xref: /linux/io_uring/io_uring.h (revision 1bd9a7b4afd5e0b938868a90b16d514c19808e6c)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/io_uring_types.h>
7 #include <uapi/linux/eventpoll.h>
8 #include "io-wq.h"
9 #include "slist.h"
10 #include "filetable.h"
11 
12 #ifndef CREATE_TRACE_POINTS
13 #include <trace/events/io_uring.h>
14 #endif
15 
16 enum {
17 	IOU_OK			= 0,
18 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
19 
20 	/*
21 	 * Intended only when both IO_URING_F_MULTISHOT is passed
22 	 * to indicate to the poll runner that multishot should be
23 	 * removed and the result is set on req->cqe.res.
24 	 */
25 	IOU_STOP_MULTISHOT	= -ECANCELED,
26 };
27 
28 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow);
29 bool io_req_cqe_overflow(struct io_kiocb *req);
30 int io_run_task_work_sig(struct io_ring_ctx *ctx);
31 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked);
32 int io_run_local_work(struct io_ring_ctx *ctx);
33 void io_req_defer_failed(struct io_kiocb *req, s32 res);
34 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
35 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
36 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
37 		bool allow_overflow);
38 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
39 
40 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
41 
42 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
43 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
44 			       unsigned issue_flags);
45 
46 static inline bool io_req_ffs_set(struct io_kiocb *req)
47 {
48 	return req->flags & REQ_F_FIXED_FILE;
49 }
50 
51 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local);
52 bool io_is_uring_fops(struct file *file);
53 bool io_alloc_async_data(struct io_kiocb *req);
54 void io_req_task_queue(struct io_kiocb *req);
55 void io_queue_iowq(struct io_kiocb *req, bool *dont_use);
56 void io_req_task_complete(struct io_kiocb *req, bool *locked);
57 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
58 void io_req_task_submit(struct io_kiocb *req, bool *locked);
59 void tctx_task_work(struct callback_head *cb);
60 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
61 int io_uring_alloc_task_context(struct task_struct *task,
62 				struct io_ring_ctx *ctx);
63 
64 int io_poll_issue(struct io_kiocb *req, bool *locked);
65 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
66 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
67 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
68 int io_req_prep_async(struct io_kiocb *req);
69 
70 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
71 void io_wq_submit_work(struct io_wq_work *work);
72 
73 void io_free_req(struct io_kiocb *req);
74 void io_queue_next(struct io_kiocb *req);
75 void __io_put_task(struct task_struct *task, int nr);
76 void io_task_refs_refill(struct io_uring_task *tctx);
77 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
78 
79 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
80 			bool cancel_all);
81 
82 static inline void io_req_task_work_add(struct io_kiocb *req)
83 {
84 	__io_req_task_work_add(req, true);
85 }
86 
87 #define io_for_each_link(pos, head) \
88 	for (pos = (head); pos; pos = pos->link)
89 
90 void io_cq_unlock_post(struct io_ring_ctx *ctx);
91 
92 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
93 						       bool overflow)
94 {
95 	if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
96 		struct io_uring_cqe *cqe = ctx->cqe_cached;
97 
98 		ctx->cached_cq_tail++;
99 		ctx->cqe_cached++;
100 		if (ctx->flags & IORING_SETUP_CQE32)
101 			ctx->cqe_cached++;
102 		return cqe;
103 	}
104 
105 	return __io_get_cqe(ctx, overflow);
106 }
107 
108 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
109 {
110 	return io_get_cqe_overflow(ctx, false);
111 }
112 
113 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
114 				     struct io_kiocb *req)
115 {
116 	struct io_uring_cqe *cqe;
117 
118 	/*
119 	 * If we can't get a cq entry, userspace overflowed the
120 	 * submission (by quite a lot). Increment the overflow count in
121 	 * the ring.
122 	 */
123 	cqe = io_get_cqe(ctx);
124 	if (unlikely(!cqe))
125 		return false;
126 
127 	trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
128 				req->cqe.res, req->cqe.flags,
129 				(req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0,
130 				(req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0);
131 
132 	memcpy(cqe, &req->cqe, sizeof(*cqe));
133 
134 	if (ctx->flags & IORING_SETUP_CQE32) {
135 		u64 extra1 = 0, extra2 = 0;
136 
137 		if (req->flags & REQ_F_CQE32_INIT) {
138 			extra1 = req->extra1;
139 			extra2 = req->extra2;
140 		}
141 
142 		WRITE_ONCE(cqe->big_cqe[0], extra1);
143 		WRITE_ONCE(cqe->big_cqe[1], extra2);
144 	}
145 	return true;
146 }
147 
148 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
149 				   struct io_kiocb *req)
150 {
151 	if (likely(__io_fill_cqe_req(ctx, req)))
152 		return true;
153 	return io_req_cqe_overflow(req);
154 }
155 
156 static inline void req_set_fail(struct io_kiocb *req)
157 {
158 	req->flags |= REQ_F_FAIL;
159 	if (req->flags & REQ_F_CQE_SKIP) {
160 		req->flags &= ~REQ_F_CQE_SKIP;
161 		req->flags |= REQ_F_SKIP_LINK_CQES;
162 	}
163 }
164 
165 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
166 {
167 	req->cqe.res = res;
168 	req->cqe.flags = cflags;
169 }
170 
171 static inline bool req_has_async_data(struct io_kiocb *req)
172 {
173 	return req->flags & REQ_F_ASYNC_DATA;
174 }
175 
176 static inline void io_put_file(struct file *file)
177 {
178 	if (file)
179 		fput(file);
180 }
181 
182 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
183 					 unsigned issue_flags)
184 {
185 	lockdep_assert_held(&ctx->uring_lock);
186 	if (issue_flags & IO_URING_F_UNLOCKED)
187 		mutex_unlock(&ctx->uring_lock);
188 }
189 
190 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
191 				       unsigned issue_flags)
192 {
193 	/*
194 	 * "Normal" inline submissions always hold the uring_lock, since we
195 	 * grab it from the system call. Same is true for the SQPOLL offload.
