 /* 35 * Requeue the task_work to restart operations on this request. The 36 * actual value isn't important, should just be not an otherwise 37 * valid error code, yet less than -MAX_ERRNO and valid internally. 38 */ 39 IOU_REQUEUE = -3072, 40 }; 41 42 struct io_wait_queue { 43 struct wait_queue_entry wq; 44 struct io_ring_ctx *ctx; 45 unsigned cq_tail; 46 unsigned cq_min_tail; 47 unsigned nr_timeouts; 48 int hit_timeout; 49 ktime_t min_timeout; 50 ktime_t timeout; 51 struct hrtimer t; 52 53 #ifdef CONFIG_NET_RX_BUSY_POLL 54 ktime_t napi_busy_poll_dt; 55 bool napi_prefer_busy_poll; 56 #endif 57 }; 58 59 static inline bool io_should_wake(struct io_wait_queue *iowq) 60 { 61 struct io_ring_ctx *ctx = iowq->ctx; 62 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 63 64 /* 65 * Wake up if we have enough events, or if a timeout occurred since we 66 * started waiting. For timeouts, we always want to return to userspace, 67 * regardless of event count. 68 */ 69 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 70 } 71 72 #define IORING_MAX_ENTRIES 32768 73 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 74 75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 76 unsigned int cq_entries, size_t *sq_offset); 77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 79 int io_run_task_work_sig(struct io_ring_ctx *ctx); 80 void io_req_defer_failed(struct io_kiocb *req, s32 res); 81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 84 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe src_cqe[2]); 85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 86 87 void io_req_track_inflight(struct io_kiocb *req); 88 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 89 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 90 unsigned issue_flags); 91 92 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 93 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags); 94 void io_req_task_queue(struct io_kiocb *req); 95 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 96 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 97 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 98 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 99 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 100 void tctx_task_work(struct callback_head *cb); 101 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 102 103 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 104 int start, int end); 105 void io_req_queue_iowq(struct io_kiocb *req); 106 107 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 108 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 109 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 110 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 111 112 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 113 void io_wq_submit_work(struct io_wq_work *work); 114 115 void io_free_req(struct io_kiocb *req); 116 void io_queue_next(struct io_kiocb *req); 117 void io_task_refs_refill(struct io_uring_task *tctx); 118 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 119 120 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 121 bool cancel_all); 122 123 void io_activate_pollwq(struct io_ring_ctx *ctx); 124 125 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 126 { 127 #if defined(CONFIG_PROVE_LOCKING) 128 lockdep_assert(in_task()); 129 130 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 131 lockdep_assert_held(&ctx->uring_lock); 132 133 if (ctx->flags & IORING_SETUP_IOPOLL) { 134 lockdep_assert_held(&ctx->uring_lock); 135 } else if (!ctx->task_complete) { 136 lockdep_assert_held(&ctx->completion_lock); 137 } else if (ctx->submitter_task) { 138 /* 139 * ->submitter_task may be NULL and we can still post a CQE, 140 * if the ring has been setup with IORING_SETUP_R_DISABLED. 141 * Not from an SQE, as those cannot be submitted, but via 142 * updating tagged resources. 143 */ 144 if (!percpu_ref_is_dying(&ctx->refs)) 145 lockdep_assert(current == ctx->submitter_task); 146 } 147 #endif 148 } 149 150 static inline bool io_is_compat(struct io_ring_ctx *ctx) 151 { 152 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 153 } 154 155 static inline void io_req_task_work_add(struct io_kiocb *req) 156 { 157 __io_req_task_work_add(req, 0); 158 } 159 160 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 161 { 162 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 163 ctx->submit_state.cq_flush) 164 __io_submit_flush_completions(ctx); 165 } 166 167 #define io_for_each_link(pos, head) \ 168 for (pos = (head); pos; pos = pos->link) 169 170 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 171 struct io_uring_cqe **ret, 172 bool overflow) 173 { 174 io_lockdep_assert_cq_locked(ctx); 175 176 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 177 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 178 return false; 179 } 180 *ret = ctx->cqe_cached; 