1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "io-wq.h" 12 #include "slist.h" 13 #include "filetable.h" 14 15 #ifndef CREATE_TRACE_POINTS 16 #include <trace/events/io_uring.h> 17 #endif 18 19 enum { 20 IOU_OK = 0, 21 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 22 23 /* 24 * Requeue the task_work to restart operations on this request. The 25 * actual value isn't important, should just be not an otherwise 26 * valid error code, yet less than -MAX_ERRNO and valid internally. 27 */ 28 IOU_REQUEUE = -3072, 29 30 /* 31 * Intended only when both IO_URING_F_MULTISHOT is passed 32 * to indicate to the poll runner that multishot should be 33 * removed and the result is set on req->cqe.res. 34 */ 35 IOU_STOP_MULTISHOT = -ECANCELED, 36 }; 37 38 struct io_wait_queue { 39 struct wait_queue_entry wq; 40 struct io_ring_ctx *ctx; 41 unsigned cq_tail; 42 unsigned cq_min_tail; 43 unsigned nr_timeouts; 44 int hit_timeout; 45 ktime_t min_timeout; 46 ktime_t timeout; 47 struct hrtimer t; 48 49 #ifdef CONFIG_NET_RX_BUSY_POLL 50 ktime_t napi_busy_poll_dt; 51 bool napi_prefer_busy_poll; 52 #endif 53 }; 54 55 static inline bool io_should_wake(struct io_wait_queue *iowq) 56 { 57 struct io_ring_ctx *ctx = iowq->ctx; 58 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 59 60 /* 61 * Wake up if we have enough events, or if a timeout occurred since we 62 * started waiting. For timeouts, we always want to return to userspace, 63 * regardless of event count. 64 */ 65 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 66 } 67 68 #define IORING_MAX_ENTRIES 32768 69 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 70 71 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 72 unsigned int cq_entries, size_t *sq_offset); 73 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 74 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 75 int io_run_task_work_sig(struct io_ring_ctx *ctx); 76 void io_req_defer_failed(struct io_kiocb *req, s32 res); 77 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 78 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 79 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 80 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 81 82 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 83 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 84 unsigned issue_flags); 85 86 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 87 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 88 unsigned flags); 89 bool io_alloc_async_data(struct io_kiocb *req); 90 void io_req_task_queue(struct io_kiocb *req); 91 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 92 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 93 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 94 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 95 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 96 void tctx_task_work(struct callback_head *cb); 97 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 98 int io_uring_alloc_task_context(struct task_struct *task, 99 struct io_ring_ctx *ctx); 100 101 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 102 int start, int end); 103 void io_req_queue_iowq(struct io_kiocb *req); 104 105 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 106 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 107 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 108 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 109 110 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 111 void io_wq_submit_work(struct io_wq_work *work); 112 113 void io_free_req(struct io_kiocb *req); 114 void io_queue_next(struct io_kiocb *req); 115 void io_task_refs_refill(struct io_uring_task *tctx); 116 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 117 118 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 119 bool cancel_all); 120 121 void io_activate_pollwq(struct io_ring_ctx *ctx); 122 123 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 124 { 125 #if defined(CONFIG_PROVE_LOCKING) 126 lockdep_assert(in_task()); 127 128 if (ctx->flags & IORING_SETUP_IOPOLL) { 129 lockdep_assert_held(&ctx->uring_lock); 130 } else if (!ctx->task_complete) { 131 lockdep_assert_held(&ctx->completion_lock); 132 } else if (ctx->submitter_task) { 133 /* 134 * ->submitter_task may be NULL and we can still post a CQE, 135 * if the ring has been setup with IORING_SETUP_R_DISABLED. 136 * Not from an SQE, as those cannot be submitted, but via 137 * updating tagged resources. 