1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/io_uring_types.h> 9 #include <uapi/linux/eventpoll.h> 10 #include "io-wq.h" 11 #include "slist.h" 12 #include "filetable.h" 13 14 #ifndef CREATE_TRACE_POINTS 15 #include <trace/events/io_uring.h> 16 #endif 17 18 enum { 19 /* don't use deferred task_work */ 20 IOU_F_TWQ_FORCE_NORMAL = 1, 21 22 /* 23 * A hint to not wake right away but delay until there are enough of 24 * tw's queued to match the number of CQEs the task is waiting for. 25 * 26 * Must not be used wirh requests generating more than one CQE. 27 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set. 28 */ 29 IOU_F_TWQ_LAZY_WAKE = 2, 30 }; 31 32 enum { 33 IOU_OK = 0, 34 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 35 36 /* 37 * Intended only when both IO_URING_F_MULTISHOT is passed 38 * to indicate to the poll runner that multishot should be 39 * removed and the result is set on req->cqe.res. 40 */ 41 IOU_STOP_MULTISHOT = -ECANCELED, 42 }; 43 44 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow); 45 bool io_req_cqe_overflow(struct io_kiocb *req); 46 int io_run_task_work_sig(struct io_ring_ctx *ctx); 47 void io_req_defer_failed(struct io_kiocb *req, s32 res); 48 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags); 49 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 50 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 51 bool allow_overflow); 52 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 53 54 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages); 55 56 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 57 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 58 unsigned issue_flags); 59 60 static inline bool io_req_ffs_set(struct io_kiocb *req) 61 { 62 return req->flags & REQ_F_FIXED_FILE; 63 } 64 65 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 66 bool io_is_uring_fops(struct file *file); 67 bool io_alloc_async_data(struct io_kiocb *req); 68 void io_req_task_queue(struct io_kiocb *req); 69 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use); 70 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 71 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 72 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 73 void tctx_task_work(struct callback_head *cb); 74 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 75 int io_uring_alloc_task_context(struct task_struct *task, 76 struct io_ring_ctx *ctx); 77 78 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 79 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 80 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 81 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node); 82 int io_req_prep_async(struct io_kiocb *req); 83 84 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 85 void io_wq_submit_work(struct io_wq_work *work); 86 87 void io_free_req(struct io_kiocb *req); 88 void io_queue_next(struct io_kiocb *req); 89 void io_task_refs_refill(struct io_uring_task *tctx); 90 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 91 92 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 93 bool cancel_all); 94 95 #define io_lockdep_assert_cq_locked(ctx) \ 96 do { \ 97 lockdep_assert(in_task()); \ 98 \ 99 if (ctx->flags & IORING_SETUP_IOPOLL) { \ 100 lockdep_assert_held(&ctx->uring_lock); \ 101 } else if (!ctx->task_complete) { \ 102 lockdep_assert_held(&ctx->completion_lock); \ 103 } else if (ctx->submitter_task->flags & PF_EXITING) { \ 104 lockdep_assert(current_work()); \ 105 } else { \ 106 lockdep_assert(current == ctx->submitter_task); \ 107 } \ 108 } while (0) 109 110 static inline void io_req_task_work_add(struct io_kiocb *req) 111 { 112 __io_req_task_work_add(req, 0); 113 } 114 115 #define io_for_each_link(pos, head) \ 116 for (pos = (head); pos; pos = pos->link) 117 118 void io_cq_unlock_post(struct io_ring_ctx *ctx); 119 120 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx, 121 bool overflow) 122 { 123 io_lockdep_assert_cq_locked(ctx); 124 125 if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) { 126 struct io_uring_cqe *cqe = ctx->cqe_cached; 127 128 ctx->cached_cq_tail++; 129 ctx->cqe_cached++; 130 if (ctx->flags & IORING_SETUP_CQE32) 131 ctx->cqe_cached++; 132 return cqe; 133 } 134 135 return __io_get_cqe(ctx, overflow); 136 } 137 138 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx) 139 { 140 return io_get_cqe_overflow(ctx, false); 141 } 142 143 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx, 144 struct io_kiocb *req) 145 { 146 struct io_uring_cqe *cqe; 147 148 /* 149 * If we can't get a cq entry, userspace overflowed the 150 * submission (by quite a lot). Increment the overflow count in 151 * the ring. 152 */ 153 cqe = io_get_cqe(ctx); 154 if (unlikely(!cqe)) 155 return false; 156 157 trace_io_uring_complete(req->ctx, req, req->cqe.user_data, 158 req->cqe.res, req->cqe.flags, 159 (req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0, 160 (req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0); 161 162 memcpy(cqe, &req->cqe, sizeof(*cqe)); 163 164 if (ctx->flags & IORING_SETUP_CQE32) { 165 u64 extra1 = 0, extra2 = 0; 166 167 if (req->flags & REQ_F_CQE32_INIT) { 168 extra1 = req->extra1; 169 extra2 = req->extra2; 170 } 171 172 WRITE_ONCE(cqe->big_cqe[0], extra1); 173 WRITE_ONCE(cqe->big_cqe[1], extra2); 174 } 175 return true; 176 } 177 178 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 179 struct io_kiocb *req) 180 { 181 if (likely(__io_fill_cqe_req(ctx, req))) 182 return true; 183 return io_req_cqe_overflow(req); 184 } 185 186 static inline void req_set_fail(struct io_kiocb *req) 187 { 188 req->flags |= REQ_F_FAIL; 189 if (req->flags & REQ_F_CQE_SKIP) { 190 req->flags &= ~REQ_F_CQE_SKIP; 191 req->flags |= REQ_F_SKIP_LINK_CQES; 192 } 193 } 194 195 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 196 { 197 req->cqe.res = res; 198 req->cqe.flags = cflags; 199 } 200 201 static inline bool req_has_async_data(struct io_kiocb *req) 202 { 203 return req->flags & REQ_F_ASYNC_DATA; 204 } 205 206 static inline void io_put_file(struct file *file) 207 { 208 if (file) 209 fput(file); 210 } 211 212 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 213 unsigned issue_flags) 214 { 215 lockdep_assert_held(&ctx->uring_lock); 216 if (issue_flags & IO_URING_F_UNLOCKED) 217 mutex_unlock(&ctx->uring_lock); 218 } 219 220 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 221 unsigned issue_flags) 222 { 223 /* 224 * "Normal" inline submissions always hold the uring_lock, since we 225 * grab it from the system call. Same is true for the SQPOLL offload. 