196 	 * The only exception is when we've detached the request and issue it
197 	 * from an async worker thread, grab the lock for that case.
198 	 */
199 	if (issue_flags & IO_URING_F_UNLOCKED)
200 		mutex_lock(&ctx->uring_lock);
201 	lockdep_assert_held(&ctx->uring_lock);
202 }
203 
204 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
205 {
206 	/* order cqe stores with ring update */
207 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
208 }
209 
210 /* requires smb_mb() prior, see wq_has_sleeper() */
211 static inline void __io_cqring_wake(struct io_ring_ctx *ctx)
212 {
213 	/*
214 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
215 	 * won't necessarily wake up all the tasks, io_should_wake() will make
216 	 * that decision.
217 	 *
218 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
219 	 * set in the mask so that if we recurse back into our own poll
220 	 * waitqueue handlers, we know we have a dependency between eventfd or
221 	 * epoll and should terminate multishot poll at that point.
222 	 */
223 	if (waitqueue_active(&ctx->cq_wait))
224 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
225 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
226 }
227 
228 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
229 {
230 	smp_mb();
231 	__io_cqring_wake(ctx);
232 }
233 
234 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
235 {
236 	struct io_rings *r = ctx->rings;
237 
238 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
239 }
240 
241 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
242 {
243 	struct io_rings *rings = ctx->rings;
244 
245 	/* make sure SQ entry isn't read before tail */
246 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
247 }
248 
249 static inline int io_run_task_work(void)
250 {
251 	/*
252 	 * Always check-and-clear the task_work notification signal. With how
253 	 * signaling works for task_work, we can find it set with nothing to
254 	 * run. We need to clear it for that case, like get_signal() does.
255 	 */
256 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
257 		clear_notify_signal();
258 	if (task_work_pending(current)) {
259 		__set_current_state(TASK_RUNNING);
260 		task_work_run();
261 		return 1;
262 	}
263 
264 	return 0;
265 }
266 
267 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
268 {
269 	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
270 }
271 
272 static inline int io_run_task_work_ctx(struct io_ring_ctx *ctx)
273 {
274 	int ret = 0;
275 	int ret2;
276 
277 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
278 		ret = io_run_local_work(ctx);
279 
280 	/* want to run this after in case more is added */
281 	ret2 = io_run_task_work();
282 
283 	/* Try propagate error in favour of if tasks were run,
284 	 * but still make sure to run them if requested
285 	 */
286 	if (ret >= 0)
287 		ret += ret2;
288 
289 	return ret;
290 }
291 
292 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
293 {
294 	bool locked;
295 	int ret;
296 
297 	if (llist_empty(&ctx->work_llist))
298 		return 0;
299 
300 	locked = true;
301 	ret = __io_run_local_work(ctx, &locked);
302 	/* shouldn't happen! */
303 	if (WARN_ON_ONCE(!locked))
304 		mutex_lock(&ctx->uring_lock);
305 	return ret;
306 }
307 
308 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
309 {
310 	if (!*locked) {
311 		mutex_lock(&ctx->uring_lock);
312 		*locked = true;
313 	}
314 }
315 
316 /*
317  * Don't complete immediately but use deferred completion infrastructure.
318  * Protected by ->uring_lock and can only be used either with
319  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
320  */
321 static inline void io_req_complete_defer(struct io_kiocb *req)
322 	__must_hold(&req->ctx->uring_lock)
323 {
324 	struct io_submit_state *state = &req->ctx->submit_state;
325 
326 	lockdep_assert_held(&req->ctx->uring_lock);
327 
328 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
329 }
330 
331 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
332 {
333 	if (unlikely(ctx->off_timeout_used || ctx->drain_active || ctx->has_evfd))
334 		__io_commit_cqring_flush(ctx);
335 }
336 
337 /* must to be called somewhat shortly after putting a request */
338 static inline void io_put_task(struct task_struct *task, int nr)
339 {
340 	if (likely(task == current))
341 		task->io_uring->cached_refs += nr;
342 	else
343 		__io_put_task(task, nr);
344 }
345 
346 static inline void io_get_task_refs(int nr)
347 {
348 	struct io_uring_task *tctx = current->io_uring;
349 
350 	tctx->cached_refs -= nr;
351 	if (unlikely(tctx->cached_refs < 0))
352 		io_task_refs_refill(tctx);
353 }
354 
355 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
356 {
357 	return !ctx->submit_state.free_list.next;
358 }
359 
360 static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
361 {
362 	if (unlikely(io_req_cache_empty(ctx)))
363 		return __io_alloc_req_refill(ctx);
364 	return true;
365 }
366 
367 static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
368 {
369 	struct io_wq_work_node *node;
370 
371 	node = wq_stack_extract(&ctx->submit_state.free_list);
372 	return container_of(node, struct io_kiocb, comp_list);
373 }
374 
375 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
376 {
377 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
378 		      ctx->submitter_task == current);
379 }
380 
381 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
382 {
383 	io_req_set_res(req, res, 0);
384 	req->io_task_work.func = io_req_task_complete;
385 	io_req_task_work_add(req);
386 }
387 
388 #endif
389