1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_OK = 0, 23 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 24 25 /* 26 * Requeue the task_work to restart operations on this request. The 27 * actual value isn't important, should just be not an otherwise 28 * valid error code, yet less than -MAX_ERRNO and valid internally. 29 */ 30 IOU_REQUEUE = -3072, 31 32 /* 33 * Intended only when both IO_URING_F_MULTISHOT is passed 34 * to indicate to the poll runner that multishot should be 35 * removed and the result is set on req->cqe.res. 36 */ 37 IOU_STOP_MULTISHOT = -ECANCELED, 38 }; 39 40 struct io_wait_queue { 41 struct wait_queue_entry wq; 42 struct io_ring_ctx *ctx; 43 unsigned cq_tail; 44 unsigned cq_min_tail; 45 unsigned nr_timeouts; 46 int hit_timeout; 47 ktime_t min_timeout; 48 ktime_t timeout; 49 struct hrtimer t; 50 51 #ifdef CONFIG_NET_RX_BUSY_POLL 52 ktime_t napi_busy_poll_dt; 53 bool napi_prefer_busy_poll; 54 #endif 55 }; 56 57 static inline bool io_should_wake(struct io_wait_queue *iowq) 58 { 59 struct io_ring_ctx *ctx = iowq->ctx; 60 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 61 62 /* 63 * Wake up if we have enough events, or if a timeout occurred since we 64 * started waiting. For timeouts, we always want to return to userspace, 65 * regardless of event count. 66 */ 67 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 68 } 69 70 #define IORING_MAX_ENTRIES 32768 71 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 72 73 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 74 unsigned int cq_entries, size_t *sq_offset); 75 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 76 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 77 int io_run_task_work_sig(struct io_ring_ctx *ctx); 78 void io_req_defer_failed(struct io_kiocb *req, s32 res); 79 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 80 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 81 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 82 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 83 84 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 85 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 86 unsigned issue_flags); 87 88 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 89 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 90 unsigned flags); 91 bool io_alloc_async_data(struct io_kiocb *req); 92 void io_req_task_queue(struct io_kiocb *req); 93 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 94 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 95 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 96 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 97 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 98 void tctx_task_work(struct callback_head *cb); 99 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 100 int io_uring_alloc_task_context(struct task_struct *task, 101 struct io_ring_ctx *ctx); 102 103 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 104 int start, int end); 105 void io_req_queue_iowq(struct io_kiocb *req); 106 107 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 108 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 109 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 110 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 111 112 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 113 void io_wq_submit_work(struct io_wq_work *work); 114 115 void io_free_req(struct io_kiocb *req); 116 void io_queue_next(struct io_kiocb *req); 117 void io_task_refs_refill(struct io_uring_task *tctx); 118 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 119 120 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 121 bool cancel_all); 122 123 void io_activate_pollwq(struct io_ring_ctx *ctx); 124 125 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 126 { 127 #if defined(CONFIG_PROVE_LOCKING) 128 lockdep_assert(in_task()); 129 130 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 131 lockdep_assert_held(&ctx->uring_lock); 132 133 if (ctx->flags & IORING_SETUP_IOPOLL) { 134 lockdep_assert_held(&ctx->uring_lock); 135 } else if (!ctx->task_complete) { 136 lockdep_assert_held(&ctx->completion_lock); 137 } else if (ctx->submitter_task) { 138 /* 139 * ->submitter_task may be NULL and we can still post a CQE, 140 * if the ring has been setup with IORING_SETUP_R_DISABLED. 141 * Not from an SQE, as those cannot be submitted, but via 142 * updating tagged resources. 