1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "io-wq.h" 12 #include "slist.h" 13 #include "filetable.h" 14 15 #ifndef CREATE_TRACE_POINTS 16 #include <trace/events/io_uring.h> 17 #endif 18 19 enum { 20 IOU_OK = 0, 21 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 22 23 /* 24 * Requeue the task_work to restart operations on this request. The 25 * actual value isn't important, should just be not an otherwise 26 * valid error code, yet less than -MAX_ERRNO and valid internally. 27 */ 28 IOU_REQUEUE = -3072, 29 30 /* 31 * Intended only when both IO_URING_F_MULTISHOT is passed 32 * to indicate to the poll runner that multishot should be 33 * removed and the result is set on req->cqe.res. 34 */ 35 IOU_STOP_MULTISHOT = -ECANCELED, 36 }; 37 38 struct io_wait_queue { 39 struct wait_queue_entry wq; 40 struct io_ring_ctx *ctx; 41 unsigned cq_tail; 42 unsigned cq_min_tail; 43 unsigned nr_timeouts; 44 int hit_timeout; 45 ktime_t min_timeout; 46 ktime_t timeout; 47 struct hrtimer t; 48 49 #ifdef CONFIG_NET_RX_BUSY_POLL 50 ktime_t napi_busy_poll_dt; 51 bool napi_prefer_busy_poll; 52 #endif 53 }; 54 55 static inline bool io_should_wake(struct io_wait_queue *iowq) 56 { 57 struct io_ring_ctx *ctx = iowq->ctx; 58 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 59 60 /* 61 * Wake up if we have enough events, or if a timeout occurred since we 62 * started waiting. For timeouts, we always want to return to userspace, 63 * regardless of event count. 64 */ 65 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 66 } 67 68 #define IORING_MAX_ENTRIES 32768 69 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 70 71 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 72 unsigned int cq_entries, size_t *sq_offset); 73 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 74 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 75 int io_run_task_work_sig(struct io_ring_ctx *ctx); 76 void io_req_defer_failed(struct io_kiocb *req, s32 res); 77 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 78 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 79 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 80 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 81 82 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 83 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 84 unsigned issue_flags); 85 86 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 87 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 88 unsigned flags); 89 bool io_alloc_async_data(struct io_kiocb *req); 90 void io_req_task_queue(struct io_kiocb *req); 91 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 92 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 93 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 94 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 95 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 96 void tctx_task_work(struct callback_head *cb); 97 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 98 int io_uring_alloc_task_context(struct task_struct *task, 99 struct io_ring_ctx *ctx); 100 101 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 102 int start, int end); 103 void io_req_queue_iowq(struct io_kiocb *req); 104 105 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 106 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 107 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 108 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 109 110 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 111 void io_wq_submit_work(struct io_wq_work *work); 112 113 void io_free_req(struct io_kiocb *req); 114 void io_queue_next(struct io_kiocb *req); 115 void io_task_refs_refill(struct io_uring_task *tctx); 116 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 117 118 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 119 bool cancel_all); 120 121 void io_activate_pollwq(struct io_ring_ctx *ctx); 122 123 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 124 { 125 #if defined(CONFIG_PROVE_LOCKING) 126 lockdep_assert(in_task()); 127 128 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 129 lockdep_assert_held(&ctx->uring_lock); 130 131 if (ctx->flags & IORING_SETUP_IOPOLL) { 132 lockdep_assert_held(&ctx->uring_lock); 133 } else if (!ctx->task_complete) { 134 lockdep_assert_held(&ctx->completion_lock); 135 } else if (ctx->submitter_task) { 136 /* 137 * ->submitter_task may be NULL and we can still post a CQE, 138 * if the ring has been setup with IORING_SETUP_R_DISABLED. 139 * Not from an SQE, as those cannot be submitted, but via 140 * updating tagged resources. 