1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "filetable.h" 15 #include "opdef.h" 16 17 #ifndef CREATE_TRACE_POINTS 18 #include <trace/events/io_uring.h> 19 #endif 20 21 enum { 22 IOU_COMPLETE = 0, 23 24 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 25 26 /* 27 * The request has more work to do and should be retried. io_uring will 28 * attempt to wait on the file for eligible opcodes, but otherwise 29 * it'll be handed to iowq for blocking execution. It works for normal 30 * requests as well as for the multi shot mode. 31 */ 32 IOU_RETRY = -EAGAIN, 33 34 /* 35 * Requeue the task_work to restart operations on this request. The 36 * actual value isn't important, should just be not an otherwise 37 * valid error code, yet less than -MAX_ERRNO and valid internally. 38 */ 39 IOU_REQUEUE = -3072, 40 }; 41 42 struct io_wait_queue { 43 struct wait_queue_entry wq; 44 struct io_ring_ctx *ctx; 45 unsigned cq_tail; 46 unsigned cq_min_tail; 47 unsigned nr_timeouts; 48 int hit_timeout; 49 ktime_t min_timeout; 50 ktime_t timeout; 51 struct hrtimer t; 52 53 #ifdef CONFIG_NET_RX_BUSY_POLL 54 ktime_t napi_busy_poll_dt; 55 bool napi_prefer_busy_poll; 56 #endif 57 }; 58 59 static inline bool io_should_wake(struct io_wait_queue *iowq) 60 { 61 struct io_ring_ctx *ctx = iowq->ctx; 62 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 63 64 /* 65 * Wake up if we have enough events, or if a timeout occurred since we 66 * started waiting. For timeouts, we always want to return to userspace, 67 * regardless of event count. 68 */ 69 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 70 } 71 72 #define IORING_MAX_ENTRIES 32768 73 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 74 75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 76 unsigned int cq_entries, size_t *sq_offset); 77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 79 int io_run_task_work_sig(struct io_ring_ctx *ctx); 80 void io_req_defer_failed(struct io_kiocb *req, s32 res); 81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 84 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 85 86 void io_req_track_inflight(struct io_kiocb *req); 87 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 89 unsigned issue_flags); 90 91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags); 93 void io_req_task_queue(struct io_kiocb *req); 94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 95 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 99 void tctx_task_work(struct callback_head *cb); 100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 101 102 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 103 int start, int end); 104 void io_req_queue_iowq(struct io_kiocb *req); 105 106 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 107 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 108 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 109 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 110 111 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 112 void io_wq_submit_work(struct io_wq_work *work); 113 114 void io_free_req(struct io_kiocb *req); 115 void io_queue_next(struct io_kiocb *req); 116 void io_task_refs_refill(struct io_uring_task *tctx); 117 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 118 119 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 120 bool cancel_all); 121 122 void io_activate_pollwq(struct io_ring_ctx *ctx); 123 124 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 125 { 126 #if defined(CONFIG_PROVE_LOCKING) 127 lockdep_assert(in_task()); 128 129 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 130 lockdep_assert_held(&ctx->uring_lock); 131 132 if (ctx->flags & IORING_SETUP_IOPOLL) { 133 lockdep_assert_held(&ctx->uring_lock); 134 } else if (!ctx->task_complete) { 135 lockdep_assert_held(&ctx->completion_lock); 136 } else if (ctx->submitter_task) { 137 /* 138 * ->submitter_task may be NULL and we can still post a CQE, 139 * if the ring has been setup with IORING_SETUP_R_DISABLED. 140 * Not from an SQE, as those cannot be submitted, but via 141 * updating tagged resources. 142 */ 143 if (!percpu_ref_is_dying(&ctx->refs)) 144 lockdep_assert(current == ctx->submitter_task); 145 } 146 #endif 147 } 148 149 static inline bool io_is_compat(struct io_ring_ctx *ctx) 150 { 151 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 152 } 153 154 static inline void io_req_task_work_add(struct io_kiocb *req) 155 { 156 __io_req_task_work_add(req, 0); 157 } 158 159 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 160 { 161 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 162 ctx->submit_state.cq_flush) 163 __io_submit_flush_completions(ctx); 164 } 165 166 #define io_for_each_link(pos, head) \ 167 for (pos = (head); pos; pos = pos->link) 168 169 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 170 struct io_uring_cqe **ret, 171 bool overflow) 172 { 173 io_lockdep_assert_cq_locked(ctx); 174 175 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 