xref: /linux/io_uring/io_uring.h (revision 60495b08cf7a6920035c5172a22655ca2001270b)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "io-wq.h"
12 #include "slist.h"
13 #include "filetable.h"
14 
15 #ifndef CREATE_TRACE_POINTS
16 #include <trace/events/io_uring.h>
17 #endif
18 
19 enum {
20 	IOU_OK			= 0,
21 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
22 
23 	/*
24 	 * Requeue the task_work to restart operations on this request. The
25 	 * actual value isn't important, should just be not an otherwise
26 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
27 	 */
28 	IOU_REQUEUE		= -3072,
29 
30 	/*
31 	 * Intended only when both IO_URING_F_MULTISHOT is passed
32 	 * to indicate to the poll runner that multishot should be
33 	 * removed and the result is set on req->cqe.res.
34 	 */
35 	IOU_STOP_MULTISHOT	= -ECANCELED,
36 };
37 
38 struct io_wait_queue {
39 	struct wait_queue_entry wq;
40 	struct io_ring_ctx *ctx;
41 	unsigned cq_tail;
42 	unsigned cq_min_tail;
43 	unsigned nr_timeouts;
44 	int hit_timeout;
45 	ktime_t min_timeout;
46 	ktime_t timeout;
47 	struct hrtimer t;
48 
49 #ifdef CONFIG_NET_RX_BUSY_POLL
50 	ktime_t napi_busy_poll_dt;
51 	bool napi_prefer_busy_poll;
52 #endif
53 };
54 
55 static inline bool io_should_wake(struct io_wait_queue *iowq)
56 {
57 	struct io_ring_ctx *ctx = iowq->ctx;
58 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
59 
60 	/*
61 	 * Wake up if we have enough events, or if a timeout occurred since we
62 	 * started waiting. For timeouts, we always want to return to userspace,
63 	 * regardless of event count.
64 	 */
65 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
66 }
67 
68 #define IORING_MAX_ENTRIES	32768
69 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
70 
71 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
72 			 unsigned int cq_entries, size_t *sq_offset);
73 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
74 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
75 int io_run_task_work_sig(struct io_ring_ctx *ctx);
76 void io_req_defer_failed(struct io_kiocb *req, s32 res);
77 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
78 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
79 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
80 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
81 
82 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
83 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
84 			       unsigned issue_flags);
85 
86 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
87 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
88 				 unsigned flags);
89 bool io_alloc_async_data(struct io_kiocb *req);
90 void io_req_task_queue(struct io_kiocb *req);
91 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
92 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
93 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
94 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
95 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
96 void tctx_task_work(struct callback_head *cb);
97 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
98 int io_uring_alloc_task_context(struct task_struct *task,
99 				struct io_ring_ctx *ctx);
100 
101 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
102 				     int start, int end);
103 void io_req_queue_iowq(struct io_kiocb *req);
104 
105 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
106 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
107 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
108 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
109 
110 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
111 void io_wq_submit_work(struct io_wq_work *work);
112 
113 void io_free_req(struct io_kiocb *req);
114 void io_queue_next(struct io_kiocb *req);
115 void io_task_refs_refill(struct io_uring_task *tctx);
116 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
117 
118 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
119 			bool cancel_all);
120 
121 void io_activate_pollwq(struct io_ring_ctx *ctx);
122 
123 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
124 {
125 #if defined(CONFIG_PROVE_LOCKING)
126 	lockdep_assert(in_task());
127 
128 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
129 		lockdep_assert_held(&ctx->uring_lock);
130 
131 	if (ctx->flags & IORING_SETUP_IOPOLL) {
132 		lockdep_assert_held(&ctx->uring_lock);
133 	} else if (!ctx->task_complete) {
134 		lockdep_assert_held(&ctx->completion_lock);
135 	} else if (ctx->submitter_task) {
136 		/*
137 		 * ->submitter_task may be NULL and we can still post a CQE,
138 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
139 		 * Not from an SQE, as those cannot be submitted, but via
140 		 * updating tagged resources.
