1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_OK = 0, 23 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 24 25 /* 26 * Requeue the task_work to restart operations on this request. The 27 * actual value isn't important, should just be not an otherwise 28 * valid error code, yet less than -MAX_ERRNO and valid internally. 29 */ 30 IOU_REQUEUE = -3072, 31 32 /* 33 * Intended only when both IO_URING_F_MULTISHOT is passed 34 * to indicate to the poll runner that multishot should be 35 * removed and the result is set on req->cqe.res. 36 */ 37 IOU_STOP_MULTISHOT = -ECANCELED, 38 }; 39 40 struct io_wait_queue { 41 struct wait_queue_entry wq; 42 struct io_ring_ctx *ctx; 43 unsigned cq_tail; 44 unsigned cq_min_tail; 45 unsigned nr_timeouts; 46 int hit_timeout; 47 ktime_t min_timeout; 48 ktime_t timeout; 49 struct hrtimer t; 50 51 #ifdef CONFIG_NET_RX_BUSY_POLL 52 ktime_t napi_busy_poll_dt; 53 bool napi_prefer_busy_poll; 54 #endif 55 }; 56 57 static inline bool io_should_wake(struct io_wait_queue *iowq) 58 { 59 struct io_ring_ctx *ctx = iowq->ctx; 60 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 61 62 /* 63 * Wake up if we have enough events, or if a timeout occurred since we 64 * started waiting. For timeouts, we always want to return to userspace, 65 * regardless of event count. 66 */ 67 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 68 } 69 70 #define IORING_MAX_ENTRIES 32768 71 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 72 73 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 74 unsigned int cq_entries, size_t *sq_offset); 75 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 76 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 77 int io_run_task_work_sig(struct io_ring_ctx *ctx); 78 void io_req_defer_failed(struct io_kiocb *req, s32 res); 79 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 80 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 81 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 82 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 83 84 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 85 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 86 unsigned issue_flags); 87 88 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 89 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 90 unsigned flags); 91 void io_req_task_queue(struct io_kiocb *req); 92 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 93 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 94 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 95 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 96 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 97 void tctx_task_work(struct callback_head *cb); 98 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 99 int io_uring_alloc_task_context(struct task_struct *task, 100 struct io_ring_ctx *ctx); 101 102 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 103 int start, int end); 104 void io_req_queue_iowq(struct io_kiocb *req); 105 106 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 107 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 108 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 109 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 110 111 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 112 void io_wq_submit_work(struct io_wq_work *work); 113 114 void io_free_req(struct io_kiocb *req); 115 void io_queue_next(struct io_kiocb *req); 116 void io_task_refs_refill(struct io_uring_task *tctx); 117 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 118 119 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 120 bool cancel_all); 121 122 void io_activate_pollwq(struct io_ring_ctx *ctx); 123 124 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 125 { 126 #if defined(CONFIG_PROVE_LOCKING) 127 lockdep_assert(in_task()); 128 129 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 130 lockdep_assert_held(&ctx->uring_lock); 131 132 if (ctx->flags & IORING_SETUP_IOPOLL) { 133 lockdep_assert_held(&ctx->uring_lock); 134 } else if (!ctx->task_complete) { 135 lockdep_assert_held(&ctx->completion_lock); 136 } else if (ctx->submitter_task) { 137 /* 138 * ->submitter_task may be NULL and we can still post a CQE, 139 * if the ring has been setup with IORING_SETUP_R_DISABLED. 140 * Not from an SQE, as those cannot be submitted, but via 141 * updating tagged resources. 