138 */ 139 if (percpu_ref_is_dying(&ctx->refs)) 140 lockdep_assert(current_work()); 141 else 142 lockdep_assert(current == ctx->submitter_task); 143 } 144 #endif 145 } 146 147 static inline void io_req_task_work_add(struct io_kiocb *req) 148 { 149 __io_req_task_work_add(req, 0); 150 } 151 152 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 153 { 154 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 155 ctx->submit_state.cq_flush) 156 __io_submit_flush_completions(ctx); 157 } 158 159 #define io_for_each_link(pos, head) \ 160 for (pos = (head); pos; pos = pos->link) 161 162 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 163 struct io_uring_cqe **ret, 164 bool overflow) 165 { 166 io_lockdep_assert_cq_locked(ctx); 167 168 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 169 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 170 return false; 171 } 172 *ret = ctx->cqe_cached; 173 ctx->cached_cq_tail++; 174 ctx->cqe_cached++; 175 if (ctx->flags & IORING_SETUP_CQE32) 176 ctx->cqe_cached++; 177 return true; 178 } 179 180 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 181 { 182 return io_get_cqe_overflow(ctx, ret, false); 183 } 184 185 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 186 struct io_kiocb *req) 187 { 188 struct io_uring_cqe *cqe; 189 190 /* 191 * If we can't get a cq entry, userspace overflowed the 192 * submission (by quite a lot). Increment the overflow count in 193 * the ring. 194 */ 195 if (unlikely(!io_get_cqe(ctx, &cqe))) 196 return false; 197 198 199 memcpy(cqe, &req->cqe, sizeof(*cqe)); 200 if (ctx->flags & IORING_SETUP_CQE32) { 201 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 202 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 203 } 204 205 if (trace_io_uring_complete_enabled()) 206 trace_io_uring_complete(req->ctx, req, cqe); 207 return true; 208 } 209 210 static inline void req_set_fail(struct io_kiocb *req) 211 { 212 req->flags |= REQ_F_FAIL; 213 if (req->flags & REQ_F_CQE_SKIP) { 214 req->flags &= ~REQ_F_CQE_SKIP; 215 req->flags |= REQ_F_SKIP_LINK_CQES; 216 } 217 } 218 219 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 220 { 221 req->cqe.res = res; 222 req->cqe.flags = cflags; 223 } 224 225 static inline bool req_has_async_data(struct io_kiocb *req) 226 { 227 return req->flags & REQ_F_ASYNC_DATA; 228 } 229 230 static inline void io_put_file(struct io_kiocb *req) 231 { 232 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 233 fput(req->file); 234 } 235 236 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 237 unsigned issue_flags) 238 { 239 lockdep_assert_held(&ctx->uring_lock); 240 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 241 mutex_unlock(&ctx->uring_lock); 242 } 243 244 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 245 unsigned issue_flags) 246 { 247 /* 248 * "Normal" inline submissions always hold the uring_lock, since we 249 * grab it from the system call. Same is true for the SQPOLL offload. 250 * The only exception is when we've detached the request and issue it 251 * from an async worker thread, grab the lock for that case. 252 */ 253 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 254 mutex_lock(&ctx->uring_lock); 255 lockdep_assert_held(&ctx->uring_lock); 256 } 257 258 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 259 { 260 /* order cqe stores with ring update */ 261 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 262 } 263 264 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 265 { 266 if (wq_has_sleeper(&ctx->poll_wq)) 267 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 268 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 269 } 270 271 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 272 { 273 /* 274 * Trigger waitqueue handler on all waiters on our waitqueue. This 275 * won't necessarily wake up all the tasks, io_should_wake() will make 276 * that decision. 277 * 278 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 279 * set in the mask so that if we recurse back into our own poll 280 * waitqueue handlers, we know we have a dependency between eventfd or 281 * epoll and should terminate multishot poll at that point. 282 */ 283 if (wq_has_sleeper(&ctx->cq_wait)) 284 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 285 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 286 } 287 288 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 289 { 290 struct io_rings *r = ctx->rings; 291 292 /* 293 * SQPOLL must use the actual sqring head, as using the cached_sq_head 294 * is race prone if the SQPOLL thread has grabbed entries but not yet 295 * committed them to the ring. For !SQPOLL, this doesn't matter, but 296 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 297 * just read the actual sqring head unconditionally. 298 */ 299 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 300 } 301 302 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 303 { 304 struct io_rings *rings = ctx->rings; 305 unsigned int entries; 306 307 /* make sure SQ entry isn't read before tail */ 308 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 309 return min(entries, ctx->sq_entries); 310 } 311 312 static inline int io_run_task_work(void) 313 { 314 bool ret = false; 315 316 /* 317 * Always check-and-clear the task_work notification signal. With how 318 * signaling works for task_work, we can find it set with nothing to 319 * run. We need to clear it for that case, like get_signal() does. 320 */ 321 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 322 clear_notify_signal(); 323 /* 324 * PF_IO_WORKER never returns to userspace, so check here if we have 325 * notify work that needs processing. 