141 		 */
142 		if (!percpu_ref_is_dying(&ctx->refs))
143 			lockdep_assert(current == ctx->submitter_task);
144 	}
145 #endif
146 }
147 
148 static inline void io_req_task_work_add(struct io_kiocb *req)
149 {
150 	__io_req_task_work_add(req, 0);
151 }
152 
153 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
154 {
155 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
156 	    ctx->submit_state.cq_flush)
157 		__io_submit_flush_completions(ctx);
158 }
159 
160 #define io_for_each_link(pos, head) \
161 	for (pos = (head); pos; pos = pos->link)
162 
163 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
164 					struct io_uring_cqe **ret,
165 					bool overflow)
166 {
167 	io_lockdep_assert_cq_locked(ctx);
168 
169 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
170 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
171 			return false;
172 	}
173 	*ret = ctx->cqe_cached;
174 	ctx->cached_cq_tail++;
175 	ctx->cqe_cached++;
176 	if (ctx->flags & IORING_SETUP_CQE32)
177 		ctx->cqe_cached++;
178 	return true;
179 }
180 
181 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
182 {
183 	return io_get_cqe_overflow(ctx, ret, false);
184 }
185 
186 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
187 					    struct io_kiocb *req)
188 {
189 	struct io_uring_cqe *cqe;
190 
191 	/*
192 	 * If we can't get a cq entry, userspace overflowed the
193 	 * submission (by quite a lot). Increment the overflow count in
194 	 * the ring.
195 	 */
196 	if (unlikely(!io_get_cqe(ctx, &cqe)))
197 		return false;
198 
199 
200 	memcpy(cqe, &req->cqe, sizeof(*cqe));
201 	if (ctx->flags & IORING_SETUP_CQE32) {
202 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
203 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
204 	}
205 
206 	if (trace_io_uring_complete_enabled())
207 		trace_io_uring_complete(req->ctx, req, cqe);
208 	return true;
209 }
210 
211 static inline void req_set_fail(struct io_kiocb *req)
212 {
213 	req->flags |= REQ_F_FAIL;
214 	if (req->flags & REQ_F_CQE_SKIP) {
215 		req->flags &= ~REQ_F_CQE_SKIP;
216 		req->flags |= REQ_F_SKIP_LINK_CQES;
217 	}
218 }
219 
220 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
221 {
222 	req->cqe.res = res;
223 	req->cqe.flags = cflags;
224 }
225 
226 static inline bool req_has_async_data(struct io_kiocb *req)
227 {
228 	return req->flags & REQ_F_ASYNC_DATA;
229 }
230 
231 static inline void io_put_file(struct io_kiocb *req)
232 {
233 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
234 		fput(req->file);
235 }
236 
237 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
238 					 unsigned issue_flags)
239 {
240 	lockdep_assert_held(&ctx->uring_lock);
241 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
242 		mutex_unlock(&ctx->uring_lock);
243 }
244 
245 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
246 				       unsigned issue_flags)
247 {
248 	/*
249 	 * "Normal" inline submissions always hold the uring_lock, since we
250 	 * grab it from the system call. Same is true for the SQPOLL offload.
251 	 * The only exception is when we've detached the request and issue it
252 	 * from an async worker thread, grab the lock for that case.
253 	 */
254 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
255 		mutex_lock(&ctx->uring_lock);
256 	lockdep_assert_held(&ctx->uring_lock);
257 }
258 
259 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
260 {
261 	/* order cqe stores with ring update */
262 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
263 }
264 
265 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
266 {
267 	if (wq_has_sleeper(&ctx->poll_wq))
268 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
269 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
270 }
271 
272 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
273 {
274 	/*
275 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
276 	 * won't necessarily wake up all the tasks, io_should_wake() will make
277 	 * that decision.
278 	 *
279 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
280 	 * set in the mask so that if we recurse back into our own poll
281 	 * waitqueue handlers, we know we have a dependency between eventfd or
282 	 * epoll and should terminate multishot poll at that point.
283 	 */
284 	if (wq_has_sleeper(&ctx->cq_wait))
285 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
286 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
287 }
288 
289 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
290 {
291 	struct io_rings *r = ctx->rings;
292 
293 	/*
294 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
295 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
296 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
297 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
298 	 * just read the actual sqring head unconditionally.
299 	 */
300 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
301 }
302 
303 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
304 {
305 	struct io_rings *rings = ctx->rings;
306 	unsigned int entries;
307 
308 	/* make sure SQ entry isn't read before tail */
309 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
310 	return min(entries, ctx->sq_entries);
311 }
312 
313 static inline int io_run_task_work(void)
314 {
315 	bool ret = false;
316 
317 	/*
318 	 * Always check-and-clear the task_work notification signal. With how
319 	 * signaling works for task_work, we can find it set with nothing to
320 	 * run. We need to clear it for that case, like get_signal() does.