176 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 177 return false; 178 } 179 *ret = ctx->cqe_cached; 180 ctx->cached_cq_tail++; 181 ctx->cqe_cached++; 182 if (ctx->flags & IORING_SETUP_CQE32) 183 ctx->cqe_cached++; 184 return true; 185 } 186 187 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 188 { 189 return io_get_cqe_overflow(ctx, ret, false); 190 } 191 192 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx, 193 struct io_uring_cqe **cqe_ret) 194 { 195 io_lockdep_assert_cq_locked(ctx); 196 197 ctx->submit_state.cq_flush = true; 198 return io_get_cqe(ctx, cqe_ret); 199 } 200 201 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 202 struct io_kiocb *req) 203 { 204 struct io_uring_cqe *cqe; 205 206 /* 207 * If we can't get a cq entry, userspace overflowed the 208 * submission (by quite a lot). Increment the overflow count in 209 * the ring. 210 */ 211 if (unlikely(!io_get_cqe(ctx, &cqe))) 212 return false; 213 214 215 memcpy(cqe, &req->cqe, sizeof(*cqe)); 216 if (ctx->flags & IORING_SETUP_CQE32) { 217 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 218 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 219 } 220 221 if (trace_io_uring_complete_enabled()) 222 trace_io_uring_complete(req->ctx, req, cqe); 223 return true; 224 } 225 226 static inline void req_set_fail(struct io_kiocb *req) 227 { 228 req->flags |= REQ_F_FAIL; 229 if (req->flags & REQ_F_CQE_SKIP) { 230 req->flags &= ~REQ_F_CQE_SKIP; 231 req->flags |= REQ_F_SKIP_LINK_CQES; 232 } 233 } 234 235 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 236 { 237 req->cqe.res = res; 238 req->cqe.flags = cflags; 239 } 240 241 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 242 struct io_kiocb *req) 243 { 244 if (cache) { 245 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 246 } else { 247 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 248 249 WARN_ON_ONCE(!def->async_size); 250 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 251 } 252 if (req->async_data) 253 req->flags |= REQ_F_ASYNC_DATA; 254 return req->async_data; 255 } 256 257 static inline bool req_has_async_data(struct io_kiocb *req) 258 { 259 return req->flags & REQ_F_ASYNC_DATA; 260 } 261 262 static inline void io_put_file(struct io_kiocb *req) 263 { 264 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 265 fput(req->file); 266 } 267 268 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 269 unsigned issue_flags) 270 { 271 lockdep_assert_held(&ctx->uring_lock); 272 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 273 mutex_unlock(&ctx->uring_lock); 274 } 275 276 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 277 unsigned issue_flags) 278 { 279 /* 280 * "Normal" inline submissions always hold the uring_lock, since we 281 * grab it from the system call. Same is true for the SQPOLL offload. 282 * The only exception is when we've detached the request and issue it 283 * from an async worker thread, grab the lock for that case. 284 */ 285 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 286 mutex_lock(&ctx->uring_lock); 287 lockdep_assert_held(&ctx->uring_lock); 288 } 289 290 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 291 { 292 /* order cqe stores with ring update */ 293 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 294 } 295 296 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 297 { 298 if (wq_has_sleeper(&ctx->poll_wq)) 299 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 300 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 301 } 302 303 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 304 { 305 /* 306 * Trigger waitqueue handler on all waiters on our waitqueue. This 307 * won't necessarily wake up all the tasks, io_should_wake() will make 308 * that decision. 309 * 310 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 311 * set in the mask so that if we recurse back into our own poll 312 * waitqueue handlers, we know we have a dependency between eventfd or 313 * epoll and should terminate multishot poll at that point. 314 */ 315 if (wq_has_sleeper(&ctx->cq_wait)) 316 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 317 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 318 } 319 320 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 321 { 322 struct io_rings *r = ctx->rings; 323 324 /* 325 * SQPOLL must use the actual sqring head, as using the cached_sq_head 326 * is race prone if the SQPOLL thread has grabbed entries but not yet 327 * committed them to the ring. For !SQPOLL, this doesn't matter, but 328 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 329 * just read the actual sqring head unconditionally. 