xref: /linux/io_uring/io_uring.h (revision 31ca5d49264ba6197aa48a926f6a035ed08b3715)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/* don't use deferred task_work */
20 	IOU_F_TWQ_FORCE_NORMAL			= 1,
21 
22 	/*
23 	 * A hint to not wake right away but delay until there are enough of
24 	 * tw's queued to match the number of CQEs the task is waiting for.
25 	 *
26 	 * Must not be used wirh requests generating more than one CQE.
27 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
28 	 */
29 	IOU_F_TWQ_LAZY_WAKE			= 2,
30 };
31 
32 enum {
33 	IOU_OK			= 0,
34 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
35 
36 	/*
37 	 * Intended only when both IO_URING_F_MULTISHOT is passed
38 	 * to indicate to the poll runner that multishot should be
39 	 * removed and the result is set on req->cqe.res.
40 	 */
41 	IOU_STOP_MULTISHOT	= -ECANCELED,
42 };
43 
44 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow);
45 bool io_req_cqe_overflow(struct io_kiocb *req);
46 int io_run_task_work_sig(struct io_ring_ctx *ctx);
47 void io_req_defer_failed(struct io_kiocb *req, s32 res);
48 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
49 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
50 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
51 		bool allow_overflow);
52 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
53 
54 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
55 
56 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
57 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
58 			       unsigned issue_flags);
59 
60 static inline bool io_req_ffs_set(struct io_kiocb *req)
61 {
62 	return req->flags & REQ_F_FIXED_FILE;
63 }
64 
65 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
66 bool io_is_uring_fops(struct file *file);
67 bool io_alloc_async_data(struct io_kiocb *req);
68 void io_req_task_queue(struct io_kiocb *req);
69 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
70 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
71 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
72 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
73 void tctx_task_work(struct callback_head *cb);
74 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
75 int io_uring_alloc_task_context(struct task_struct *task,
76 				struct io_ring_ctx *ctx);
77 
78 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
79 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
80 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
81 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
82 int io_req_prep_async(struct io_kiocb *req);
83 
84 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
85 void io_wq_submit_work(struct io_wq_work *work);
86 
87 void io_free_req(struct io_kiocb *req);
88 void io_queue_next(struct io_kiocb *req);
89 void io_task_refs_refill(struct io_uring_task *tctx);
90 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
91 
92 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
93 			bool cancel_all);
94 
95 #define io_lockdep_assert_cq_locked(ctx)				\
96 	do {								\
97 		lockdep_assert(in_task());				\
98 									\
99 		if (ctx->flags & IORING_SETUP_IOPOLL) {			\
100 			lockdep_assert_held(&ctx->uring_lock);		\
101 		} else if (!ctx->task_complete) {			\
102 			lockdep_assert_held(&ctx->completion_lock);	\
103 		} else if (ctx->submitter_task->flags & PF_EXITING) {	\
104 			lockdep_assert(current_work());			\
105 		} else {						\
106 			lockdep_assert(current == ctx->submitter_task);	\
107 		}							\
108 	} while (0)
109 
110 static inline void io_req_task_work_add(struct io_kiocb *req)
111 {
112 	__io_req_task_work_add(req, 0);
113 }
114 
115 #define io_for_each_link(pos, head) \
116 	for (pos = (head); pos; pos = pos->link)
117 
118 void io_cq_unlock_post(struct io_ring_ctx *ctx);
119 
120 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
121 						       bool overflow)
122 {
123 	io_lockdep_assert_cq_locked(ctx);
124 
125 	if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
126 		struct io_uring_cqe *cqe = ctx->cqe_cached;
127 
128 		ctx->cached_cq_tail++;
129 		ctx->cqe_cached++;
130 		if (ctx->flags & IORING_SETUP_CQE32)
131 			ctx->cqe_cached++;
132 		return cqe;
133 	}
134 
135 	return __io_get_cqe(ctx, overflow);
136 }
137 
138 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
139 {
140 	return io_get_cqe_overflow(ctx, false);
141 }
142 
143 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
144 				     struct io_kiocb *req)
145 {
146 	struct io_uring_cqe *cqe;
147 
148 	/*
149 	 * If we can't get a cq entry, userspace overflowed the
150 	 * submission (by quite a lot). Increment the overflow count in
151 	 * the ring.
152 	 */
153 	cqe = io_get_cqe(ctx);
154 	if (unlikely(!cqe))
155 		return false;
156 
157 	trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
158 				req->cqe.res, req->cqe.flags,
159 				(req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0,
160 				(req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0);
161 
162 	memcpy(cqe, &req->cqe, sizeof(*cqe));
163 
164 	if (ctx->flags & IORING_SETUP_CQE32) {
165 		u64 extra1 = 0, extra2 = 0;
166 
167 		if (req->flags & REQ_F_CQE32_INIT) {
168 			extra1 = req->extra1;
169 			extra2 = req->extra2;
170 		}
171 
172 		WRITE_ONCE(cqe->big_cqe[0], extra1);
173 		WRITE_ONCE(cqe->big_cqe[1], extra2);
174 	}
175 	return true;
176 }
177 
178 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
179 				   struct io_kiocb *req)
180 {
181 	if (likely(__io_fill_cqe_req(ctx, req)))
182 		return true;
183 	return io_req_cqe_overflow(req);
184 }
185 
186 static inline void req_set_fail(struct io_kiocb *req)
187 {
188 	req->flags |= REQ_F_FAIL;
189 	if (req->flags & REQ_F_CQE_SKIP) {
190 		req->flags &= ~REQ_F_CQE_SKIP;
191 		req->flags |= REQ_F_SKIP_LINK_CQES;
192 	}
193 }
194 
195 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
196 {
197 	req->cqe.res = res;
198 	req->cqe.flags = cflags;
199 }
200 
201 static inline bool req_has_async_data(struct io_kiocb *req)
202 {
203 	return req->flags & REQ_F_ASYNC_DATA;
204 }
205 
206 static inline void io_put_file(struct file *file)
207 {
208 	if (file)
209 		fput(file);
210 }
211 
212 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
213 					 unsigned issue_flags)
214 {
215 	lockdep_assert_held(&ctx->uring_lock);
216 	if (issue_flags & IO_URING_F_UNLOCKED)
217 		mutex_unlock(&ctx->uring_lock);
218 }
219 
220 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
221 				       unsigned issue_flags)
222 {
223 	/*
224 	 * "Normal" inline submissions always hold the uring_lock, since we
225 	 * grab it from the system call. Same is true for the SQPOLL offload.