143 */ 144 if (!percpu_ref_is_dying(&ctx->refs)) 145 lockdep_assert(current == ctx->submitter_task); 146 } 147 #endif 148 } 149 150 static inline void io_req_task_work_add(struct io_kiocb *req) 151 { 152 __io_req_task_work_add(req, 0); 153 } 154 155 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 156 { 157 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 158 ctx->submit_state.cq_flush) 159 __io_submit_flush_completions(ctx); 160 } 161 162 #define io_for_each_link(pos, head) \ 163 for (pos = (head); pos; pos = pos->link) 164 165 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 166 struct io_uring_cqe **ret, 167 bool overflow) 168 { 169 io_lockdep_assert_cq_locked(ctx); 170 171 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 172 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 173 return false; 174 } 175 *ret = ctx->cqe_cached; 176 ctx->cached_cq_tail++; 177 ctx->cqe_cached++; 178 if (ctx->flags & IORING_SETUP_CQE32) 179 ctx->cqe_cached++; 180 return true; 181 } 182 183 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 184 { 185 return io_get_cqe_overflow(ctx, ret, false); 186 } 187 188 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 189 struct io_kiocb *req) 190 { 191 struct io_uring_cqe *cqe; 192 193 /* 194 * If we can't get a cq entry, userspace overflowed the 195 * submission (by quite a lot). Increment the overflow count in 196 * the ring. 197 */ 198 if (unlikely(!io_get_cqe(ctx, &cqe))) 199 return false; 200 201 202 memcpy(cqe, &req->cqe, sizeof(*cqe)); 203 if (ctx->flags & IORING_SETUP_CQE32) { 204 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 205 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 206 } 207 208 if (trace_io_uring_complete_enabled()) 209 trace_io_uring_complete(req->ctx, req, cqe); 210 return true; 211 } 212 213 static inline void req_set_fail(struct io_kiocb *req) 214 { 215 req->flags |= REQ_F_FAIL; 216 if (req->flags & REQ_F_CQE_SKIP) { 217 req->flags &= ~REQ_F_CQE_SKIP; 218 req->flags |= REQ_F_SKIP_LINK_CQES; 219 } 220 } 221 222 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 223 { 224 req->cqe.res = res; 225 req->cqe.flags = cflags; 226 } 227 228 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 229 struct io_kiocb *req) 230 { 231 if (cache) { 232 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 233 } else { 234 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 235 236 WARN_ON_ONCE(!def->async_size); 237 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 238 } 239 if (req->async_data) 240 req->flags |= REQ_F_ASYNC_DATA; 241 return req->async_data; 242 } 243 244 static inline bool req_has_async_data(struct io_kiocb *req) 245 { 246 return req->flags & REQ_F_ASYNC_DATA; 247 } 248 249 static inline void io_put_file(struct io_kiocb *req) 250 { 251 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 252 fput(req->file); 253 } 254 255 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 256 unsigned issue_flags) 257 { 258 lockdep_assert_held(&ctx->uring_lock); 259 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 260 mutex_unlock(&ctx->uring_lock); 261 } 262 263 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 264 unsigned issue_flags) 265 { 266 /* 267 * "Normal" inline submissions always hold the uring_lock, since we 268 * grab it from the system call. Same is true for the SQPOLL offload. 269 * The only exception is when we've detached the request and issue it 270 * from an async worker thread, grab the lock for that case. 271 */ 272 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 273 mutex_lock(&ctx->uring_lock); 274 lockdep_assert_held(&ctx->uring_lock); 275 } 276 277 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 278 { 279 /* order cqe stores with ring update */ 280 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 281 } 282 283 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 284 { 285 if (wq_has_sleeper(&ctx->poll_wq)) 286 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 287 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 288 } 289 290 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 291 { 292 /* 293 * Trigger waitqueue handler on all waiters on our waitqueue. This 294 * won't necessarily wake up all the tasks, io_should_wake() will make 295 * that decision. 296 * 297 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 298 * set in the mask so that if we recurse back into our own poll 299 * waitqueue handlers, we know we have a dependency between eventfd or 300 * epoll and should terminate multishot poll at that point. 301 */ 302 if (wq_has_sleeper(&ctx->cq_wait)) 303 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 304 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 305 } 306 307 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 308 { 309 struct io_rings *r = ctx->rings; 310 311 /* 312 * SQPOLL must use the actual sqring head, as using the cached_sq_head 313 * is race prone if the SQPOLL thread has grabbed entries but not yet 314 * committed them to the ring. For !SQPOLL, this doesn't matter, but 315 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 316 * just read the actual sqring head unconditionally. 