142 */ 143 if (!percpu_ref_is_dying(&ctx->refs)) 144 lockdep_assert(current == ctx->submitter_task); 145 } 146 #endif 147 } 148 149 static inline bool io_is_compat(struct io_ring_ctx *ctx) 150 { 151 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 152 } 153 154 static inline void io_req_task_work_add(struct io_kiocb *req) 155 { 156 __io_req_task_work_add(req, 0); 157 } 158 159 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 160 { 161 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 162 ctx->submit_state.cq_flush) 163 __io_submit_flush_completions(ctx); 164 } 165 166 #define io_for_each_link(pos, head) \ 167 for (pos = (head); pos; pos = pos->link) 168 169 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 170 struct io_uring_cqe **ret, 171 bool overflow) 172 { 173 io_lockdep_assert_cq_locked(ctx); 174 175 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 176 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 177 return false; 178 } 179 *ret = ctx->cqe_cached; 180 ctx->cached_cq_tail++; 181 ctx->cqe_cached++; 182 if (ctx->flags & IORING_SETUP_CQE32) 183 ctx->cqe_cached++; 184 return true; 185 } 186 187 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 188 { 189 return io_get_cqe_overflow(ctx, ret, false); 190 } 191 192 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 193 struct io_kiocb *req) 194 { 195 struct io_uring_cqe *cqe; 196 197 /* 198 * If we can't get a cq entry, userspace overflowed the 199 * submission (by quite a lot). Increment the overflow count in 200 * the ring. 201 */ 202 if (unlikely(!io_get_cqe(ctx, &cqe))) 203 return false; 204 205 206 memcpy(cqe, &req->cqe, sizeof(*cqe)); 207 if (ctx->flags & IORING_SETUP_CQE32) { 208 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 209 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 210 } 211 212 if (trace_io_uring_complete_enabled()) 213 trace_io_uring_complete(req->ctx, req, cqe); 214 return true; 215 } 216 217 static inline void req_set_fail(struct io_kiocb *req) 218 { 219 req->flags |= REQ_F_FAIL; 220 if (req->flags & REQ_F_CQE_SKIP) { 221 req->flags &= ~REQ_F_CQE_SKIP; 222 req->flags |= REQ_F_SKIP_LINK_CQES; 223 } 224 } 225 226 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 227 { 228 req->cqe.res = res; 229 req->cqe.flags = cflags; 230 } 231 232 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 233 struct io_kiocb *req) 234 { 235 if (cache) { 236 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 237 } else { 238 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 239 240 WARN_ON_ONCE(!def->async_size); 241 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 242 } 243 if (req->async_data) 244 req->flags |= REQ_F_ASYNC_DATA; 245 return req->async_data; 246 } 247 248 static inline bool req_has_async_data(struct io_kiocb *req) 249 { 250 return req->flags & REQ_F_ASYNC_DATA; 251 } 252 253 static inline void io_put_file(struct io_kiocb *req) 254 { 255 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 256 fput(req->file); 257 } 258 259 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 260 unsigned issue_flags) 261 { 262 lockdep_assert_held(&ctx->uring_lock); 263 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 264 mutex_unlock(&ctx->uring_lock); 265 } 266 267 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 268 unsigned issue_flags) 269 { 270 /* 271 * "Normal" inline submissions always hold the uring_lock, since we 272 * grab it from the system call. Same is true for the SQPOLL offload. 273 * The only exception is when we've detached the request and issue it 274 * from an async worker thread, grab the lock for that case. 275 */ 276 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 277 mutex_lock(&ctx->uring_lock); 278 lockdep_assert_held(&ctx->uring_lock); 279 } 280 281 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 282 { 283 /* order cqe stores with ring update */ 284 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 285 } 286 287 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 288 { 289 if (wq_has_sleeper(&ctx->poll_wq)) 290 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 291 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 292 } 293 294 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 295 { 296 /* 297 * Trigger waitqueue handler on all waiters on our waitqueue. This 298 * won't necessarily wake up all the tasks, io_should_wake() will make 299 * that decision. 300 * 301 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 302 * set in the mask so that if we recurse back into our own poll 303 * waitqueue handlers, we know we have a dependency between eventfd or 304 * epoll and should terminate multishot poll at that point. 305 */ 306 if (wq_has_sleeper(&ctx->cq_wait)) 307 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 308 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 309 } 310 311 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 312 { 313 struct io_rings *r = ctx->rings; 314 315 /* 316 * SQPOLL must use the actual sqring head, as using the cached_sq_head 317 * is race prone if the SQPOLL thread has grabbed entries but not yet 318 * committed them to the ring. For !SQPOLL, this doesn't matter, but 319 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 320 * just read the actual sqring head unconditionally. 