226 * The only exception is when we've detached the request and issue it 227 * from an async worker thread, grab the lock for that case. 228 */ 229 if (issue_flags & IO_URING_F_UNLOCKED) 230 mutex_lock(&ctx->uring_lock); 231 lockdep_assert_held(&ctx->uring_lock); 232 } 233 234 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 235 { 236 /* order cqe stores with ring update */ 237 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 238 } 239 240 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 241 { 242 if (wq_has_sleeper(&ctx->poll_wq)) 243 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 244 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 245 } 246 247 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 248 { 249 /* 250 * Trigger waitqueue handler on all waiters on our waitqueue. This 251 * won't necessarily wake up all the tasks, io_should_wake() will make 252 * that decision. 253 * 254 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 255 * set in the mask so that if we recurse back into our own poll 256 * waitqueue handlers, we know we have a dependency between eventfd or 257 * epoll and should terminate multishot poll at that point. 258 */ 259 if (wq_has_sleeper(&ctx->cq_wait)) 260 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 261 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 262 } 263 264 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 265 { 266 struct io_rings *r = ctx->rings; 267 268 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries; 269 } 270 271 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 272 { 273 struct io_rings *rings = ctx->rings; 274 unsigned int entries; 275 276 /* make sure SQ entry isn't read before tail */ 277 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 278 return min(entries, ctx->sq_entries); 279 } 280 281 static inline int io_run_task_work(void) 282 { 283 /* 284 * Always check-and-clear the task_work notification signal. With how 285 * signaling works for task_work, we can find it set with nothing to 286 * run. We need to clear it for that case, like get_signal() does. 287 */ 288 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 289 clear_notify_signal(); 290 /* 291 * PF_IO_WORKER never returns to userspace, so check here if we have 292 * notify work that needs processing. 293 */ 294 if (current->flags & PF_IO_WORKER && 295 test_thread_flag(TIF_NOTIFY_RESUME)) { 296 __set_current_state(TASK_RUNNING); 297 resume_user_mode_work(NULL); 298 } 299 if (task_work_pending(current)) { 300 __set_current_state(TASK_RUNNING); 301 task_work_run(); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 309 { 310 return task_work_pending(current) || !wq_list_empty(&ctx->work_llist); 311 } 312 313 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 314 { 315 if (!ts->locked) { 316 mutex_lock(&ctx->uring_lock); 317 ts->locked = true; 318 } 319 } 320 321 /* 322 * Don't complete immediately but use deferred completion infrastructure. 323 * Protected by ->uring_lock and can only be used either with 324 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 325 */ 326 static inline void io_req_complete_defer(struct io_kiocb *req) 327 __must_hold(&req->ctx->uring_lock) 328 { 329 struct io_submit_state *state = &req->ctx->submit_state; 330 331 lockdep_assert_held(&req->ctx->uring_lock); 332 333 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 334 } 335 336 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 337 { 338 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 339 ctx->has_evfd || ctx->poll_activated)) 340 __io_commit_cqring_flush(ctx); 341 } 342 343 static inline void io_get_task_refs(int nr) 344 { 345 struct io_uring_task *tctx = current->io_uring; 346 347 tctx->cached_refs -= nr; 348 if (unlikely(tctx->cached_refs < 0)) 349 io_task_refs_refill(tctx); 350 } 351 352 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 353 { 354 return !ctx->submit_state.free_list.next; 355 } 356 357 extern struct kmem_cache *req_cachep; 358 359 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 360 { 361 struct io_kiocb *req; 362 363 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 364 kasan_unpoison_object_data(req_cachep, req); 365 wq_stack_extract(&ctx->submit_state.free_list); 366 return req; 367 } 368 369 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 370 { 371 if (unlikely(io_req_cache_empty(ctx))) { 372 if (!__io_alloc_req_refill(ctx)) 373 return false; 374 } 375 *req = io_extract_req(ctx); 376 return true; 377 } 378 379 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 380 { 381 return likely(ctx->submitter_task == current); 382 } 383 384 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 385 { 386 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 387 ctx->submitter_task == current); 388 } 389 390 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 391 { 392 io_req_set_res(req, res, 0); 393 req->io_task_work.func = io_req_task_complete; 394 io_req_task_work_add(req); 395 } 396 397 /* 398 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 399 * slot. 400 */ 401 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 402 { 403 if (ctx->flags & IORING_SETUP_SQE128) 404 return 2 * sizeof(struct io_uring_sqe); 405 return sizeof(struct io_uring_sqe); 406 } 407 #endif 408