330 */ 331 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 332 } 333 334 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 335 { 336 struct io_rings *rings = ctx->rings; 337 unsigned int entries; 338 339 /* make sure SQ entry isn't read before tail */ 340 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 341 return min(entries, ctx->sq_entries); 342 } 343 344 static inline int io_run_task_work(void) 345 { 346 bool ret = false; 347 348 /* 349 * Always check-and-clear the task_work notification signal. With how 350 * signaling works for task_work, we can find it set with nothing to 351 * run. We need to clear it for that case, like get_signal() does. 352 */ 353 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 354 clear_notify_signal(); 355 /* 356 * PF_IO_WORKER never returns to userspace, so check here if we have 357 * notify work that needs processing. 358 */ 359 if (current->flags & PF_IO_WORKER) { 360 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 361 __set_current_state(TASK_RUNNING); 362 resume_user_mode_work(NULL); 363 } 364 if (current->io_uring) { 365 unsigned int count = 0; 366 367 __set_current_state(TASK_RUNNING); 368 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 369 if (count) 370 ret = true; 371 } 372 } 373 if (task_work_pending(current)) { 374 __set_current_state(TASK_RUNNING); 375 task_work_run(); 376 ret = true; 377 } 378 379 return ret; 380 } 381 382 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 383 { 384 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 385 } 386 387 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 388 { 389 return task_work_pending(current) || io_local_work_pending(ctx); 390 } 391 392 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 393 { 394 lockdep_assert_held(&ctx->uring_lock); 395 } 396 397 /* 398 * Don't complete immediately but use deferred completion infrastructure. 399 * Protected by ->uring_lock and can only be used either with 400 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 401 */ 402 static inline void io_req_complete_defer(struct io_kiocb *req) 403 __must_hold(&req->ctx->uring_lock) 404 { 405 struct io_submit_state *state = &req->ctx->submit_state; 406 407 lockdep_assert_held(&req->ctx->uring_lock); 408 409 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 410 } 411 412 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 413 { 414 if (unlikely(ctx->off_timeout_used || 415 ctx->has_evfd || ctx->poll_activated)) 416 __io_commit_cqring_flush(ctx); 417 } 418 419 static inline void io_get_task_refs(int nr) 420 { 421 struct io_uring_task *tctx = current->io_uring; 422 423 tctx->cached_refs -= nr; 424 if (unlikely(tctx->cached_refs < 0)) 425 io_task_refs_refill(tctx); 426 } 427 428 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 429 { 430 return !ctx->submit_state.free_list.next; 431 } 432 433 extern struct kmem_cache *req_cachep; 434 435 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 436 { 437 struct io_kiocb *req; 438 439 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 440 wq_stack_extract(&ctx->submit_state.free_list); 441 return req; 442 } 443 444 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 445 { 446 if (unlikely(io_req_cache_empty(ctx))) { 447 if (!__io_alloc_req_refill(ctx)) 448 return false; 449 } 450 *req = io_extract_req(ctx); 451 return true; 452 } 453 454 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 455 { 456 return likely(ctx->submitter_task == current); 457 } 458 459 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 460 { 461 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 462 ctx->submitter_task == current); 463 } 464 465 /* 466 * Terminate the request if either of these conditions are true: 467 * 468 * 1) It's being executed by the original task, but that task is marked 469 * with PF_EXITING as it's exiting. 470 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 471 * our fallback task_work. 472 */ 473 static inline bool io_should_terminate_tw(void) 474 { 475 return current->flags & (PF_KTHREAD | PF_EXITING); 476 } 477 478 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 479 { 480 io_req_set_res(req, res, 0); 481 req->io_task_work.func = io_req_task_complete; 482 io_req_task_work_add(req); 483 } 484 485 /* 486 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 487 * slot. 488 */ 489 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 490 { 491 if (ctx->flags & IORING_SETUP_SQE128) 492 return 2 * sizeof(struct io_uring_sqe); 493 return sizeof(struct io_uring_sqe); 494 } 495 496 static inline bool io_file_can_poll(struct io_kiocb *req) 497 { 498 if (req->flags & REQ_F_CAN_POLL) 499 return true; 500 if (req->file && file_can_poll(req->file)) { 501 req->flags |= REQ_F_CAN_POLL; 502 return true; 503 } 504 return false; 505 } 506 507 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 508 { 509 if (ctx->clockid == CLOCK_MONOTONIC) 510 return ktime_get(); 511 512 return ktime_get_with_offset(ctx->clock_offset); 513 } 514 515 enum { 516 IO_CHECK_CQ_OVERFLOW_BIT, 517 IO_CHECK_CQ_DROPPED_BIT, 518 }; 519 520 static inline bool io_has_work(struct io_ring_ctx *ctx) 521 { 522 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 523 io_local_work_pending(ctx); 524 } 525 #endif 526