141 */ 142 if (!percpu_ref_is_dying(&ctx->refs)) 143 lockdep_assert(current == ctx->submitter_task); 144 } 145 #endif 146 } 147 148 static inline void io_req_task_work_add(struct io_kiocb *req) 149 { 150 __io_req_task_work_add(req, 0); 151 } 152 153 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 154 { 155 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 156 ctx->submit_state.cq_flush) 157 __io_submit_flush_completions(ctx); 158 } 159 160 #define io_for_each_link(pos, head) \ 161 for (pos = (head); pos; pos = pos->link) 162 163 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 164 struct io_uring_cqe **ret, 165 bool overflow) 166 { 167 io_lockdep_assert_cq_locked(ctx); 168 169 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 170 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 171 return false; 172 } 173 *ret = ctx->cqe_cached; 174 ctx->cached_cq_tail++; 175 ctx->cqe_cached++; 176 if (ctx->flags & IORING_SETUP_CQE32) 177 ctx->cqe_cached++; 178 return true; 179 } 180 181 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 182 { 183 return io_get_cqe_overflow(ctx, ret, false); 184 } 185 186 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 187 struct io_kiocb *req) 188 { 189 struct io_uring_cqe *cqe; 190 191 /* 192 * If we can't get a cq entry, userspace overflowed the 193 * submission (by quite a lot). Increment the overflow count in 194 * the ring. 195 */ 196 if (unlikely(!io_get_cqe(ctx, &cqe))) 197 return false; 198 199 200 memcpy(cqe, &req->cqe, sizeof(*cqe)); 201 if (ctx->flags & IORING_SETUP_CQE32) { 202 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 203 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 204 } 205 206 if (trace_io_uring_complete_enabled()) 207 trace_io_uring_complete(req->ctx, req, cqe); 208 return true; 209 } 210 211 static inline void req_set_fail(struct io_kiocb *req) 212 { 213 req->flags |= REQ_F_FAIL; 214 if (req->flags & REQ_F_CQE_SKIP) { 215 req->flags &= ~REQ_F_CQE_SKIP; 216 req->flags |= REQ_F_SKIP_LINK_CQES; 217 } 218 } 219 220 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 221 { 222 req->cqe.res = res; 223 req->cqe.flags = cflags; 224 } 225 226 static inline bool req_has_async_data(struct io_kiocb *req) 227 { 228 return req->flags & REQ_F_ASYNC_DATA; 229 } 230 231 static inline void io_put_file(struct io_kiocb *req) 232 { 233 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 234 fput(req->file); 235 } 236 237 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 238 unsigned issue_flags) 239 { 240 lockdep_assert_held(&ctx->uring_lock); 241 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 242 mutex_unlock(&ctx->uring_lock); 243 } 244 245 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 246 unsigned issue_flags) 247 { 248 /* 249 * "Normal" inline submissions always hold the uring_lock, since we 250 * grab it from the system call. Same is true for the SQPOLL offload. 251 * The only exception is when we've detached the request and issue it 252 * from an async worker thread, grab the lock for that case. 253 */ 254 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 255 mutex_lock(&ctx->uring_lock); 256 lockdep_assert_held(&ctx->uring_lock); 257 } 258 259 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 260 { 261 /* order cqe stores with ring update */ 262 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 263 } 264 265 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 266 { 267 if (wq_has_sleeper(&ctx->poll_wq)) 268 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 269 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 270 } 271 272 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 273 { 274 /* 275 * Trigger waitqueue handler on all waiters on our waitqueue. This 276 * won't necessarily wake up all the tasks, io_should_wake() will make 277 * that decision. 278 * 279 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 280 * set in the mask so that if we recurse back into our own poll 281 * waitqueue handlers, we know we have a dependency between eventfd or 282 * epoll and should terminate multishot poll at that point. 283 */ 284 if (wq_has_sleeper(&ctx->cq_wait)) 285 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 286 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 287 } 288 289 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 290 { 291 struct io_rings *r = ctx->rings; 292 293 /* 294 * SQPOLL must use the actual sqring head, as using the cached_sq_head 295 * is race prone if the SQPOLL thread has grabbed entries but not yet 296 * committed them to the ring. For !SQPOLL, this doesn't matter, but 297 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 298 * just read the actual sqring head unconditionally. 