321 	 */
322 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
323 		clear_notify_signal();
324 	/*
325 	 * PF_IO_WORKER never returns to userspace, so check here if we have
326 	 * notify work that needs processing.
327 	 */
328 	if (current->flags & PF_IO_WORKER) {
329 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
330 			__set_current_state(TASK_RUNNING);
331 			resume_user_mode_work(NULL);
332 		}
333 		if (current->io_uring) {
334 			unsigned int count = 0;
335 
336 			__set_current_state(TASK_RUNNING);
337 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
338 			if (count)
339 				ret = true;
340 		}
341 	}
342 	if (task_work_pending(current)) {
343 		__set_current_state(TASK_RUNNING);
344 		task_work_run();
345 		ret = true;
346 	}
347 
348 	return ret;
349 }
350 
351 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
352 {
353 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
354 }
355 
356 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
357 {
358 	return task_work_pending(current) || io_local_work_pending(ctx);
359 }
360 
361 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
362 {
363 	lockdep_assert_held(&ctx->uring_lock);
364 }
365 
366 /*
367  * Don't complete immediately but use deferred completion infrastructure.
368  * Protected by ->uring_lock and can only be used either with
369  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
370  */
371 static inline void io_req_complete_defer(struct io_kiocb *req)
372 	__must_hold(&req->ctx->uring_lock)
373 {
374 	struct io_submit_state *state = &req->ctx->submit_state;
375 
376 	lockdep_assert_held(&req->ctx->uring_lock);
377 
378 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
379 }
380 
381 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
382 {
383 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
384 		     ctx->has_evfd || ctx->poll_activated))
385 		__io_commit_cqring_flush(ctx);
386 }
387 
388 static inline void io_get_task_refs(int nr)
389 {
390 	struct io_uring_task *tctx = current->io_uring;
391 
392 	tctx->cached_refs -= nr;
393 	if (unlikely(tctx->cached_refs < 0))
394 		io_task_refs_refill(tctx);
395 }
396 
397 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
398 {
399 	return !ctx->submit_state.free_list.next;
400 }
401 
402 extern struct kmem_cache *req_cachep;
403 extern struct kmem_cache *io_buf_cachep;
404 
405 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
406 {
407 	struct io_kiocb *req;
408 
409 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
410 	wq_stack_extract(&ctx->submit_state.free_list);
411 	return req;
412 }
413 
414 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
415 {
416 	if (unlikely(io_req_cache_empty(ctx))) {
417 		if (!__io_alloc_req_refill(ctx))
418 			return false;
419 	}
420 	*req = io_extract_req(ctx);
421 	return true;
422 }
423 
424 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
425 {
426 	return likely(ctx->submitter_task == current);
427 }
428 
429 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
430 {
431 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
432 		      ctx->submitter_task == current);
433 }
434 
435 /*
436  * Terminate the request if either of these conditions are true:
437  *
438  * 1) It's being executed by the original task, but that task is marked
439  *    with PF_EXITING as it's exiting.
440  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
441  *    our fallback task_work.
442  */
443 static inline bool io_should_terminate_tw(void)
444 {
445 	return current->flags & (PF_KTHREAD | PF_EXITING);
446 }
447 
448 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
449 {
450 	io_req_set_res(req, res, 0);
451 	req->io_task_work.func = io_req_task_complete;
452 	io_req_task_work_add(req);
453 }
454 
455 /*
456  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
457  * slot.
458  */
459 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
460 {
461 	if (ctx->flags & IORING_SETUP_SQE128)
462 		return 2 * sizeof(struct io_uring_sqe);
463 	return sizeof(struct io_uring_sqe);
464 }
465 
466 static inline bool io_file_can_poll(struct io_kiocb *req)
467 {
468 	if (req->flags & REQ_F_CAN_POLL)
469 		return true;
470 	if (req->file && file_can_poll(req->file)) {
471 		req->flags |= REQ_F_CAN_POLL;
472 		return true;
473 	}
474 	return false;
475 }
476 
477 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
478 {
479 	if (ctx->clockid == CLOCK_MONOTONIC)
480 		return ktime_get();
481 
482 	return ktime_get_with_offset(ctx->clock_offset);
483 }
484 
485 enum {
486 	IO_CHECK_CQ_OVERFLOW_BIT,
487 	IO_CHECK_CQ_DROPPED_BIT,
488 };
489 
490 static inline bool io_has_work(struct io_ring_ctx *ctx)
491 {
492 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
493 	       io_local_work_pending(ctx);
494 }
495 #endif
496