326 */ 327 if (current->flags & PF_IO_WORKER) { 328 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 329 __set_current_state(TASK_RUNNING); 330 resume_user_mode_work(NULL); 331 } 332 if (current->io_uring) { 333 unsigned int count = 0; 334 335 __set_current_state(TASK_RUNNING); 336 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 337 if (count) 338 ret = true; 339 } 340 } 341 if (task_work_pending(current)) { 342 __set_current_state(TASK_RUNNING); 343 task_work_run(); 344 ret = true; 345 } 346 347 return ret; 348 } 349 350 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 351 { 352 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 353 } 354 355 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 356 { 357 return task_work_pending(current) || io_local_work_pending(ctx); 358 } 359 360 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 361 { 362 lockdep_assert_held(&ctx->uring_lock); 363 } 364 365 /* 366 * Don't complete immediately but use deferred completion infrastructure. 367 * Protected by ->uring_lock and can only be used either with 368 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 369 */ 370 static inline void io_req_complete_defer(struct io_kiocb *req) 371 __must_hold(&req->ctx->uring_lock) 372 { 373 struct io_submit_state *state = &req->ctx->submit_state; 374 375 lockdep_assert_held(&req->ctx->uring_lock); 376 377 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 378 } 379 380 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 381 { 382 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 383 ctx->has_evfd || ctx->poll_activated)) 384 __io_commit_cqring_flush(ctx); 385 } 386 387 static inline void io_get_task_refs(int nr) 388 { 389 struct io_uring_task *tctx = current->io_uring; 390 391 tctx->cached_refs -= nr; 392 if (unlikely(tctx->cached_refs < 0)) 393 io_task_refs_refill(tctx); 394 } 395 396 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 397 { 398 return !ctx->submit_state.free_list.next; 399 } 400 401 extern struct kmem_cache *req_cachep; 402 extern struct kmem_cache *io_buf_cachep; 403 404 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 405 { 406 struct io_kiocb *req; 407 408 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 409 wq_stack_extract(&ctx->submit_state.free_list); 410 return req; 411 } 412 413 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 414 { 415 if (unlikely(io_req_cache_empty(ctx))) { 416 if (!__io_alloc_req_refill(ctx)) 417 return false; 418 } 419 *req = io_extract_req(ctx); 420 return true; 421 } 422 423 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 424 { 425 return likely(ctx->submitter_task == current); 426 } 427 428 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 429 { 430 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 431 ctx->submitter_task == current); 432 } 433 434 /* 435 * Terminate the request if either of these conditions are true: 436 * 437 * 1) It's being executed by the original task, but that task is marked 438 * with PF_EXITING as it's exiting. 439 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 440 * our fallback task_work. 441 */ 442 static inline bool io_should_terminate_tw(void) 443 { 444 return current->flags & (PF_KTHREAD | PF_EXITING); 445 } 446 447 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 448 { 449 io_req_set_res(req, res, 0); 450 req->io_task_work.func = io_req_task_complete; 451 io_req_task_work_add(req); 452 } 453 454 /* 455 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 456 * slot. 457 */ 458 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 459 { 460 if (ctx->flags & IORING_SETUP_SQE128) 461 return 2 * sizeof(struct io_uring_sqe); 462 return sizeof(struct io_uring_sqe); 463 } 464 465 static inline bool io_file_can_poll(struct io_kiocb *req) 466 { 467 if (req->flags & REQ_F_CAN_POLL) 468 return true; 469 if (req->file && file_can_poll(req->file)) { 470 req->flags |= REQ_F_CAN_POLL; 471 return true; 472 } 473 return false; 474 } 475 476 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 477 { 478 if (ctx->clockid == CLOCK_MONOTONIC) 479 return ktime_get(); 480 481 return ktime_get_with_offset(ctx->clock_offset); 482 } 483 484 enum { 485 IO_CHECK_CQ_OVERFLOW_BIT, 486 IO_CHECK_CQ_DROPPED_BIT, 487 }; 488 489 static inline bool io_has_work(struct io_ring_ctx *ctx) 490 { 491 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 492 io_local_work_pending(ctx); 493 } 494 #endif 495