181 ctx->cached_cq_tail++; 182 ctx->cqe_cached++; 183 if (ctx->flags & IORING_SETUP_CQE32) 184 ctx->cqe_cached++; 185 return true; 186 } 187 188 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 189 { 190 return io_get_cqe_overflow(ctx, ret, false); 191 } 192 193 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx, 194 struct io_uring_cqe **cqe_ret) 195 { 196 io_lockdep_assert_cq_locked(ctx); 197 198 ctx->submit_state.cq_flush = true; 199 return io_get_cqe(ctx, cqe_ret); 200 } 201 202 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 203 struct io_kiocb *req) 204 { 205 struct io_uring_cqe *cqe; 206 207 /* 208 * If we can't get a cq entry, userspace overflowed the 209 * submission (by quite a lot). Increment the overflow count in 210 * the ring. 211 */ 212 if (unlikely(!io_get_cqe(ctx, &cqe))) 213 return false; 214 215 216 memcpy(cqe, &req->cqe, sizeof(*cqe)); 217 if (ctx->flags & IORING_SETUP_CQE32) { 218 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 219 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 220 } 221 222 if (trace_io_uring_complete_enabled()) 223 trace_io_uring_complete(req->ctx, req, cqe); 224 return true; 225 } 226 227 static inline void req_set_fail(struct io_kiocb *req) 228 { 229 req->flags |= REQ_F_FAIL; 230 if (req->flags & REQ_F_CQE_SKIP) { 231 req->flags &= ~REQ_F_CQE_SKIP; 232 req->flags |= REQ_F_SKIP_LINK_CQES; 233 } 234 } 235 236 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 237 { 238 req->cqe.res = res; 239 req->cqe.flags = cflags; 240 } 241 242 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 243 struct io_kiocb *req) 244 { 245 if (cache) { 246 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 247 } else { 248 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 249 250 WARN_ON_ONCE(!def->async_size); 251 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 252 } 253 if (req->async_data) 254 req->flags |= REQ_F_ASYNC_DATA; 255 return req->async_data; 256 } 257 258 static inline bool req_has_async_data(struct io_kiocb *req) 259 { 260 return req->flags & REQ_F_ASYNC_DATA; 261 } 262 263 static inline void io_put_file(struct io_kiocb *req) 264 { 265 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 266 fput(req->file); 267 } 268 269 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 270 unsigned issue_flags) 271 { 272 lockdep_assert_held(&ctx->uring_lock); 273 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 274 mutex_unlock(&ctx->uring_lock); 275 } 276 277 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 278 unsigned issue_flags) 279 { 280 /* 281 * "Normal" inline submissions always hold the uring_lock, since we 282 * grab it from the system call. Same is true for the SQPOLL offload. 283 * The only exception is when we've detached the request and issue it 284 * from an async worker thread, grab the lock for that case. 285 */ 286 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 287 mutex_lock(&ctx->uring_lock); 288 lockdep_assert_held(&ctx->uring_lock); 289 } 290 291 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 292 { 293 /* order cqe stores with ring update */ 294 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 295 } 296 297 static inline void __io_wq_wake(struct wait_queue_head *wq) 298 { 299 /* 300 * 301 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 302 * set in the mask so that if we recurse back into our own poll 303 * waitqueue handlers, we know we have a dependency between eventfd or 304 * epoll and should terminate multishot poll at that point. 305 */ 306 if (wq_has_sleeper(wq)) 307 __wake_up(wq, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 308 } 309 310 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 311 { 312 __io_wq_wake(&ctx->poll_wq); 313 } 314 315 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 316 { 317 /* 318 * Trigger waitqueue handler on all waiters on our waitqueue. This 319 * won't necessarily wake up all the tasks, io_should_wake() will make 320 * that decision. 321 */ 322 323 __io_wq_wake(&ctx->cq_wait); 324 } 325 326 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 327 { 328 struct io_rings *r = ctx->rings; 329 330 /* 331 * SQPOLL must use the actual sqring head, as using the cached_sq_head 332 * is race prone if the SQPOLL thread has grabbed entries but not yet 333 * committed them to the ring. For !SQPOLL, this doesn't matter, but 334 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 335 * just read the actual sqring head unconditionally. 