317 */ 318 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 319 } 320 321 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 322 { 323 struct io_rings *rings = ctx->rings; 324 unsigned int entries; 325 326 /* make sure SQ entry isn't read before tail */ 327 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 328 return min(entries, ctx->sq_entries); 329 } 330 331 static inline int io_run_task_work(void) 332 { 333 bool ret = false; 334 335 /* 336 * Always check-and-clear the task_work notification signal. With how 337 * signaling works for task_work, we can find it set with nothing to 338 * run. We need to clear it for that case, like get_signal() does. 339 */ 340 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 341 clear_notify_signal(); 342 /* 343 * PF_IO_WORKER never returns to userspace, so check here if we have 344 * notify work that needs processing. 345 */ 346 if (current->flags & PF_IO_WORKER) { 347 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 348 __set_current_state(TASK_RUNNING); 349 resume_user_mode_work(NULL); 350 } 351 if (current->io_uring) { 352 unsigned int count = 0; 353 354 __set_current_state(TASK_RUNNING); 355 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 356 if (count) 357 ret = true; 358 } 359 } 360 if (task_work_pending(current)) { 361 __set_current_state(TASK_RUNNING); 362 task_work_run(); 363 ret = true; 364 } 365 366 return ret; 367 } 368 369 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 370 { 371 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 372 } 373 374 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 375 { 376 return task_work_pending(current) || io_local_work_pending(ctx); 377 } 378 379 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 380 { 381 lockdep_assert_held(&ctx->uring_lock); 382 } 383 384 /* 385 * Don't complete immediately but use deferred completion infrastructure. 386 * Protected by ->uring_lock and can only be used either with 387 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 388 */ 389 static inline void io_req_complete_defer(struct io_kiocb *req) 390 __must_hold(&req->ctx->uring_lock) 391 { 392 struct io_submit_state *state = &req->ctx->submit_state; 393 394 lockdep_assert_held(&req->ctx->uring_lock); 395 396 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 397 } 398 399 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 400 { 401 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 402 ctx->has_evfd || ctx->poll_activated)) 403 __io_commit_cqring_flush(ctx); 404 } 405 406 static inline void io_get_task_refs(int nr) 407 { 408 struct io_uring_task *tctx = current->io_uring; 409 410 tctx->cached_refs -= nr; 411 if (unlikely(tctx->cached_refs < 0)) 412 io_task_refs_refill(tctx); 413 } 414 415 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 416 { 417 return !ctx->submit_state.free_list.next; 418 } 419 420 extern struct kmem_cache *req_cachep; 421 extern struct kmem_cache *io_buf_cachep; 422 423 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 424 { 425 struct io_kiocb *req; 426 427 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 428 wq_stack_extract(&ctx->submit_state.free_list); 429 return req; 430 } 431 432 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 433 { 434 if (unlikely(io_req_cache_empty(ctx))) { 435 if (!__io_alloc_req_refill(ctx)) 436 return false; 437 } 438 *req = io_extract_req(ctx); 439 return true; 440 } 441 442 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 443 { 444 return likely(ctx->submitter_task == current); 445 } 446 447 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 448 { 449 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 450 ctx->submitter_task == current); 451 } 452 453 /* 454 * Terminate the request if either of these conditions are true: 455 * 456 * 1) It's being executed by the original task, but that task is marked 457 * with PF_EXITING as it's exiting. 458 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 459 * our fallback task_work. 460 */ 461 static inline bool io_should_terminate_tw(void) 462 { 463 return current->flags & (PF_KTHREAD | PF_EXITING); 464 } 465 466 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 467 { 468 io_req_set_res(req, res, 0); 469 req->io_task_work.func = io_req_task_complete; 470 io_req_task_work_add(req); 471 } 472 473 /* 474 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 475 * slot. 476 */ 477 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 478 { 479 if (ctx->flags & IORING_SETUP_SQE128) 480 return 2 * sizeof(struct io_uring_sqe); 481 return sizeof(struct io_uring_sqe); 482 } 483 484 static inline bool io_file_can_poll(struct io_kiocb *req) 485 { 486 if (req->flags & REQ_F_CAN_POLL) 487 return true; 488 if (req->file && file_can_poll(req->file)) { 489 req->flags |= REQ_F_CAN_POLL; 490 return true; 491 } 492 return false; 493 } 494 495 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 496 { 497 if (ctx->clockid == CLOCK_MONOTONIC) 498 return ktime_get(); 499 500 return ktime_get_with_offset(ctx->clock_offset); 501 } 502 503 enum { 504 IO_CHECK_CQ_OVERFLOW_BIT, 505 IO_CHECK_CQ_DROPPED_BIT, 506 }; 507 508 static inline bool io_has_work(struct io_ring_ctx *ctx) 509 { 510 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 511 io_local_work_pending(ctx); 512 } 513 #endif 514