299 */ 300 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 301 } 302 303 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 304 { 305 struct io_rings *rings = ctx->rings; 306 unsigned int entries; 307 308 /* make sure SQ entry isn't read before tail */ 309 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 310 return min(entries, ctx->sq_entries); 311 } 312 313 static inline int io_run_task_work(void) 314 { 315 bool ret = false; 316 317 /* 318 * Always check-and-clear the task_work notification signal. With how 319 * signaling works for task_work, we can find it set with nothing to 320 * run. We need to clear it for that case, like get_signal() does. 321 */ 322 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 323 clear_notify_signal(); 324 /* 325 * PF_IO_WORKER never returns to userspace, so check here if we have 326 * notify work that needs processing. 327 */ 328 if (current->flags & PF_IO_WORKER) { 329 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 330 __set_current_state(TASK_RUNNING); 331 resume_user_mode_work(NULL); 332 } 333 if (current->io_uring) { 334 unsigned int count = 0; 335 336 __set_current_state(TASK_RUNNING); 337 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 338 if (count) 339 ret = true; 340 } 341 } 342 if (task_work_pending(current)) { 343 __set_current_state(TASK_RUNNING); 344 task_work_run(); 345 ret = true; 346 } 347 348 return ret; 349 } 350 351 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 352 { 353 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 354 } 355 356 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 357 { 358 return task_work_pending(current) || io_local_work_pending(ctx); 359 } 360 361 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 362 { 363 lockdep_assert_held(&ctx->uring_lock); 364 } 365 366 /* 367 * Don't complete immediately but use deferred completion infrastructure. 368 * Protected by ->uring_lock and can only be used either with 369 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 370 */ 371 static inline void io_req_complete_defer(struct io_kiocb *req) 372 __must_hold(&req->ctx->uring_lock) 373 { 374 struct io_submit_state *state = &req->ctx->submit_state; 375 376 lockdep_assert_held(&req->ctx->uring_lock); 377 378 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 379 } 380 381 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 382 { 383 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 384 ctx->has_evfd || ctx->poll_activated)) 385 __io_commit_cqring_flush(ctx); 386 } 387 388 static inline void io_get_task_refs(int nr) 389 { 390 struct io_uring_task *tctx = current->io_uring; 391 392 tctx->cached_refs -= nr; 393 if (unlikely(tctx->cached_refs < 0)) 394 io_task_refs_refill(tctx); 395 } 396 397 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 398 { 399 return !ctx->submit_state.free_list.next; 400 } 401 402 extern struct kmem_cache *req_cachep; 403 extern struct kmem_cache *io_buf_cachep; 404 405 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 406 { 407 struct io_kiocb *req; 408 409 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 410 wq_stack_extract(&ctx->submit_state.free_list); 411 return req; 412 } 413 414 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 415 { 416 if (unlikely(io_req_cache_empty(ctx))) { 417 if (!__io_alloc_req_refill(ctx)) 418 return false; 419 } 420 *req = io_extract_req(ctx); 421 return true; 422 } 423 424 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 425 { 426 return likely(ctx->submitter_task == current); 427 } 428 429 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 430 { 431 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 432 ctx->submitter_task == current); 433 } 434 435 /* 436 * Terminate the request if either of these conditions are true: 437 * 438 * 1) It's being executed by the original task, but that task is marked 439 * with PF_EXITING as it's exiting. 440 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 441 * our fallback task_work. 442 */ 443 static inline bool io_should_terminate_tw(void) 444 { 445 return current->flags & (PF_KTHREAD | PF_EXITING); 446 } 447 448 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 449 { 450 io_req_set_res(req, res, 0); 451 req->io_task_work.func = io_req_task_complete; 452 io_req_task_work_add(req); 453 } 454 455 /* 456 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 457 * slot. 458 */ 459 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 460 { 461 if (ctx->flags & IORING_SETUP_SQE128) 462 return 2 * sizeof(struct io_uring_sqe); 463 return sizeof(struct io_uring_sqe); 464 } 465 466 static inline bool io_file_can_poll(struct io_kiocb *req) 467 { 468 if (req->flags & REQ_F_CAN_POLL) 469 return true; 470 if (req->file && file_can_poll(req->file)) { 471 req->flags |= REQ_F_CAN_POLL; 472 return true; 473 } 474 return false; 475 } 476 477 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 478 { 479 if (ctx->clockid == CLOCK_MONOTONIC) 480 return ktime_get(); 481 482 return ktime_get_with_offset(ctx->clock_offset); 483 } 484 485 enum { 486 IO_CHECK_CQ_OVERFLOW_BIT, 487 IO_CHECK_CQ_DROPPED_BIT, 488 }; 489 490 static inline bool io_has_work(struct io_ring_ctx *ctx) 491 { 492 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 493 io_local_work_pending(ctx); 494 } 495 #endif 496