336 */ 337 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 338 } 339 340 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 341 { 342 struct io_rings *rings = ctx->rings; 343 unsigned int entries; 344 345 /* make sure SQ entry isn't read before tail */ 346 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 347 return min(entries, ctx->sq_entries); 348 } 349 350 static inline int io_run_task_work(void) 351 { 352 bool ret = false; 353 354 /* 355 * Always check-and-clear the task_work notification signal. With how 356 * signaling works for task_work, we can find it set with nothing to 357 * run. We need to clear it for that case, like get_signal() does. 358 */ 359 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 360 clear_notify_signal(); 361 /* 362 * PF_IO_WORKER never returns to userspace, so check here if we have 363 * notify work that needs processing. 364 */ 365 if (current->flags & PF_IO_WORKER) { 366 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 367 __set_current_state(TASK_RUNNING); 368 resume_user_mode_work(NULL); 369 } 370 if (current->io_uring) { 371 unsigned int count = 0; 372 373 __set_current_state(TASK_RUNNING); 374 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 375 if (count) 376 ret = true; 377 } 378 } 379 if (task_work_pending(current)) { 380 __set_current_state(TASK_RUNNING); 381 task_work_run(); 382 ret = true; 383 } 384 385 return ret; 386 } 387 388 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 389 { 390 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 391 } 392 393 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 394 { 395 return task_work_pending(current) || io_local_work_pending(ctx); 396 } 397 398 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 399 { 400 lockdep_assert_held(&ctx->uring_lock); 401 } 402 403 /* 404 * Don't complete immediately but use deferred completion infrastructure. 405 * Protected by ->uring_lock and can only be used either with 406 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 407 */ 408 static inline void io_req_complete_defer(struct io_kiocb *req) 409 __must_hold(&req->ctx->uring_lock) 410 { 411 struct io_submit_state *state = &req->ctx->submit_state; 412 413 lockdep_assert_held(&req->ctx->uring_lock); 414 415 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 416 } 417 418 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 419 { 420 if (unlikely(ctx->off_timeout_used || 421 ctx->has_evfd || ctx->poll_activated)) 422 __io_commit_cqring_flush(ctx); 423 } 424 425 static inline void io_get_task_refs(int nr) 426 { 427 struct io_uring_task *tctx = current->io_uring; 428 429 tctx->cached_refs -= nr; 430 if (unlikely(tctx->cached_refs < 0)) 431 io_task_refs_refill(tctx); 432 } 433 434 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 435 { 436 return !ctx->submit_state.free_list.next; 437 } 438 439 extern struct kmem_cache *req_cachep; 440 441 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 442 { 443 struct io_kiocb *req; 444 445 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 446 wq_stack_extract(&ctx->submit_state.free_list); 447 return req; 448 } 449 450 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 451 { 452 if (unlikely(io_req_cache_empty(ctx))) { 453 if (!__io_alloc_req_refill(ctx)) 454 return false; 455 } 456 *req = io_extract_req(ctx); 457 return true; 458 } 459 460 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 461 { 462 return likely(ctx->submitter_task == current); 463 } 464 465 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 466 { 467 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 468 ctx->submitter_task == current); 469 } 470 471 /* 472 * Terminate the request if either of these conditions are true: 473 * 474 * 1) It's being executed by the original task, but that task is marked 475 * with PF_EXITING as it's exiting. 476 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 477 * our fallback task_work. 478 */ 479 static inline bool io_should_terminate_tw(void) 480 { 481 return current->flags & (PF_KTHREAD | PF_EXITING); 482 } 483 484 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 485 { 486 io_req_set_res(req, res, 0); 487 req->io_task_work.func = io_req_task_complete; 488 io_req_task_work_add(req); 489 } 490 491 /* 492 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 493 * slot. 494 */ 495 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 496 { 497 if (ctx->flags & IORING_SETUP_SQE128) 498 return 2 * sizeof(struct io_uring_sqe); 499 return sizeof(struct io_uring_sqe); 500 } 501 502 static inline bool io_file_can_poll(struct io_kiocb *req) 503 { 504 if (req->flags & REQ_F_CAN_POLL) 505 return true; 506 if (req->file && file_can_poll(req->file)) { 507 req->flags |= REQ_F_CAN_POLL; 508 return true; 509 } 510 return false; 511 } 512 513 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 514 { 515 if (ctx->clockid == CLOCK_MONOTONIC) 516 return ktime_get(); 517 518 return ktime_get_with_offset(ctx->clock_offset); 519 } 520 521 enum { 522 IO_CHECK_CQ_OVERFLOW_BIT, 523 IO_CHECK_CQ_DROPPED_BIT, 524 }; 525 526 static inline bool io_has_work(struct io_ring_ctx *ctx) 527 { 528 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 529 io_local_work_pending(ctx); 530 } 531 #endif 532