321 */ 322 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 323 } 324 325 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 326 { 327 struct io_rings *rings = ctx->rings; 328 unsigned int entries; 329 330 /* make sure SQ entry isn't read before tail */ 331 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 332 return min(entries, ctx->sq_entries); 333 } 334 335 static inline int io_run_task_work(void) 336 { 337 bool ret = false; 338 339 /* 340 * Always check-and-clear the task_work notification signal. With how 341 * signaling works for task_work, we can find it set with nothing to 342 * run. We need to clear it for that case, like get_signal() does. 343 */ 344 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 345 clear_notify_signal(); 346 /* 347 * PF_IO_WORKER never returns to userspace, so check here if we have 348 * notify work that needs processing. 349 */ 350 if (current->flags & PF_IO_WORKER) { 351 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 352 __set_current_state(TASK_RUNNING); 353 resume_user_mode_work(NULL); 354 } 355 if (current->io_uring) { 356 unsigned int count = 0; 357 358 __set_current_state(TASK_RUNNING); 359 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 360 if (count) 361 ret = true; 362 } 363 } 364 if (task_work_pending(current)) { 365 __set_current_state(TASK_RUNNING); 366 task_work_run(); 367 ret = true; 368 } 369 370 return ret; 371 } 372 373 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 374 { 375 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 376 } 377 378 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 379 { 380 return task_work_pending(current) || io_local_work_pending(ctx); 381 } 382 383 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 384 { 385 lockdep_assert_held(&ctx->uring_lock); 386 } 387 388 /* 389 * Don't complete immediately but use deferred completion infrastructure. 390 * Protected by ->uring_lock and can only be used either with 391 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 392 */ 393 static inline void io_req_complete_defer(struct io_kiocb *req) 394 __must_hold(&req->ctx->uring_lock) 395 { 396 struct io_submit_state *state = &req->ctx->submit_state; 397 398 lockdep_assert_held(&req->ctx->uring_lock); 399 400 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 401 } 402 403 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 404 { 405 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 406 ctx->has_evfd || ctx->poll_activated)) 407 __io_commit_cqring_flush(ctx); 408 } 409 410 static inline void io_get_task_refs(int nr) 411 { 412 struct io_uring_task *tctx = current->io_uring; 413 414 tctx->cached_refs -= nr; 415 if (unlikely(tctx->cached_refs < 0)) 416 io_task_refs_refill(tctx); 417 } 418 419 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 420 { 421 return !ctx->submit_state.free_list.next; 422 } 423 424 extern struct kmem_cache *req_cachep; 425 426 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 427 { 428 struct io_kiocb *req; 429 430 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 431 wq_stack_extract(&ctx->submit_state.free_list); 432 return req; 433 } 434 435 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 436 { 437 if (unlikely(io_req_cache_empty(ctx))) { 438 if (!__io_alloc_req_refill(ctx)) 439 return false; 440 } 441 *req = io_extract_req(ctx); 442 return true; 443 } 444 445 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 446 { 447 return likely(ctx->submitter_task == current); 448 } 449 450 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 451 { 452 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 453 ctx->submitter_task == current); 454 } 455 456 /* 457 * Terminate the request if either of these conditions are true: 458 * 459 * 1) It's being executed by the original task, but that task is marked 460 * with PF_EXITING as it's exiting. 461 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 462 * our fallback task_work. 463 */ 464 static inline bool io_should_terminate_tw(void) 465 { 466 return current->flags & (PF_KTHREAD | PF_EXITING); 467 } 468 469 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 470 { 471 io_req_set_res(req, res, 0); 472 req->io_task_work.func = io_req_task_complete; 473 io_req_task_work_add(req); 474 } 475 476 /* 477 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 478 * slot. 479 */ 480 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 481 { 482 if (ctx->flags & IORING_SETUP_SQE128) 483 return 2 * sizeof(struct io_uring_sqe); 484 return sizeof(struct io_uring_sqe); 485 } 486 487 static inline bool io_file_can_poll(struct io_kiocb *req) 488 { 489 if (req->flags & REQ_F_CAN_POLL) 490 return true; 491 if (req->file && file_can_poll(req->file)) { 492 req->flags |= REQ_F_CAN_POLL; 493 return true; 494 } 495 return false; 496 } 497 498 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 499 { 500 if (ctx->clockid == CLOCK_MONOTONIC) 501 return ktime_get(); 502 503 return ktime_get_with_offset(ctx->clock_offset); 504 } 505 506 enum { 507 IO_CHECK_CQ_OVERFLOW_BIT, 508 IO_CHECK_CQ_DROPPED_BIT, 509 }; 510 511 static inline bool io_has_work(struct io_ring_ctx *ctx) 512 { 513 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 514 io_local_work_pending(ctx); 515 } 516 #endif 517