226 	 * The only exception is when we've detached the request and issue it
227 	 * from an async worker thread, grab the lock for that case.
228 	 */
229 	if (issue_flags & IO_URING_F_UNLOCKED)
230 		mutex_lock(&ctx->uring_lock);
231 	lockdep_assert_held(&ctx->uring_lock);
232 }
233 
234 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
235 {
236 	/* order cqe stores with ring update */
237 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
238 }
239 
240 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
241 {
242 	if (wq_has_sleeper(&ctx->poll_wq))
243 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
244 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
245 }
246 
247 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
248 {
249 	/*
250 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
251 	 * won't necessarily wake up all the tasks, io_should_wake() will make
252 	 * that decision.
253 	 *
254 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
255 	 * set in the mask so that if we recurse back into our own poll
256 	 * waitqueue handlers, we know we have a dependency between eventfd or
257 	 * epoll and should terminate multishot poll at that point.
258 	 */
259 	if (wq_has_sleeper(&ctx->cq_wait))
260 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
261 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
262 }
263 
264 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
265 {
266 	struct io_rings *r = ctx->rings;
267 
268 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
269 }
270 
271 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
272 {
273 	struct io_rings *rings = ctx->rings;
274 	unsigned int entries;
275 
276 	/* make sure SQ entry isn't read before tail */
277 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
278 	return min(entries, ctx->sq_entries);
279 }
280 
281 static inline int io_run_task_work(void)
282 {
283 	/*
284 	 * Always check-and-clear the task_work notification signal. With how
285 	 * signaling works for task_work, we can find it set with nothing to
286 	 * run. We need to clear it for that case, like get_signal() does.
287 	 */
288 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
289 		clear_notify_signal();
290 	/*
291 	 * PF_IO_WORKER never returns to userspace, so check here if we have
292 	 * notify work that needs processing.
293 	 */
294 	if (current->flags & PF_IO_WORKER &&
295 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
296 		__set_current_state(TASK_RUNNING);
297 		resume_user_mode_work(NULL);
298 	}
299 	if (task_work_pending(current)) {
300 		__set_current_state(TASK_RUNNING);
301 		task_work_run();
302 		return 1;
303 	}
304 
305 	return 0;
306 }
307 
308 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
309 {
310 	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
311 }
312 
313 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
314 {
315 	if (!ts->locked) {
316 		mutex_lock(&ctx->uring_lock);
317 		ts->locked = true;
318 	}
319 }
320 
321 /*
322  * Don't complete immediately but use deferred completion infrastructure.
323  * Protected by ->uring_lock and can only be used either with
324  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
325  */
326 static inline void io_req_complete_defer(struct io_kiocb *req)
327 	__must_hold(&req->ctx->uring_lock)
328 {
329 	struct io_submit_state *state = &req->ctx->submit_state;
330 
331 	lockdep_assert_held(&req->ctx->uring_lock);
332 
333 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
334 }
335 
336 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
337 {
338 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
339 		     ctx->has_evfd || ctx->poll_activated))
340 		__io_commit_cqring_flush(ctx);
341 }
342 
343 static inline void io_get_task_refs(int nr)
344 {
345 	struct io_uring_task *tctx = current->io_uring;
346 
347 	tctx->cached_refs -= nr;
348 	if (unlikely(tctx->cached_refs < 0))
349 		io_task_refs_refill(tctx);
350 }
351 
352 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
353 {
354 	return !ctx->submit_state.free_list.next;
355 }
356 
357 extern struct kmem_cache *req_cachep;
358 
359 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
360 {
361 	struct io_kiocb *req;
362 
363 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
364 	kasan_unpoison_object_data(req_cachep, req);
365 	wq_stack_extract(&ctx->submit_state.free_list);
366 	return req;
367 }
368 
369 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
370 {
371 	if (unlikely(io_req_cache_empty(ctx))) {
372 		if (!__io_alloc_req_refill(ctx))
373 			return false;
374 	}
375 	*req = io_extract_req(ctx);
376 	return true;
377 }
378 
379 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
380 {
381 	return likely(ctx->submitter_task == current);
382 }
383 
384 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
385 {
386 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
387 		      ctx->submitter_task == current);
388 }
389 
390 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
391 {
392 	io_req_set_res(req, res, 0);
393 	req->io_task_work.func = io_req_task_complete;
394 	io_req_task_work_add(req);
395 }
396 
397 /*
398  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
399  * slot.
400  */
401 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
402 {
403 	if (ctx->flags & IORING_SETUP_SQE128)
404 		return 2 * sizeof(struct io_uring_sqe);
405 	return sizeof(struct io_uring_sqe);
406 }
407 #endif
408